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1 Introduction

You are stuck in ECEB and want to use the algorithm you implemented in MP3 to find your way out.
However, now you don’t know you exact location in the building. Fortunately, you have a detailed map of
ECEB. Therefore you plan to use a particle filter to find your position.

Same as the previous MPs, this MP is divided into two different parts. In the first part of this MP
(section 2), you will be working on some theoretical problems about particle filter and localization which
can help you better understand the algorithm we talked about during the lecture. In the second part of
this MP (section 3), you will need to implement the Monte Carlo Localization (MCL) discussed during the
lecture. You will have a vehicle constantly running in gazebo simulator and you need to find the position
of the vehicle using the sensor reading from the vehicle and the map of the environment. The estimated
position of the vehicle will be displayed on the map. You will need to play around with some parameters
of the particle filter and check the effect of those parameters. This is passive localization, that is, the vehicle
motion is controlled independently and you cannot change it for localization.

For part one, you will individually submit the solution to Problems 1-3 in one file MP4_1_netid.pdf.
For part two, your group will need to submit a single file MP4_2_groupnumber.pdf with the solution
to Problems 4-7. Name all the group members and cite any external resources you may have used in your
solutions. More details for submission are given in Section 4. All the regulations for academic integrity and
plagiarism spelled out in the student code apply.

Learning objectives

• Particle filters

• Localization

• Measurement models

System requirements

• Ubuntu 16

• ROS Kinetic

• ros-kinetic-ros-control

• ros-kinetic-effort-controllers

• ros-kinetic-joint-state-controller

• ros-kinetic-ackermann-msgs

1

https://publish.illinois.edu/safe-autonomy/
https://studentcode.illinois.edu/article1/part4/1-402/


2 Written Problems

Problem 1 (10 points). In deriving the Bayes filter update rule we used the following

P (x|y, z) =
P (y|x, z)P (x|z)

P (y|z) (1)

Derive this relationship using the definition of conditional probabilities.

Problem 2 (10 points). Answer the following short questions about particle filters

(a) What is importance sampling? Write the pseudocode. What role does it play in the particle filtering
algorithm?

(b) List all the information you need to implement a particle filter for a completely new system.

Problem 3 (10 points). Prove that if the heuristic function h is consistent, that is, h(u) ≤ w(u, v) + h(v) for
any edge (u, v) in the graph, then the total cost function f(v) is non-decreasing along all paths. Recall, the
total cost f(v) = g(v) + h(v), where g() is the cost to come.

3 Implementing MCL to localize in ECEB environment

3.1 Module architecture

This section describes components that are important for this MP. However, in this MP you only need to
implement some of the components. The components marked by * are not required for you to implement,
but feel free to check them. In fact, as class project may be utilizing a similar simulation framework, learning
about these components may help with your projects. The overall architecture of this MP is shown in figure
1. Detailed explanation for each of the components in the figure can be found in the following section

Figure 1: Architecture of this MP. Map, Robot, Particles module are located in maze.py

3.1.1 Gazebo simulator*

As usual, this MP will rely on the gazebo simulator. In the gazebo simulator, we have created an environ-
ment for the first floor of ECEB. Feel free to take nostalgic virtual tours of your favorite cafe and machine
shops as you WFH.

Gazebo will acquire the position and orientation of the vehicle from the vehicle model and controller
module and display the state of the vehicle in the ECEB environment. In addition, it will send the current
state of the vehicle (position and orientation) to the robot module so that the actual position of the vehicle
can be visualized on some map for debugging.

In addition, the Lidar sensor on the simulated Gem vehicle will constantly publishing the raw point
cloud Lidar reading from the Gazebo simulator.
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3.1.2 LidarProcessing

This module is located in the lidarProcessing.py file. This module takes the raw point cloud data from the
Lidar simulator in gazebo and process the point cloud data so they can be used in other parts of this MP.
The provided LidarProcessing module will only look at 4 directions, (front, rear, left, right) directions of the
of the vehicle and will return the distance between the vehicle and wall in those directions. In this MP, you
will need to modify this module to extend the features of Lidar. Some detailed explanation about how this
module works will be discussed in section 3.2.4.

