
Principles of Safe Autonomy:
Lecture 13:

State Estimation, Filtering and Robot
Localization

Sayan Mitra

Reference: Probabilistic Robotics by Sebastian Thrun, Wolfram Burgard, and Dieter Fox

{ƭƛŘŜǎΥ CǊƻƳ ǘƘŜ ōƻƻƪΩǎ ǿŜōǎƛǘŜ

Roomba mapping

iRobot Roomba uses VSLAM algorithm to create maps for cleaning areas

Announcements

Autonomy
pipeline

Control

Dynamical models of
engine, powertrain,
steering, tires, etc.

Decisions and
planning

Programs and multi-
agent models of
pedestrians, cars,

etc.

Perception

Programs for object
detection, lane
tracking, scene

understanding, etc.

Sensing

Physics-based
models of camera,
LIDAR, RADAR, GPS,

etc.

GEM platform

Control

Dynamical models of
engine, powertrain,
steering, tires, etc.

Decisions and
planning

Programs and multi-
agent models of
pedestrians, cars,

etc.

Perception

Programs for object
detection, lane
tracking, scene

understanding, etc.

Sensing

Physics-based
models of camera,
LIDAR, RADAR, GPS,

etc.

Outline of filtering and state estimation
module
ÅIntroduction: Localization problem, taxonomy

ÅProbabilistic models

ÅDiscrete Bayes Filter
ÅReview of Bayes rule and conditional probability

ÅHistogram filter
ÅGrid localization

ÅParticle filter (next time)
ÅMonte Carlo localization

Localization problem (MP4)

ÅDetermine the pose of the robot relative to the
given mapof the environment

ÅPose: position, velocity, attitude, angles

ÅAlso known as position or state estimation problem

ÅFirst: why localize?

ÅHow does your robot know its position in ECEB?

Åά[ƻŎŀƭƛȊŀǘƛƻƴ ƛǎ ǘƘŜ ōƛƎƎŜǎǘ ƘŀŎƪ ƛƴ ŀǳǘƻƴƻƳƻǳǎ
ŎŀǊǎέ --- people drive without localization

Setup: State evolution and measurement models

ÅDeterministic model:
System evolution: ὼ Ὢὼȟό

Åὼ: unknown state of the system at time t

Åόȡknown control input at time t

ÅὪ: known dynamic function, possibly stochastic

Measurement: ᾀ Ὣὼȟά

Åᾀȡknown measurement of state ὼat time ὸ

Åά: unknown underlying map

ÅὫ: known measurement function

ÅWe will work with probabilistic models going
forward ά

This is not exactly the measurement model of MP4

ὼ

ᾀρ

ᾀς

ᾀσ

Localization as coordinate transformation

m

zt-1
zt zt+1

ut-1 ut ut+1

xt-1 xt xt+1

Shaded known:
map (m), control inputs (u),
measurements(z). White nodes
to be determined (x)

maps (m) are described in
global coordinates. Localization
= establish coordtransf.
ōŜǘǿŜŜƴ Ƴ ŀƴŘ ǊƻōƻǘΩǎ ƭƻŎŀƭ
coordinates

Transformation used for objects
of interest (obstacles,
pedestrians) for decision,
planning and control

Localization taxonomy
Global vs Local

ÅLocal: assumes initial pose is known, has to only account for the uncertainty coming from robot
motion (position tracking problem)

ÅGlobal: initial pose unknown; harder and subsumes position tracking

ÅKidnapped robot problem: during operation the robot can get teleported to a new unknown
location (models failures)

Staticvs Dynamic Environments

Singlevs Multi-robot localization

Passive vs Active Approaches

ÅPassive: localization module only observes and is controlled by other means; motion not designed
to help localization (Filtering problem)

ÅActive: controls robot to improve localization

Ambiguity in global localization arising from
locally symmetric environment

Discrete Bayes Filter Algorithm

ÅSystem evolution: ὼ Ὢὼȟό
Åὼ: state of the system at time t

Åόȡcontrol input at time t

ÅMeasurement: ᾀ Ὣὼȟά
Åᾀȡmeasurement of state ὼat time ὸ

Åά: unknown underlying map

Setup, notations

ÅDiscrete time model

Åὼ ȡ ὼȟὼ ȟὼ ȟȣȟὼ sequence of robot states ὸto ὸ

ÅRobot takes one measurement at a time
Åᾀȡ ᾀȟȣȟᾀ sequence of all measurements from ὸto ὸ

ÅControl also exercised at discrete steps
Åό ȡ ό ȟό ȟό ȟȣȟό sequence control inputs

