Principles of Safe Autonomy: Lecture 15: Filtering applications and SLAM

Sayan Mitra

Reference: Probabilistic Robotics by Sebastian Thrun, Wolfram Burgard, and Dieter Fox Slides: From the book's website

Outline of filtering and state estimation module

- Applications of Particle filter
 - Monte Carlo localization (MCL)
- Kahoot
- Overview of SLAM

Particle Filters

- Represent belief by finite number of parameters (just like histogram filter)
- But, they differ in how the parameters (particles) are generated and populate the state space
- Key idea: represent belief $bel(x_t)$ by a random set of state samples
- Advantages
 - The representation is approximate and nonparametric and therefore can represent a broader set of distributions than e.g., Gaussian
 - Can handle nonlinear tranformations
- Related ideas: Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter, Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96], Dynamic Bayesian Networks: [Kanazawa et al., 95]d

Particle filtering algorithm

$$\begin{split} X_t &= x_t^{[1]}, x_t^{[2]}, \dots x_t^{[M]} \text{ particles} \\ \begin{array}{l} \text{Algorithm Particle_filter}(X_{t-1}, u_t, z_t): \\ \bar{X}_{t-1} &= X_t = \emptyset \\ \text{for all } m \text{ in [M] do:} \\ &\quad \text{sample } x_t^{[m]} \sim p(x_t | u_t, x_{t-1}^{[m]}) \\ &\quad w_t^{[m]} &= p\left(z_t \left| x_t^{[m]} \right) \\ &\quad \bar{X}_t &= \bar{X}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle \\ \text{end for} \\ \text{for all } m \text{ in [M] do:} \\ &\quad \text{draw } i \text{ with probability} \propto w_t^{[i]} \\ &\quad \text{add } x_t^{[i]} \text{ to } X_t \\ \text{end for} \\ \text{return } X_t \end{split}$$

ideally, $x_t^{[m]}$ is selected with probability prop. to $p(x_t \mid z_{1:t}, u_{1:t})$ \overline{X}_{t-1} is the temporary particle set

// sampling from state transition dist.
// calculates importance factor w_t or weight

// resampling or importance sampling; these are distributed according to $\eta p\left(z_t | x_t^{[m]}\right) \overline{bel}(x_t)$ // survival of fittest: moves/adds particles to parts of

// survival of fittest: moves/adds particles to parts of the state space with higher probability

Localization as coordinate transformation

Shaded known: map (m), control inputs (u), measurements(z). White nodes to be determined (x)

maps (m) are described in global coordinates. Localization = establish <u>coord transf.</u> between m and robot's local coordinates

Transformation used for objects of interest (obstacles, pedestrians) for decision, planning and control

Monte Carlo Localization

• Represents beliefs by particles

Importance Sampling

suppose we want to compute $E_f[I(x \in A)]$ but we can only sample from density g

 $E_f[I(x \in A)]$

$$= \int f(x)I(x \in A)dx$$

= $\int \frac{f(x)}{g(x)}g(x)I(x \in A)dx$, provided $g(x) > 0$
= $\int w(x)g(x)I(x \in A)dx$
= $E_g[w(x)I(x \in A)]$

We need $f(x) > 0 \Rightarrow g(x) > 0$

Weight samples: w = f/g

Monte Carlo Localization (MCL)

$$\begin{split} X_t &= x_t^{[1]}, x_t^{[2]}, \dots x_t^{[M]} \text{ particles} \\ \\ & \text{Algorithm MCL}(X_{t-1}, u_t, z_t, m): \\ & \bar{X}_{t-1} &= X_t = \emptyset \\ & \text{for all } m \text{ in [M] do:} \\ & \quad x_t^{[m]} &= sample_motion_model(u_t \, x_{t-1}^{[m]}) \\ & \quad w_t^{[m]} &= measurement_model(z_t, x_t^{[m],m}) \\ & \quad \bar{X}_t &= \bar{X}_t + \langle \, x_t^{[m]}, w_t^{[m]} \rangle \\ & \text{end for} \\ & \text{for all } m \text{ in [M] do:} \\ & \quad draw \ i \ with \ probability \ \propto w_t^{[i]} \\ & \quad add \, x_t^{[i]} \ to \ X_t \\ & \text{end for} \\ & \text{return } X_t \end{split}$$

