
Principles of Safe Autonomy:
Lecture 13:

State Estimation, Filtering and Robot
Localization

Sayan Mitra

Reference: Probabilistic Robotics by Sebastian Thrun, Wolfram Burgard, and Dieter Fox

Slides: From the book’s website

Roomba mapping

iRobot Roomba uses VSLAM algorithm to create maps for cleaning areas

Announcements

Autonomy
pipeline

Control

Dynamical models of
engine, powertrain,
steering, tires, etc.

Decisions and
planning

Programs and multi-
agent models of

pedestrians, cars,
etc.

Perception

Programs for object
detection, lane
tracking, scene

understanding, etc.

Sensing

Physics-based
models of camera,

LIDAR, RADAR, GPS,
etc.

GEM platform

Control

Dynamical models of
engine, powertrain,
steering, tires, etc.

Decisions and
planning

Programs and multi-
agent models of

pedestrians, cars,
etc.

Perception

Programs for object
detection, lane
tracking, scene

understanding, etc.

Sensing

Physics-based
models of camera,

LIDAR, RADAR, GPS,
etc.

Outline of filtering and state estimation
module
• Introduction: Localization problem, taxonomy

• Probabilistic models

• Discrete Bayes Filter
• Review of Bayes rule and conditional probability

• Histogram filter
• Grid localization

• Particle filter (next time)
• Monte Carlo localization

Localization problem (MP4)

• Determine the pose of the robot relative to the
given map of the environment

• Pose: position, velocity, attitude, angles

• Also known as position or state estimation problem

• First: why localize?

• How does your robot know its position in ECEB?

• “Localization is the biggest hack in autonomous
cars” --- people drive without localization

Setup: State evolution and measurement models

• Deterministic model:
System evolution: 𝑥𝑡+1 = 𝑓 𝑥𝑡 , 𝑢𝑡
• 𝑥𝑡: unknown state of the system at time t

• 𝑢𝑡: known control input at time t

• 𝑓: known dynamic function, possibly stochastic

Measurement: 𝑧𝑡 = 𝑔(𝑥𝑡 , 𝑚)

• 𝑧𝑡: known measurement of state 𝑥𝑡 at time 𝑡

• 𝑚: unknown underlying map

• 𝑔: known measurement function

• We will work with probabilistic models going
forward 𝑚

This is not exactly the measurement model of MP4

𝑥𝑡

𝑧𝑡[1]

𝑧𝑡[2]

𝑧𝑡[3]

Localization as coordinate transformation

m

zt-1
zt zt+1

ut-1 ut ut+1

xt-1 xt xt+1

Shaded known:
map (m), control inputs (u),
measurements(z). White nodes
to be determined (x)

maps (m) are described in
global coordinates. Localization
= establish coord transf.
between m and robot’s local
coordinates

Transformation used for objects
of interest (obstacles,
pedestrians) for decision,
planning and control

Localization taxonomy
Global vs Local

• Local: assumes initial pose is known, has to only account for the uncertainty coming from robot
motion (position tracking problem)

• Global: initial pose unknown; harder and subsumes position tracking

• Kidnapped robot problem: during operation the robot can get teleported to a new unknown
location (models failures)

Static vs Dynamic Environments

Single vs Multi-robot localization

Passive vs Active Approaches

• Passive: localization module only observes and is controlled by other means; motion not designed
to help localization (Filtering problem)

• Active: controls robot to improve localization

Ambiguity in global localization arising from
locally symmetric environment

Discrete Bayes Filter Algorithm

• System evolution: 𝑥𝑡+1 = 𝑓 𝑥𝑡 , 𝑢𝑡
• 𝑥𝑡: state of the system at time t

• 𝑢𝑡: control input at time t

• Measurement: 𝑧𝑡 = 𝑔(𝑥𝑡 , 𝑚)
• 𝑧𝑡: measurement of state 𝑥𝑡 at time 𝑡

• 𝑚: unknown underlying map

Setup, notations

• Discrete time model

• 𝑥𝑡1:𝑡2 = 𝑥𝑡1 , 𝑥𝑡1+1, 𝑥𝑡1+2, … , 𝑥𝑡2 sequence of robot states 𝑡1to 𝑡2

• Robot takes one measurement at a time
• 𝑧𝑡1:𝑡2 = 𝑧𝑡1 , … , 𝑧𝑡2 sequence of all measurements from 𝑡1to 𝑡2

• Control also exercised at discrete steps
• 𝑢𝑡1:𝑡2 = 𝑢𝑡1 , 𝑢𝑡1+1, 𝑢𝑡1+2, … , 𝑢𝑡2 sequence control inputs

Review of conditional probabilities

Random variable 𝑋 takes values 𝑥1, 𝑥2, . .

