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Outline of filtering and state estimation 
module
• Applications of Particle filter 

• Monte Carlo localization (MCL)

• Kahoot
• Overview of SLAM



• Represent belief by finite number of parameters (just like histogram filter)

• But, they differ in how the parameters (particles) are generated and populate 
the state space 

• Key idea: represent belief 𝑏𝑒𝑙 𝑥! by a random set of state samples

• Advantages

• The representation is approximate and nonparametric and therefore can 
represent a broader set of distributions than e.g., Gaussian 

• Can handle nonlinear tranformations

• Related ideas: Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap 
filter, Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96], Dynamic Bayesian 
Networks: [Kanazawa et al., 95]d

Particle Filters



Particle filtering algorithm 
𝑋! = 𝑥!

[#], 𝑥!
[%], … 𝑥!

[&] particles

Algorithm Particle_filter(𝑋!'#, 𝑢! , 𝑧!):(𝑋!'# = 𝑋! = ∅
for all 𝑚 in [M] do:

sample 𝑥!
[(]~𝑝 𝑥! 𝑢! , 𝑥!'#

[(])

𝑤!
[(] = 𝑝 𝑧! 𝑥!

(

(𝑋! = (𝑋! + ⟨ 𝑥!
( , 𝑤!

[(]⟩
end for

for all 𝑚 in [M] do:

draw 𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝ 𝑤!
[)]

add 𝑥!
[)] 𝑡𝑜 𝑋!

end for
return 𝑋!

ideally,  𝑥<
[>] is selected with probability prop. to 

𝑝 𝑥< 𝑧@:<, 𝑢@:<)
'𝑋<B@ is the temporary particle set

// sampling from state transition dist.

// calculates importance factor 𝑤< or weight 

// resampling or importance sampling; these are 
distributed according to 𝜂 𝑝 𝑧< 𝑥<

[>] 𝑏𝑒𝑙 𝑥<
// survival of fittest: moves/adds particles to parts of 
the state space with higher probability



Localization as coordinate transformation

m

zt-1 zt zt+1

ut-1 ut ut+1

xt-1 xt xt+1
Shaded known: 
map (m), control inputs (u), 
measurements(z). White nodes 
to be determined (x)

maps (m) are described in 
global coordinates. Localization 
= establish coord transf. 
between m and robot’s local 
coordinates

Transformation used for objects 
of interest (obstacles, 
pedestrians) for decision, 
planning and control 



Monte Carlo Localization 

• Represents beliefs by particles 



Weight samples: w = f / g

Importance Sampling

suppose we want to compute 𝐸" 𝐼 𝑥 ∈ 𝐴 but 
we can only sample from density 𝑔

𝐸" 𝐼 𝑥 ∈ 𝐴

= ∫ 𝑓 𝑥 𝐼 𝑥 ∈ 𝐴 𝑑𝑥

= ∫ " #
$ # 𝑔 𝑥 𝐼 𝑥 ∈ 𝐴 𝑑𝑥, provided 𝑔 𝑥 > 0

= ∫ 𝑤 𝑥 𝑔 𝑥 𝐼 𝑥 ∈ 𝐴 𝑑𝑥
= 𝐸$ 𝑤(𝑥)𝐼 𝑥 ∈ 𝐴

We need 𝑓 𝑥 > 0 ⇒ 𝑔 𝑥 > 0



Monte Carlo Localization (MCL)
𝑋! = 𝑥!

[#], 𝑥!
[%], … 𝑥!

[&] particles

Algorithm MCL(𝑋!'#, 𝑢! , 𝑧!,m):
(𝑋!'# = 𝑋! = ∅
for all 𝑚 in [M] do:

𝑥!
[(] = 𝒔𝒂𝒎𝒑𝒍𝒆_𝒎𝒐𝒕𝒊𝒐𝒏_𝒎𝒐𝒅𝒆𝒍(𝑢! 𝑥!'#

[(])

𝑤!
[(] = 𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕_𝒎𝒐𝒅𝒆𝒍(𝑧! , 𝑥!

( ,()
(𝑋! = (𝑋! + ⟨ 𝑥!

( , 𝑤!
[(]⟩

end for

for all 𝑚 in [M] do:

draw 𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝ 𝑤!
[)]

add 𝑥!
[)] 𝑡𝑜 𝑋!

end for

return 𝑋!

Plug in motion and measurement models 
in the particle filter



Particle Filters
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The picture can't be displayed.
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Robot Motion
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Robot Motion
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Sample-based Localization (sonar)
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Initial Distribution
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After Incorporating Ten Ultrasound 
Scans
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After Incorporating 65 Ultrasound Scans
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Estimated Path



Using Ceiling Maps for Localization
Sensor: Upward looking camera
Map / model of the world: Ceiling Mosaic (construction is nontrivial)
https://www.cs.cmu.edu/~minerva/tech/mosaic.html

https://www.cs.cmu.edu/~minerva/tech/mosaic.html


Vision-based Localization

P(z|x)

h(x)
z



Under a Light
Measurement z: P(z|x):



Next to a Light
Measurement z: P(z|x):



Elsewhere
Measurement z: P(z|x):



