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Principles of Safe Autonomy:
Lecture 13:
State Estimation, Filtering and Robot
Localization

Sayan Mitra

Reference: Probabilistic Robotics by Seba$taan WolframBurgard and Dieter Fox
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Roomba mapping

IRobot Roomba uses VSLAM algorithm to create maps for cleaning arec
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Sensing

Physics-based
models of camera,
LDAR RADAR GPS

etc.

Perception

Programs for object
detection, lane
tracking, scene

understanding, etc.

Decisions and
planning
Programs and multi-
agent models of
pedestrians, cars,
etc.

Control

Dynamical models of
engine, powertrain,
steering, tires, etc.




Perception

Programs for object
detection, lane
tracking, scene

understanding, etc.
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Outline of filtering andgtate estimation
module

Alntroduction: Localization problem, taxonomy
AProbabilistic models

ADiscrete Bayes Filter
AReview of Bayes rule and conditional probability

AHistogram filter
A Grid localization

AParticle filter (next time)
AMonte Carlo localization
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Localization problem (MP4)

A Determine the pose of the robot relative to the
given mapof the environment

A Pose: position, velocity, attitude, angles
A Also known as position or state estimation problem
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A First: why localize?

[Snnaannn: H H
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A How does your robot know its position in ECEBR e s e B i
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O NFpéople drive without localization
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Setup: State evolution and measurement model

ap

ADeterministic model:
System evolutiond "Twhd )
A & : unknown state of the system at time t
Ao dknown control input at time t
A Qknown dynamic function, possibly stochastic
Measurementy  "Qa o
A & dknown measurement of state at timeo
A& : unknown underlying map

W

A"Q known measurement function N
AWe will work with probabilistic models going | ,
forward 12 a

This is not exactly the measurement model of MF

>

=



4o

| ocalization as coordinate transformation

Shaded known:

map (m), control inputs (u),
measurements(z). White nodes
to be determined (x)

maps (m) are described in

global coordinateslocalization

= establisitoordtranst.
0SUBSSY Y YR NZ
coordinates

Transformation used for objects
of interest (obstacles,
pedestrians) for decision,
planning and control
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Localization taxonomy

Global vs Local

A Local: assumes initial pose is known, has to only account for the uncertainty coming from robot
motion (position tracking problem)

A Global initial pose unknown; harder and subsumes position tracking

A Kidnapped robot problem: during operation the robot can get teleported to a new unknown
location (models failures)

Staticvs Dynamic Environments
Singlevs Multirobot localization
Passive vs Active Approaches

A Passivelocalization module only observes and is controlled by other means; motion not designed
to help localization (Filtering problem)

A Active: controls robot to improve localization



Ambiguity in global localization arising from
locally symmetric environment




=

Discrete Bayes Filter Algorithm

ASystem evolutiond "B hd )
A state of the system at time t
A6 deontrol input at time t

AMeasurementtt  "Qc hi
Ad dmeasurement of staté at timeo
Ad : unknown underlying map
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Setup, notations

ADiscrete time model
Aw 4 ®ho Hho Mho sequence of robot statesto 0

ARobot takes one measurement at a time
Ad ¢ & B hr sequence of all measurements franto o

AControl also exercised at discrete steps
Ao 4 o6 B sequence control inputs
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Review of conditional probabilities

Random variablé takes values hoo b8
Example: Result of a dice raj) andw  ph8 hp
0(® ) is written as) (o)

( h)

Conditional probabilityd (cJo) ——= providedd () T
(@) B(EDD
=0(d)0 ®

Substituting in the definition of Conditional Prob. we get Bayes Rule

0 (o) (W9 « ) providedd (&) Tt




Using measurements to update state
estimates

0 (o) (9 « ) providedd (¢)  Tt---- Equation (*)

w: Robot positiornp: measurement,

0 () dPrior distribution (before measurement)

0 ((Jw)dPosterior distribution (after measurement)

0 («6) - Measurement model / inverse conditional / generative model

0 w : does not depend on x; normalization constant
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State evolution and measurement:
probabilistic models

Evolution of state and measurements governed by probabillistic laws
n(® oy hiy hd 4 describes motion/state evolution model

Alf state is complete, sufficient summary of the history then
An(w log My Moy n(ow | Mo state transition prob.
An(wladn if transition probabilities are time invariant




Measurement model

Measurement proces$(d |wqhty o 4
AAgain, if state is complete
AN loghg By 1@ o
An(a |o : measurement probability
An(a|o : time invariant measurement probability