Example: Result of a dice roll (𝑋) and 𝑥𝑖 = 1,… , 6

𝑃 𝑋 = 𝑥 is written as 𝑃 𝑥

Conditional probability: 𝑃 𝑥 𝑦 =
𝑃 𝑥,𝑦

𝑃(𝑦)
provided 𝑃 𝑦 > 0

𝑃 𝑥, 𝑦 = 𝑃 𝑥 𝑦 𝑃(𝑦)

= 𝑃 𝑦 𝑥 𝑃(𝑥)

Substituting in the definition of Conditional Prob. we get Bayes Rule

𝑃 𝑥 𝑦 =
𝑃 𝑦 𝑥 𝑃 𝑥

𝑃(𝑦)
, provided 𝑃 𝑦 > 0

Using measurements to update state
estimates

𝑃 𝑥 𝑦 =
𝑃 𝑦 𝑥 𝑃 𝑥

𝑃(𝑦)
, provided 𝑃 𝑦 > 0---- Equation (*)

𝑋 : Robot position, 𝑌 : measurement,

𝑃 𝑥 : Prior distribution (before measurement)

𝑃 𝑥 𝑦 : Posterior distribution (after measurement)

𝑃 𝑦 𝑥 : Measurement model / inverse conditional / generative model

𝑃(𝑦): does not depend on x; normalization constant

State evolution and measurement:
probabilistic models
Evolution of state and measurements governed by probabilistic laws

𝑝 𝑥𝑡 𝑥0:𝑡−1, 𝑧1:𝑡−1, 𝑢1:𝑡) describes motion/state evolution model

• If state is complete, sufficient summary of the history then
• 𝑝 𝑥𝑡 𝑥0:𝑡−1, 𝑧0:𝑡−1, 𝑢0:𝑡−1) = 𝑝 𝑥𝑡 𝑥𝑡−1, 𝑢𝑡) state transition prob.

• 𝑝 𝑥′ 𝑥, 𝑢) if transition probabilities are time invariant

zt-1
zt

zt+

1

ut-

1
ut

ut+

1

xt-1 xt

xt+

1

𝑥𝑡+1 = 𝑓 𝑥𝑡, 𝑢𝑡

Measurement model

Measurement process 𝑝 𝑧𝑡 𝑥0:𝑡 , 𝑧1:𝑡−1, 𝑢0:𝑡−1)
• Again, if state is complete

• 𝑝 𝑧𝑡 𝑥0:𝑡 , 𝑧1:𝑡−1, 𝑢1:𝑡) = 𝑝 𝑧𝑡 𝑥𝑡)

• 𝑝 𝑧𝑡 𝑥𝑡): measurement probability

• 𝑝 𝑧 𝑥): time invariant measurement probability

zt-1
zt

zt+

1

ut-

1
ut

ut+

1

xt-1 xt

xt+

1

𝑧𝑡 = 𝑔 𝑥𝑡

Beliefs
Belief: Robot’s knowledge about the state of the environment

True state is unknowable / measurable typically, so, robot must infer state from data

and we have to distinguish this inferred/estimated state from the actual state 𝑥𝑡
𝑏𝑒𝑙(𝑥𝑡) = 𝑝(𝑥𝑡|𝑧1:𝑡, 𝑢1:𝑡)

Posterior distribution over state at time t given all past measurements and control.