3.1.3 Vehicle model and controller*

These two modules are implemented in vehicle.py and controller.py. These two modules drive the
vehicle constantly in the gazebo simulator through a series of waypoints by computing the current position
and orientation of the vehicle and send the information to gazebo simulator. You should not modify these
two modules.

3.1.4 Robot and Particle*

Robot and Particle are two classes defined in the maze.py file. The particle class, as its name suggests,
defines the particle that is used in the particle filter algorithm. It has properties recording its x, y position,
its orientation (heading), a weight and the map of the environment that contains a model for the sensor.

The robot class stores the state of the actual vehicle in the gazebo simulator. It is a derived class of
the particle class. Different from the particles, instead of having a sensor model, the robot will get sensor
readings from the real sensor from the LidarProcessing module.

3.1.5 Map

This module is located in the maze.py file. This module encodes the map of the environment that the
vehicle stays in. The actual and estimated state of the vehicle will be displayed in this map.

In addition, the Map has a model of the Lidar. Same as the simulated Lidar on the Gem car, the sensor
model will return the distance between particle and wall in front, rear, left and right direction. In this MP,
you will need to modify the sensor model to extend the feature of it. Details about how the sensor model
works will be discussed in section 3.2.4.

3.1.6 Monte Carlo Localization

This module is located in the particle_filter.py file. This is the main module you will working on.
This module contains the implementation of the Monte Carlo Localization that is based on the sensor read-
ing from the robot, sensor reading from each particle from the map, and the control signal from vehicle
model and controller. In addition, the MCL will hold a list of particles. The output from this module is the
estimated position of the vehicle in the ECEB environment. In this MP, the MCL resides in the runFilter
function. You will need to implement this function together with some helper functions to do the calcula-
tions. Detailed guide on how to implement this module is given in the next section.

3.2 Development instructions

3.2.1 Monte Carlo Localization (MCL)

As already talked about during the lecture, given a map of the environment, MCL can be used to approx-
imate the posterior probability distribution of current location based on motion models and measurement
updates. The algorithm should holds a list of uniformly random generated particles in initialization. Then
as the vehicle moving, the algorithm will shifts the particles to predict its new state after the movement.
With the sensor reading from the vehicle, the particles are weighted and resampled based on how well the
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actual sensed data correlated with the predicted state. The algorithm will run iteratively and ultimately,
most of the particles should converge toward the actual state of the vehicle.

Figure 2: Overall flowchart of a MCL based algorithm.

3.2.2 runFilter

The algorithm will be implemented in the runFilter function. The steps in this function are straightforward.
You only need to constantly loop through the steps as shown in 3. Suppose p = {p1 . . . pn} are the particles
representing the current distribution:

def r u n F i l t e r
while True :

sampleMotionModel ( p )
reading = vehic le_read_sensor ( )
updateWeight ( p , reading )
p = r e s a m p l e P a r t i c l e ( p )

The weighted sum of the position and orientation stored in particles will determine the estimated posi-
tion and orientation of the vehicle and will be displayed on the map.

3.2.3 sample motion model

In this part of the algorithm, each particle needs to predict its new location based on the actuation command
(control input) from the real vehicle.
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For this MP, the vehicle dynamics is given as

ẋ = vcos(θ)

ẏ = vsin(θ)

θ̇ = δ

(2)

x, y, θ are the x position, y position and orientation of the vehicle. Velocity v and steering angle δ are the
control signal calculated by the controller.

In this MP, the vehicle module will constantly publish the control signal (v and δ) in ros topic /gem/control.
The particle filter will subscribe to that topic and record the control signal in list self.control. The time
step for each control signal is 0.01s.

With all the above information, we are able to simulate the movement for each particle. We will use the
numeric integrator package ode in the scipy.integrate package to perform the simulation. Detailed
documentation with example for how to use the integrator can be found here. In this case, the initial
condition for each particle is the current state of that particle. The dynamic function for integration is
provided in the vehicle_dynamics function in particle_filter.py. You should perform integration through
the whole list of control input stored in self.controlwith time step 0.01. By doing this, you can properly
predict the new location of the particle.

Note that integration can be expensive with large number of particles. Therefore, though it’s required to
calculate next state for every particle, you probably don’t want to perform integration for all of them. You
can either choose to approximate the differential equations using difference equation (which may reduce
accuracy and influence performance of the algorithm) or reduce the number of integration performed by
applying rotation and translation to calculated trajectory.