Review of conditional probabilities

Random variable ὢtakes values ὼȟὼȟȢȢ

Example: Result of a dice roll (ὢ) and ὼ ρȟȣȟφ

ὖὢ ὼ is written as ὖὼ

Conditional probability: ὖὼώ
ȟ

provided ὖώ π

ὖὼȟώ ὖὼώὖώ

= ὖώὼὖὼ

Substituting in the definition of Conditional Prob. we get Bayes Rule

ὖὼώ
ώὼ

, provided ὖώ π

Using measurements to update state
estimates

ὖὼώ
ώὼ

, provided ὖώ π---- Equation (*)

ὢ: Robot position, ὣ: measurement,

ὖὼȡPrior distribution (before measurement)

ὖὼώȡPosterior distribution (after measurement)

ὖώὼ: Measurement model / inverse conditional / generative model

ὖώ: does not depend on x; normalization constant

State evolution and measurement:
probabilistic models
Evolution of state and measurements governed by probabilistic laws

ὴὼ ὼȡ ȟᾀȡ ȟόȡ describes motion/state evolution model

ÅIf state is complete, sufficient summary of the history then
Åὴὼ ὼȡ ȟᾀȡ ȟόȡ ὴὼ ὼ ȟό state transition prob.

Åὴὼᴂὼȟό if transition probabilities are time invariant

zt-1
zt

zt+

1

ut-

1
ut

ut+

1

xt-1 xt

xt+

1

ὼ Ὢὼȟό

Measurement model

Measurement process ὴᾀ ὼȡȟᾀȡ ȟόȡ
ÅAgain, if state is complete

Åὴᾀ ὼȡȟᾀȡ ȟόȡ ὴᾀ ὼ

Åὴᾀ ὼ : measurement probability

Åὴᾀὼ: time invariant measurement probability

zt-1
zt

zt+

1

ut-

1
ut

ut+

1

xt-1 xt

xt+

1

ᾀ Ὣὼ

Beliefs
BeliefΥ wƻōƻǘΩǎ ƪƴƻǿƭŜŘƎŜ ŀōƻǳǘ ǘƘŜ ǎǘŀǘŜ ƻŦ ǘƘŜ ŜƴǾƛǊƻƴƳŜƴǘ

True state is unknowable / measurable typically, so, robot must infer state from data

and we have to distinguish this inferred/estimated state from the actual state ὼ

ὦὩὰὼ ὴὼȿᾀȡȟόȡ

Posterior distribution over state at time t given all past measurements and control.

This will be calculated in two steps:

1. Prediction: ὦὩὰὼ ὴὼᾀȡ ȟόȡ

2. Correction: Calculating ὦὩὰὼ ŦǊƻƳὦὩὰὼ a.k.ameasurement update (will

use Equation (*) from earlier)

Recursive Bayes Filter

Algorithm Bayes_filter(ὦὩὰὼ ȟόȟᾀ)

for all ὼdo:

ὦὩὰὼ ὴ᷿ὼȿόȟὼ ὦὩὰὼ Ὠὼ

ὦὩὰὼ –ὴᾀὼ ὦὩὰὼ

end for

return ὦὩὰὼ

ὦὩὰὼ

ὼ
ὴᴂ

1
ὴ

2
ὴ

3
ὴ

ὴὼȿόȟρ

ὴὼȿόȟς

ὴὼȿόȟσ

ὦὩὰὼ

ὦὩὰὼ

ὴᾀὼ

Histogram Filter or Discrete Bayes Filter

Finitely many states ὼȟὼȟὩὸὧȢRandom state vector ὢ

ὴȟȡbelief at time t for state ὼ; discrete probability distribution

Algorithm Discrete_Bayes_filter(ὴȟ ȟόȟᾀ):

for all Ὧdo:

Ӷὴȟ Вὴὢ ὼȿόȟὢ ὼὴȟ

ὴȟ –ὴᾀ ὢ ὼ Ӷὴȟ

end for

return ὴȟ

ὦὩὰὼ

ὼ
ὴᴂ

1
ὴȟ

2
ὴȟ

3
ὴȟ

ὴὼȿόȟρ

ὴὼȿόȟς

ὴὼȿόȟσ

ὦὩὰὼ

ὦὩὰὼ

ὴᾀὼ

Grid Localization

ÅSolves global localization in some cases kidnapped robot problem

ÅCan process raw sensor data
ÅNo need for feature extraction

ÅNon-parametric
ÅIn particular, not bound to unimodal distributions (unlike Extended Kalman

Filter)

Grid localization

Algorithm Grid_localization(ὴȟ ȟόȟᾀȟά)

for all Ὧdo:

Ӷὴȟ Вὴȟ □▫◄░▫▪□ͅ▫▀▄■άὩὥὲὼ ȟόȟάὩὥὲὼ

ὴȟ –Ӷὴȟ□▄╪▼◊►▄□▄▪◄□ͅ▫▀▄■ᾀȟάὩὥὲὼ ȟά

end for

return ὦὩὰὼ

23

Piecewise Constant Representation

),,(>=< qyxxBel t
Fixing an input ut we
can compute the new
belief

Start

Motion Model without measurements

άὩὥὲὼ

Proximity Sensor Model

Laser sensor Sonar sensor

ὼ

ὴᾀ ὢ ὼ

ά

26

Grid localization,
ὦὩὰὼ represented by a
histogram over grid ὴᾀȿὼ

ὴᾀȿὼ

Summary

ÅKey variable: Grid resolution

ÅTwo approaches

ÅTopological: break-up pose space into regions of significance (landmarks)

ÅMetric: fine-grained uniform partitioning; more accurate at the expense of higher computation costs

ÅImportant to compensate for coarseness of resolution

ÅEvaluating measurement/motion based on the center of the region may not be enough. If motion is updated
every 1s, robot moves at 10 cm/s, and the grid resolution is 1m, then naïve implementation will not have any
state transition!

ÅComputation

ÅMotion model update for a 3D grid required a 6D operation, measurement update 3D

ÅWith fine-grained models, the algorithm cannot be run in real-time

ÅSome calculations can be cached (ray-casting results)

28

Grid-based Localization

32

Sonars and
Occupancy Grid Map

Monte Carlo Localization

ÅRepresents beliefs by particles

ÅRepresent belief by finite number of parameters (just like histogram filter)

ÅBut, they differ in how the parameters (particles) are generated and populate

the state space

ÅKey idea: represent belief ὦὩὰὼ by a random set of state samples

ÅAdvantages

ÅThe representation is approximate and nonparametric and therefore can

represent a broader set of distributions than e.g., Gaussian

ÅCan handle nonlinear tranformations

ÅRelated ideas: Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap

filter, Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96], Dynamic Bayesian

Networks: [Kanazawa et al., 95]d

Particle Filters

Particle filtering algorithm

ὢ ὼ ȟὼ ȟȣὼ particles

Algorithm Particle_filter(ὢ ȟόȟᾀ):
ὢ ὢ ᶮ

for all ά in [M] do:

sample ὼ ὴͯὼόȟὼ

ύ ὴᾀὼ

ὢ ὢ ἂὼ ȟύ ἃ

end for

for all ά in [M] do:

draw ὭύὭὸὬὴὶέὦὥὦὭὰὭὸώᶿύ

add ὼ ὸέὢ

end for

returnὢ

ideally, ὼ is selected with probability prop. to
ὴὼ ᾀȡȟόȡ

ὢ is the temporary particle set

// sampling from state transition dist.

// calculates importance factor ύ or weight

// resampling or importance sampling; these are

distributed according to –ὴᾀὼ ὦὩὰὼ

// survival of fittest: moves/adds particles to parts of
the state space with higher probability

Weight samples: w = f / g

Importance Sampling

suppose we want to compute Ὁ Ὅὼɴ ὃ but
we can only sample from density Ὣ

Ὁ Ὅὼɴ ὃ

Ὢ᷿ὼὍὼɴ ὃὨὼ

= ᷿ ὫὼὍὼɴ ὃὨὼ, provided Ὣὼ π

= ύ᷿ὼὫὼὍὼɴ ὃὨὼ

= Ὁ ύὼὍὼɴ ὃ

We need Ὢὼ πᵼὫὼ π

Monte Carlo Localization (MCL)
ὢ ὼ ȟὼ ȟȣὼ particles

Algorithm MCL(ὢ ȟόȟᾀ,m):
ὢ ὢ ᶮ

for all ά in [M] do:

ὼ ▼╪□▬■▄□ͅ▫◄░▫▪□ͅ▫▀▄■όὼ

ύ □▄╪▼◊►▄□▄▪◄□ͅ▫▀▄■ᾀȟὼ
ȟ

ὢ ὢ ἂὼ ȟύ ἃ

end for

for all ά in [M] do:

draw ὭύὭὸὬὴὶέὦὥὦὭὰὭὸώᶿύ

add ὼ ὸέὢ

end for

returnὢ

Plug in motion and measurement models
in the particle filter

Particle Filters

)|(
)(

)()|(

)()|()(

xzp
xBel

xBelxzp
w

xBelxzpxBel

a
a

a

=«

«

-

-

-

Sensor Information: Importance Sampling

ñ«- 'd)'()'|()(, xxBelxuxpxBel

Robot Motion

)|(
)(

)()|(

)()|()(

xzp
xBel

xBelxzp
w

xBelxzpxBel

a
a

a

=«

«

-

-

-

Sensor Information: Importance Sampling

Robot Motion

ñ«- 'd)'()'|()(, xxBelxuxpxBel

45

46