Plug in motion and measurement models in the particle filter

Particle Filters

Sensor Information: Importance Sampling

Robot Motion

Sensor Information: Importance Sampling

Sample-based Localization (sonar)

Initial Distribution

After Incorporating Ten Ultrasound Scans

After Incorporating 65 Ultrasound Scans

Estimated Path

Using Ceiling Maps for Localization

Sensor: Upward looking camera Map / model of the world: Ceiling Mosaic (construction is nontrivial) https://www.cs.cmu.edu/~minerva/tech/mosaic.html

Vision-based Localization

Under a Light

Measurement z:

P(z|x):

Next to a Light

Measurement z:

Elsewhere

Measurement z:

P(z|x):

Global Localization Using Vision

Kahoot

• <u>https://play.kahoot.it/v2/?quizId=3f040019-06e6-4fbe-9c98-</u> 780be526f271

Summary: Advantages and Limitations of MCL

Advantages of particle filtering-based localization (MCL)

- Solves global localization
- Can approximate any distributions (non-parametric)
- Increasing M improves accuracy of approximation (clear trade-off)
 - Possible to have adaptive implementations
 - track the pose of a mobile robot and to

Disadvantages

- Cannot solve global localization failures or kidnapped robot problem
 - Disappearance of diversity: particles other than the most likely positions disappear; only near a single pose "survive"; cannot recover if the pose is wrong
 - Can be resolved by injecting some random particles; how many? from what distribution?
 - Add particles based on some estimate of localization performance $p(z_t | z_{t-1}) = \frac{1}{M} \sum w_t^{[m]}$
- Particle deprivation: if $p(x_t | x_{t-1}, u_t)$ is very different from $p(x_t | z_t)$ then many more particles are needed; if the measurement model has no uncertainty---no noise---MCL fails
 - Simple solution trick: use noisy sensors;

Random Samples Vision-Based Localization 936 Images, 4MB, .6secs/image Trajectory of the robot:

Kidnapping the Robot

The SLAM Problem

- SLAM stands for simultaneous localization and mapping
- The task of building a map while estimating the pose of the robot relative to this map
- Why is SLAM hard? Chicken and egg problem: a map is needed to localize the robot and a pose estimate is needed to build a map

The SLAM Problem

A robot moving though an unknown, static environment

Given:

- The robot's controls
- Observations of nearby features

Estimate:

- Map of features
- Path of the robot

SLAM Applications

57

Full SLAM

((10

Shaded known: control inputs (u), measurements(z). White nodes to be determined (x,m)

want to calculate $p(x_{1:t}, m | z_{1:t}, u_{1:t})$

Continuous unknowns: $x_{1:t}$, m Discrete unknowns: Relationship of detected objects to new objects

 $p(x_{1:t}, c_t, m | z_{1:t}, u_{1:t})$

 c_t : corrsnpondence variable

Representations

• Grid map

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;...]

• Landmark-based

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;...

60

Why is SLAM a hard problem?

SLAM: robot path and map are both unknown

Why is SLAM a hard problem?

- In the real world, the mapping between observations and landmarks is unknown
- Picking wrong data associations can have catastrophic consequences
- Pose error correlates data associations

SLAM: Simultaneous Localization and Mapping

• Full SLAM:

Estimates entire path and map!

- $p(x_{1:t}, m | z_{1:t}, u_{1:t})$
- Online SLAM:

Integrations typically from $p(x_t, m \mid z_t, u_{t+1}) dx_1 dx_2 \dots dx_{t-1}$

Estimates most recent pose and map!

63

Data Association Problem

- A data association is an assignment of observations to landmarks
- In general there are more than $\binom{n}{m}$ (n observations, m landmarks) possible associations
- Also called "assignment problem"

Particle Filters

- Represent belief by random samples
- Estimation of non-Gaussian, nonlinear processes
- Sampling Importance Resampling (SIR) principle
 - Draw the new generation of particles
 - Assign an importance weight to each particle
 - Resampling
- Typical application scenarios are tracking, localization, ...

