The solution of Quiz 1

1. Problem 1
 a. Yes, he should use a small sigma.
 Advantages: more detail with sharpening edges, less blur so it’s good for edge detector
 Disadvantages: Also include more noises
 b. Reason: Sigma value is too small; threshold on the image after the Sobel filter is too small
 Fix: Use a higher sigma value; Use the median filter; set up a higher threshold
 c. F(ROS is not centralized) F T F
 d. More clusters -> more computational time, accuracy might increase but not always
 Higher k in kNN -> more computational time, accuracy might increase but not always

2. Problem 2
 a. Since Lipschitz continuous
 \[|f(x_1) - f(x_2)| \leq K_f |x_1 - x_2| \]
 \[|g(x_1) - g(x_2)| \leq K_g |x_1 - x_2| \]
 To show \(f+g \) is Lipschitz continuous, need to show
 \[|(f+g)(x_1) - (f+g)(x_2)| \leq K (x_1 - x_2) \]
 Therefore
 \[|(f+g)(x_1) - (f+g)(x_2)| = |f(x_1) + g(x_1) - (f(x_2) + g(x_2))| \]
 \[= |f(x_1) - (f(x_2) + g(x_1) - g(x_2))| \]
 \[\leq |f(x_1) - f(x_2)| + |g(x_1) - g(x_2)| \]
 \[\leq K_f |x_1 - x_2| + K_g |x_1 - x_2| \]
 \[= (K_f + K_g) |x_1 - x_2| \]
 b. (1) b
 (2) a
 (3) d or c
 (4) e
 (5) c or d

3. Problem 3
 a. The statement is not an invariant of the SimpleCar model.
 Consider at time \(t \), \(x_{goal} - v_{init} < x(t) < x_{goal} \).
 Then for time \(t+1 \), \(v(t+1) = v(t) = v_{init} \)
 \(x(t+1) = x(t) + v(t+1) > x_{goal} - v_{init} + v_{init} > x_{goal} \)
The statement is violated. Therefore, the statement is not an invariant of the SimpleCar model

b. The statement is an invariant of the SimpleCar model.

Base case:
\[x(0) = 0 \leq x_{\text{goal}}, \quad v(0) = v_{\text{init}} \leq v_{\text{init}} \]

Inductive Hypothesis: For time t, \(x(t) < x_{\text{goal}} + v_{\text{init}} \), \(v(t) \leq v_{\text{init}} \)

Inductive Step:
Suppose \(x(t) \leq x_{\text{goal}} \), \(v(t + 1) = v(t) \leq v_{\text{init}} \)
\[x(t + 1) = x(t) + v(t + 1) \leq x(t) + v_{\text{init}} \leq x_{\text{goal}} + v_{\text{init}} \]
Suppose \(x(t) > x_{\text{goal}} \), \(v(t + 1) = 0 \)
\[x(t + 1) = x(t) + v(t + 1) = x(t) < x_{\text{goal}} + v_{\text{init}} \]

Therefore, the statement is an invariant of the SimpleCar model

4. Problem 4
a. The eigen values of the A matrix
\[A = \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix} \]
\[\text{eig}(A) = 1.5616, -2.5616 \]
Therefore, the open loop system is not stable.

b. \(A_{cl} = A - BK = \begin{bmatrix} 1 - k_1 & 1 - k_2 \\ 2 & -2 \end{bmatrix} \]

c. The characteristic equation is given by
\[\text{det}(\lambda I - A_{cl}) = \text{det}([\lambda - 1 + k_1, k_2 - 1; -2, \lambda + 2]) \]
\[= \lambda^2 + (k_1 + 1)\lambda + 2(k_1 + k_2 - 2) \]

d. Since \(\lambda = -2, -3 \)
We get
\[2k_2 - 2 = 0 \]
\[2k_2 - k_1 + 2 = 0 \]
Therefore, we get \(k_1 = 4, \quad k_2 = 1 \)