6 0}
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Beliefs
Beliek w2020Qa (1y2¢f SR3IAS | o2dzi GKS &adl aS
True state is unknowable / measurable typically, so, robot must infer state from data
and we have to distinguish this inferred/estimated state from the actual ®tate
0 Q@ N W dﬁ) q
Posterior distribution over state at time t given all past measurements and control.
This will be calculated in two steps:
1. Prediction®@ Q@ nf(wlay M g)
2. Correction Calculatingo Q@ F NPoYQ&@ a.k.ameasurement update (will

use Equation (*) from earlier)
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Recursive Bayes Fllter

AlgorithmBayes_filtefto 3@ ) )
for allw do:
0TA) _Nodwm 0Qd
W@d) -n o) o Q@
end for
return @ Q@

Qw

i "\ f
Qo | falw)

Q@
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Histogram Filter or Discrete Bayes Filter

Finitely many stateshoo FQ ¢8dandom state vectab
N pdoelief at time t for statev ; discrete probability distribution

AlgorithmDiscrete_Bayes_filtgr) ; o hy):

for all'Qdo:
Nk BNow w9 W nNp
Ns —Nn@ [0  © Nl

end for

return n

0 Bd )
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Grid Localization

ASolves global localization in some cases kidnapped robot problem

ACan process raw sensor data
ANo need for feature extraction

ANon-parametric
Aln particular, not bound to unimodal distributions (unlike Extended Kalman

Filter)
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Grid localization

AlgorithmGrid_localizatio{n r }ho ha hi)

for all’Qdo:

N BNp Do «<im= M4m0 de)n b Qde)
Nip —-NEOgF VO > gy ™ gt Q )M

end for
return © Q&
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Constant Representat

lecewlise

P

Fixing an input, we

can compute the new

belief
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Motion Model without measurements

10 meters
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Proximity Sensor Model
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Grid localization,
w Q@ )represented by a
histogram over grid
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Summary oy o wa

A Key variable: Grid resolution

A Two approaches
A Topological: breakip pose space into regions of significance (landmarks)
A Metric: finegrained uniform partitioning; more accurate at the expense of higher computation costs

A Important to compensate for coarseness of resolution

A Evaluating measurement/motion based on the center of the region may not be etioughtion is updated
every 1s, robot moves at 10 cm/s, and the grid resolution is 1m, then nave implementation will not have any

state transition!

A Computation
A Motion model update for a 3D grid required a 6D operation, measurement update 3D

A With fine-grained models, the algorithm cannot be run in+teak
A Some calculations can be cached-frasting results)
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Grid-based Localization
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Sonars and
Occupancy

Grid Map

Robot position (A)

"—— Robot pesition (C)

<P




=

Monte Carlo Localization

ARepresents beliefs by particles
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Particle Filters

A Represent belief by finite number of parameters (just like histogram filter)

A But, they differ in how the parameters (particles) are generated and populate
the state space

A Key idea: represent belief @) by a random set of state samples
A Advantages

AThe representation is approximate and nonparametric and therefore can
represent a broader set of distributions than e.g., Gaussian

ACan handle nonlinearanformations

A Related ideas: Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap
filter, Filtering]Rubin, 88], [Gordon et al., 93], [Kitagawa BBfnamic Bayesian
NetworksKanazawa et al., 95]d
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Particle filtering algorithm

® o ho Mo partcles

AlgorithmParticle_filte(d o h):
A) W 7N

for alla in [M] do:
sampled * n(®|6 ho
o Al )
end for
for alla in [M] do:
draw'® QAN € OO BAd QO ©
addw 0 &
end for
return

ideally, ® is selected with probability prop. to
N |agho g
@ is the temporary particle set

// sampling from state transition dist.
/I calculatesmportance facton or weight

// resampling or importance sampling; these are
distributed according te-n (@( ‘oo ) o Ad)

// survival of fittest: moves/adds particles to parts of
the state space with higher probability



Importance Sampling

suppose we want to compute [Qo~ 0)]but  — 77—
we can only sample from densify

O [ QN )] S
LAY B)Q G

=, %“Qd))"(O(bN 0)Q eprovidedd@w) T

v U (OL))Q(L))QL)N O)Q w o .‘ EHH l. ”.” ; | .' .I "'. ;.” 3 gw - J
O QN 6)]

We need@w) 11t Aw) T

Weight samples:.w =f/g
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Monte Carlo Localization (MCL)

® o ho Mo partcles

Algorithm MCLd  ho hir ,m):
A) W N

for all& in [M] do:

G VD el g <0 = W 5m0
l:) |:|-=|= vo V-D]i-ﬂﬂb[ |

end for

for alla in [M] do:
draw@® Q&N £ © O PP QO W
addw 0 ©

end for

return @

Plug in motion and measurement models
In the particle filter



=

Particle Filters
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Sensor Information: Importance Sampling
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Robot Motion




Sensor Information: Importance Sampling

IIlp(s)
| [ NI N T i (AN NI [ NTEinid 1 (A . 1L | 1 [1he i S




Robot Motion
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