3.2.4 Sensor model and weight updates

Sensor model After propagating particles with state model and control command, we now need to assign
a new weight for each of them according to the measurement from the sensor.

The sensor reading of the simulated vehicle is coming from the Lidar. The gazebo simulator will con-
stantly publish raw point cloud data from the simulated lidar. Detailed explanation about point cloud data
can be found here. The LidarProcessing module will subscribe to the raw point cloud data. It will then
process the data and calculate the distance between the vehicle and the wall in front, right, rear and left di-
rection in other words, 0, 270, 180, 90 degree with respect to the vehicle frame as shown in figure 3. Detailed
explanation about how the point clouds data are processed can be found here.

To run the MCL algorithm it’s also necessary to have the sensor reading for each particle. The sensor
model will based on the python map of the environment, and can provide sensor reading for each particle.
Same as the Lidar on the simulated vehicle, the sensor model can measure the distance between particle
and wall in front, right, rear and left direction. In the current implementation of sensor model, the distance
are obtained by counting in step of 1 at each direction until reach the wall.

To have a more accurate simulation, both the simulated Lidar on the vehicle or the senor model have
a sensing limit. Both the sensor on vehicle and sensor model has a certain effective range and therefore,
cannot recognize obstacles that is not within this limit. If in the direction, no obstacle is sensed within
sensor limit, the returned sensor reading will be the sensor limit. sensor_limit is an argument that can
be changed when you run the python file. Details about how to change it will be discussed in section 3.4.

For part of this MP, you are supposed to extend the provided LidarProcessing and sensor model. You
will need to add 4 additional measurement directions (total of 8 measurement directions) to the Lidar and
sensor model and compare the performance with using only 4 meausurement directions.

Update weight To assign the weights to the particles, we need to compare the similarity between the real
sensor measurements and the particle sensor measurements. In this MP we recommend using a Gaussian
Kernel to calculate the likelihood between the two sensor readings. You can compute the difference between
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Figure 3: The picture shows the reference coordinate frame of the vehicle. The provided LidarProcessing
will measure distance in front, right, rear, left direction. Picture from here

the sensor reading from Lidar on the vehicle and readings from sensor model for each particle and feed the
result into the Gaussian kernel to get the weight value. You can also implement any weight assignment
method you prefer. Please note, the weights need to be normalized before getting into the resampling step.

3.2.5 Resampling particles

In this part of the code, you are supposed to implement function resampleParticle() to resample
particles according to the weight calculated from the section above to replace old set of particles. The
newly sampled particles will be more likely to reside around the partiles that have higher weight. It is
recommended to first start implementing this function using multinomial resampling method:

1. Calculate an array of the cumulative sum of the weights.

2. Randomly generate a number and determine which range in that cumulative weight array to which
the number belongs.

3. The index of that range would correspond to the particle that should be created.

4. Repeat sampling until you have the desired number of samples.

Feel free to explore other resampling method that can have better performance. Some additional resam-
pling algorithm can be found here.

3.3 Gazebo Environment and Map

In order to reduce the amount of computational power required for the particle filter, we restrict the vehicle
to move in the north west corner of the ECE building (region around machine shop) as showing in figure
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Figure 4: North west corner of ECEB. The vehicle is at its default location

4. More specifically, we choose a rectangle region with width 120, height 75, and bottom left corner of the
region is at position (x, y) = (−85, 45) in Gazebo. Because of that, the map we have only represent that
region as shown in fig 5. Therefore, all the particles we choose should from that region. A point p = (x, y)
in the gazebo simulator can be converted to a point p̄ = (x̄, ȳ) in python map as shown below:

x̄ = x+ 85

ȳ = y − 45
(3)

3.4 Running experiment

For this MP, you should be able to start the gazebo environment using command

roslaunch mp4 gem_vehicle . launch

By running this command, you will be able to see the Gazebo window as shown in figure 4 and the rviz
window as shown in figure 6. For the rviz window, the window on the right shows the visualization of the
raw point cloud data from the Lidar on the simulated vehicle. The window at bottom left shows the image
from the camera on the vehicle. The window at up left shows a visualization of the Lidar bird-eye view.
The distance between vehicle and wall at each measurement direction and the sensed position of wall is
annotated on the bird-eye view. The annotation will not be displayed if no wall is sensed within sensor
limit at that measurement direction.