Global Localization Using Vision





Kahoot

• https://play.kahoot.it/v2/?quizId=3f040019-06e6-4fbe-9c98-
780be526f271

https://play.kahoot.it/v2/?quizId=3f040019-06e6-4fbe-9c98-780be526f271
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Summary: Advantages and Limitations of MCL
Advantages of particle filtering-based localization (MCL) 

• Solves global localization
• Can approximate any distributions (non-parametric) 
• Increasing M improves accuracy of approximation (clear trade-off)

• Possible to have adaptive implementations
• track the pose of a mobile robot and to

Disadvantages

• Cannot solve global localization failures or kidnapped robot problem
• Disappearance of diversity: particles other than the most likely positions disappear; only near a single 

pose “survive”; cannot recover if the pose is wrong
• Can be resolved by injecting some random particles; how many? from what distribution?

• Add particles based on some estimate of localization performance 𝑝 𝑧𝑡 𝑧!"#) =
#
$∑𝑤!

[&]

• Particle deprivation: if 𝑝 𝑥𝑡 𝑥<B@, 𝑢<) is very different from 𝑝 𝑥𝑡 𝑧<) then many more particles are 
needed; if the measurement model has no uncertainty---no noise---MCL fails
• Simple solution trick: use noisy sensors; 
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Random Samples
Vision-Based Localization
936 Images, 4MB, .6secs/image
Trajectory of the robot:
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Kidnapping the Robot
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§ SLAM stands for simultaneous localization and 
mapping

§ The task of building a map while estimating 
the pose of the robot relative to this map

§ Why is SLAM hard?
Chicken and egg problem: 
a map is needed to localize the robot and 
a pose estimate is needed to build a map

The SLAM Problem
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Given:
• The robot’s controls

• Observations of nearby 
features

Estimate:

• Map of features

• Path of the robot

The SLAM Problem
A robot moving though an unknown, static environment
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SLAM Applications
Indoors

Space

Undersea

Underground



Online SLAM

m

zt-1 zt zt+1

ut-1 ut ut+1

xt-1 xt xt+1

Shaded known: 
control inputs (u), 
measurements(z). 
White nodes to be 
determined (x,m)



Full SLAM

m

zt-1 zt zt+1

ut-1 ut ut+1

xt-1 xt xt+1

Shaded known: 
control inputs (u), 
measurements(z). 
White nodes to be 
determined (x,m)
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Representations

• Grid maps or scans

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;…]

• Landmark-based

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;…
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Why is SLAM a hard problem?
SLAM: robot path and map are both unknown

Robot path error correlates errors in the map
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Why is SLAM a hard problem?

• In the real world, the mapping between observations 
and landmarks is unknown

• Picking wrong data associations can have catastrophic 
consequences

• Pose error correlates data associations

Robot pose
uncertainty
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SLAM: 
Simultaneous Localization and Mapping

• Full SLAM:

• Online SLAM:

Integrations typically done one at a time 

),|,( :1:1:1 ttt uzmxp

121:1:1:1:1:1 ...),|,(),|,( -ò ò ò= ttttttt dxdxdxuzmxpuzmxp !

Estimates most recent pose and map!

Estimates entire path and map!
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Data Association Problem

• A data association is an assignment of observations to 
landmarks

• In general there are more than 
(n observations, m landmarks) possible associations

• Also called “assignment problem”
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§ Represent belief by random samples
§ Estimation of non-Gaussian, nonlinear processes

§ Sampling Importance Resampling (SIR) principle
§ Draw the new generation of particles
§ Assign an importance weight to each particle
§ Resampling 

§ Typical application scenarios are 
tracking, localization, …

Particle Filters
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§ A particle filter can be used to solve both problems

§ Localization: state space < x, y, q>

§ SLAM: state space < x, y, q, map>
§ for landmark maps = < l1, l2, …, lm>
§ for grid maps = < c11, c12, …, c1n, c21, …, cnm>

§ Problem: The number of particles needed to 
represent a posterior grows exponentially with 
the dimension of the state space!

Localization vs. SLAM



• Naïve implementation of particle filters to SLAM will be crushed by the 
curse of dimensionality

67
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§ Is there a dependency between the dimensions of 
the state space?

§ If so, can we use the dependency to solve the 
problem more efficiently?

Dependencies 
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§ Is there a dependency between the dimensions of 
the state space?

§ If so, can we use the dependency to solve the 
problem more efficiently?

§ In the SLAM context
§ The map depends on the poses of the robot.
§ We know how to build a map given the position 

of the sensor is known.

Dependencies



Conditional Independence

• A and B are conditionally independent given C if P(A, B | C) = P(A|C) 
P(B|C)

• Height and vocabulary are not independent
• But they are conditionally independent given age

70
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Factored Posterior (Landmarks)

SLAM posterior
Robot path posterior

landmark positions

Factorization first introduced by Murphy in 1999

Does this help to solve the problem?

poses map observations & movements
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Factored Posterior (Landmarks)

Factorization first introduced by Murphy in 1999

poses map observations & movements
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Knowledge of the robot’s true path renders 
landmark positions conditionally independent

Mapping using Landmarks

. . .