Localization vs. SLAM

• A particle filter can be used to solve both problems

• Localization: state space $\langle x, y, \theta \rangle$

- SLAM: state space < x, y, θ, map>
 - for landmark maps = $\langle I_1, I_2, ..., I_m \rangle$
 - for grid maps = $\langle c_{11}, c_{12}, ..., c_{1n}, c_{21}, ..., c_{nm} \rangle$
- Problem: The number of particles needed to represent a posterior grows exponentially with the dimension of the state space!

• Naïve implementation of particle filters to SLAM will be crushed by the curse of dimensionality

Dependencies

- Is there a dependency between the dimensions of the state space?
- If so, can we use the dependency to solve the problem more efficiently?

Dependencies

- Is there a dependency between the dimensions of the state space?
- If so, can we use the dependency to solve the problem more efficiently?
- In the SLAM context
 - The map depends on the poses of the robot.
 - We know how to build a map given the position of the sensor is known.

Conditional Independence

- A and B are conditionally independent given C if P(A, B | C) = P(A|C) P(B|C)
- Height and vocabulary are not independent
- But they are conditionally independent given age

Factored Posterior (Landmarks) poses map observations & movements $p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1}) =$ $p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(l_{1:m} \mid x_{1:t}, z_{1:t})$

72

Factored Posterior

74

Rao-Blackwellization

$$p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1}) = p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t})$$

- This factorization is also called Rao-Blackwellization
- Given that the second term can be computed efficiently, particle filtering becomes possible!

FastSLAM - Video

FastSLAM Complexity

- Update robot particles based on control u_{t-1}
- Incorporate observation z_t into Kalman filters
- Resample particle set

O(N) Constant time per particle

O(N•log(M)) Log time per particle

N = Number of particles M = Number of map features

O(N•log(M)) Log time per particle

Data Association Problem

Which observation belongs to which landmark?

- A robust SLAM must consider possible data associations
- Potential data associations depend also on the pose of the robot

Multi-Hypothesis Data Association

- Data association is done on a per-particle basis
- Robot pose error is factored out of data association decisions

 \checkmark

X

 \checkmark

 \checkmark

 \bigstar

Per-Particle Data Association

Was the observation generated by the red or the blue landmark?

P(observation|blue) = 0.7

- Two options for per-particle data association
 - Pick the most probable match
 - Pick an random association weighted by the observation likelihoods
- If the probability is too low, generate a new landmark

Results – Victoria Park

- 4 km traverse
- < 5 m RMS position error
- 100 particles

Dataset courtesy of University of Sydney

Results – Victoria Park

Results – Data Association

Results – Accuracy

Grid-based SLAM

- Can we solve the SLAM problem if no pre-defined landmarks are available?
- Can we use the ideas of FastSLAM to build grid maps?
- As with landmarks, the map depends on the poses of the robot during data acquisition
- If the poses are known, grid-based mapping is easy ("mapping with known poses")

Intel Lab

((100

15 particles

- four times faster than real-time P4, 2.8GHz
- 5cm resolution during scan matching
- 1cm resolution in final map

Intel Lab

15 particles

 Compared to FastSLAM with Scan-Matching, the particles are propagated closer to the true distribution

Outdoor Campus Map

30 particles

- **250x250**m²
- 1.088 miles (odometry)
- 20cm resolution during scan matching
- 30cm resolution in final map

MIT Killian Court

The "infinite-corridor-dataset" at MIT

More Details on FastSLAM

- M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored solution to simultaneous localization and mapping, *AAAI02*
- D. Haehnel, W. Burgard, D. Fox, and S. Thrun. An efficient FastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements, IROS03
- M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit. FastSLAM 2.0: An Improved particle filtering algorithm for simultaneous localization and mapping that provably converges. IJCAI-2003
- G. Grisetti, C. Stachniss, and W. Burgard. Improving grid-based slam with raoblackwellized particle filters by adaptive proposals and selective resampling, ICRA05
- A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultanous localization and mapping without predetermined landmarks, IJCAI03

Summary

- Particle filters are an implementation of recursive Bayesian filtering
- They represent the posterior by a set of weighted samples.
- In the context of localization, the particles are propagated according to the motion model.
- They are then weighted according to the likelihood of the observations.
- In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation.