With Gazebo started, you should start running the vehicle in the environment using command

python v e h i c l e . py
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Figure 5: Maze map in bird’s eye view.

Figure 6: The rviz window. Note that the Lidar processing code shown here have 8 measurement directions.

if the vehicle is at the default location when the gazebo is launch as shown in figure 4. If the vehicle is
not at that starting location, you should first run

python set_pos . py
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with no argument before running the vehicle or the vehicle may not be able to follow the waypoints.
With the car running, you can now run the particle filter by using command

python main . py −−num_part ic les 1000 −− s e n s o r _ l i m i t 15

The particle filter can take arguments

1. num_particles – This parameter defines the number of particles used in the particle filter. The default
value of this parameter is 1000

2. sensor_limit – This parameter defines the distance the sensor can see. If the distance between the
vehicle and a wall is beyond the sensor limit, the sensor will not be able to see the wall and therefore
will return value equal to sensor limit. The default value of this parameter is 15.

When the Particle filter is running, you will be able to see a python turtle window pop up with the map
in it as shown in figure 5. You should be able to see two turtles in the map, which corresponds to the actual
and estimated state of the vehicle. The actual state of the vehicle is represented by the green turtle and the
yellow turtle represents the estimated state of the vehicle. The estimated particles are represented by blue
arrows. If you implementation is correct, you should be able to see the particles (blue arrows) converge to
the actual position of the vehicle (green turtle).

3.5 Report

Problem 4 (25 points). Using 4 measurement directions, keep the sensor limit constant at 20, run your al-
gorithm with number of particles 1000, 1500, 2000. Plot the error in position estimation (euclidean distance
between actual position and the estimated position) and orientation estimation as a function of algorithm
iterations. Since particle filtering is a randomized algorithm, run several instances of the same setup and
plot the average error for each time. How does changing the number of particles influence the estimation
accuracy, converging speed and computational cost of the algorithm?

Problem 5 (25 points). Using 4 measurement directions, keep the number of particles constant at 1500,
run your algorithm with sensor limit 15, 20, 25. Plot the error in position estimation (euclidean distance
between actual position and the estimated position) and orientation estimation as a function of algorithm
iterations. Since particle filtering is a randomized algorithm, run several instances of the same setup and
plot the average error for each time. How does changing sensor limit influence the estimation accuracy,
converging speed and computation cost of the algorithm?

Problem 6 (10 points). Does the particle filter you implemented performs evenly well through the whole
environment after converging? More specifically, does the your particle filter have larger prediction error
in some regions of the environment then other regions? If yes, can you explain why this is happening?

Problem 7 (10 points). Modify the LidarProcessing module and the sensor model so that they can make
measurements in 8 directions. Run your algorithm with number of particles 1000 and sensor limit 20. Plot
the error in position estimation (euclidean distance between actual position and the estimated position)
and orientation estimation as a function of algorithm iterations. Since particle filtering is a randomized
algorithm, run several instances of the same setup and plot the average error for each time. How does
having more sensor data influence the estimation accuracy and converging speed of the algorithm?

4 Report and Submission

For Problems 1-3, each student should write a report that contains solutions for individually. You may. dis-
cuss the problems following the tenets of academic integrity and collaboration. This report should be sub-
mitted to gradescope individually to assignment MP4.1 Written Problems with filename MP4_1_netid.pdf.

9



This part will have 30% of the total grade of this MP.

For Problems 4-7, each group should write a report that contains the solutions, plots, and discussions.
This report should be submitted to gradescope per group to assignment MP4.2 Particle Filter for Localiza-
tion with filename MP4_2_report_#.pdf. In addition, each group should submit the code to gradescope.
The content in folder src/mp4/src should be submitted to gradescope pergroup to assignment MP4.2 code
in a zip file with filename MP4_2_code_#.zip. This part will have 70% of the total grade of this MP.

For this MP, you will need to demo your code to one of the TA. You can do the demo during any of the
lab sessions or office hours. The TA will primarily check if the vehicle can properly follow the provided
track. All members should show up and be prepared to answer some questions. The TA might pick a
random person and ask that person to answer the question. So all students should be familiar with the
content.
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