Landmark 1

observations

Robot poses

controls

x1 x2 xt

u1 ut-1

l2

l1

z1

z2

x3

u
1

z3

zt

Landmark 2

x0

u0 
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Factored Posterior

Robot path posterior
(localization problem) Conditionally 

independent 
landmark positions
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Rao-Blackwellization

§ This factorization is also called Rao-Blackwellization
§ Given that the second term can be computed 

efficiently, particle filtering becomes possible!
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FastSLAM
§ Rao-Blackwellized particle filtering based on 

landmarks     [Montemerlo et al., 2002]
§ Each landmark is represented by a 2x2 

Extended Kalman Filter (EKF)
§ Each particle therefore has to maintain M EKFs

Landmark 1 Landmark 2 Landmark M…x, y, q

Landmark 1 Landmark 2 Landmark M…x, y, qParticle
#1

Landmark 1 Landmark 2 Landmark M…x, y, qParticle
#2

Particle
N

…
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FastSLAM – Action Update

Particle #1

Particle #2

Particle #3

Landmark #1
Filter

Landmark #2
Filter
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FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Landmark #1
Filter

Landmark #2
Filter
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FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Weight = 0.8

Weight = 0.4

Weight = 0.1
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FastSLAM  - Video
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FastSLAM  Complexity

• Update robot particles based on 
control ut-1

• Incorporate observation zt into 
Kalman filters

• Resample particle set

N = Number of particles
M = Number of map features

O(N)
Constant time per particle

O(N•log(M))
Log time per particle

O(N•log(M))

O(N•log(M))
Log time per particle

Log time per particle
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Data Association Problem

• A robust SLAM must consider possible data associations 

• Potential data associations depend also 
on the pose of the robot 

§ Which observation belongs to which landmark?
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Multi-Hypothesis Data Association
• Data association is done on a 

per-particle basis

• Robot pose error is factored 
out of data association 
decisions
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Per-Particle Data Association

Was the observation
generated by the red
or the blue landmark?

P(observation|red) = 0.3 P(observation|blue) = 0.7

§ Two options for per-particle data association
§ Pick the most probable match
§ Pick an random association weighted by 

the observation likelihoods
§ If the probability is too low, generate a new landmark
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Results – Victoria Park
• 4 km traverse
• < 5 m RMS position 

error
• 100 particles

Dataset courtesy of University of Sydney

Blue = GPS
Yellow = FastSLAM
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Results – Victoria Park

Dataset courtesy of University of Sydney

https://www.youtube.com/watch?v=BIOJSNHYSbc
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Results – Data Association
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Results – Accuracy
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FastSLAM with Scan-Matching
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FastSLAM with Scan-Matching
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FastSLAM with Scan-Matching
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§ Can we solve the SLAM problem if no pre-defined 
landmarks are available?

§ Can we use the ideas of FastSLAM to build grid 
maps?

§ As with landmarks, the map depends on the poses 
of the robot during data acquisition

§ If the poses are known, grid-based mapping is easy 
(“mapping with known poses”)

Grid-based SLAM
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FastSLAM with Scan-Matching

Loop Closure
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Typical Evolution of neff
visiting new 
areas closing the 

first loop

second loop closure

visiting 
known areas



95

Intel Lab
§ 15 particles
§ four times faster 

than real-time
P4, 2.8GHz

§ 5cm resolution 
during scan 
matching

§ 1cm resolution in 
final map
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Intel Lab

§ 15 particles
§ Compared to 

FastSLAM with 
Scan-Matching, 
the particles are 
propagated 
closer to the true 
distribution 
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Outdoor Campus Map
§ 30 particles
§ 250x250m2

§ 1.75 km 
(odometry)

§ 20cm resolution 
during scan 
matching

§ 30cm resolution 
in final map

§ 30 particles
§ 250x250m2

§ 1.088 miles 
(odometry)

§ 20cm resolution 
during scan 
matching

§ 30cm resolution 
in final map



98

MIT Killian Court

§ The “infinite-corridor-dataset” at MIT
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MIT Killian Court
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More Details on FastSLAM
• M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored solution to 

simultaneous localization and mapping, AAAI02

• D. Haehnel, W. Burgard, D. Fox, and S. Thrun. An efficient FastSLAM algorithm for 
generating maps of large-scale cyclic environments from raw laser range 
measurements, IROS03

• M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit. FastSLAM 2.0: An Improved particle 
filtering algorithm for simultaneous localization and mapping that provably converges. 
IJCAI-2003

• G. Grisetti, C. Stachniss, and W. Burgard. Improving grid-based slam with rao-
blackwellized particle filters by adaptive proposals and selective resampling, ICRA05

• A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultanous localization and mapping 
without predetermined landmarks, IJCAI03
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Summary
• Particle filters are an implementation of recursive 

Bayesian filtering
• They represent the posterior by a set of weighted 

samples.
• In the context of localization, the particles are 

propagated according to the motion model.
• They are then weighted according to the likelihood of 

the observations.
• In a re-sampling step, new particles are drawn with a 

probability proportional to the likelihood of the 
observation. 