This will be calculated in two steps:

1. Prediction: 𝑏𝑒𝑙(𝑥𝑡) = 𝑝 𝑥𝑡 𝑧1:𝑡−1, 𝑢1:𝑡

2. Correction: Calculating 𝑏𝑒𝑙(𝑥𝑡) from 𝑏𝑒𝑙(𝑥𝑡) a.k.a measurement update (will

use Equation (*) from earlier)

Recursive Bayes Filter

Algorithm Bayes_filter(𝑏𝑒𝑙 𝑥𝑡−1 , 𝑢𝑡 , 𝑧𝑡)

for all 𝑥𝑡 do:

𝑏𝑒𝑙 𝑥𝑡 = ∫ 𝑝(𝑥𝑡|𝑢𝑡,𝑥𝑡−1)𝑏𝑒𝑙(𝑥𝑡−1)𝑑𝑥𝑡−1
𝑏𝑒𝑙 𝑥𝑡 = 𝜂 𝑝 𝑧𝑡 𝑥𝑡 𝑏𝑒𝑙(𝑥𝑡)

end for

return 𝑏𝑒𝑙(𝑥𝑡)

𝑏𝑒𝑙 𝑥𝑡−1

𝑥𝑡
𝑝′

1
𝑝1

2
𝑝2

3
𝑝3

𝑝 𝑥𝑡|𝑢𝑡 , 1

𝑝 𝑥𝑡|𝑢𝑡 , 2

𝑝 𝑥𝑡|𝑢𝑡 , 3

𝑏𝑒𝑙 𝑥𝑡−1

𝑏𝑒𝑙(𝑥𝑡)

𝑝 𝑧𝑡 𝑥𝑡

Histogram Filter or Discrete Bayes Filter

Finitely many states 𝑥𝑖 , 𝑥𝑘 , 𝑒𝑡𝑐. Random state vector 𝑋𝑡

𝑝𝑘,𝑡: belief at time t for state 𝑥𝑘; discrete probability distribution

Algorithm Discrete_Bayes_filter(𝑝𝑘,𝑡−1 , 𝑢𝑡, 𝑧𝑡):

for all 𝑘 do:

ҧ𝑝𝑘,𝑡 = σ𝑖 𝑝(𝑋𝑡 = 𝑥𝑘|𝑢𝑡,𝑋𝑡−1 = 𝑥𝑖)𝑝𝑖,𝑡−1

𝑝𝑘,𝑡 = 𝜂 𝑝 𝑧𝑡 𝑋𝑡 = 𝑥𝑘) ҧ𝑝𝑘,𝑡

end for

return {𝑝𝑘,𝑡}

𝑏𝑒𝑙 𝑥𝑡−1

𝑥𝑘
𝑝′

1
𝑝1,𝑡−1

2
𝑝2,𝑡−1

3
𝑝3,𝑡−1

𝑝 𝑥𝑘|𝑢𝑡, 1

𝑝 𝑥𝑡|𝑢𝑡 , 2

𝑝 𝑥𝑡|𝑢𝑡 , 3

𝑏𝑒𝑙 𝑥𝑡−1

𝑏𝑒𝑙(𝑥𝑡)

𝑝 𝑧𝑡 𝑥𝑡

Grid Localization

• Solves global localization in some cases kidnapped robot problem

• Can process raw sensor data
• No need for feature extraction

• Non-parametric
• In particular, not bound to unimodal distributions (unlike Extended Kalman

Filter)

Grid localization

Algorithm Grid_localization (𝑝𝑘,𝑡−1 , 𝑢𝑡 , 𝑧𝑡, 𝑚)

for all 𝑘 do:

ҧ𝑝𝑘,𝑡 = σ𝑖 𝑝𝑖,𝑡−1𝒎𝒐𝒕𝒊𝒐𝒏_𝒎𝒐𝒅𝒆𝒍(𝑚𝑒𝑎𝑛 𝑥𝑘 , 𝑢𝑡, 𝑚𝑒𝑎𝑛 𝑥𝑖)

𝑝𝑘,𝑡 = 𝜂 ҧ𝑝𝑘,𝑡𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕_𝒎𝒐𝒅𝒆𝒍(𝑧𝑡 , 𝑚𝑒𝑎𝑛 𝑥𝑘 , 𝑚)

end for

return 𝑏𝑒𝑙(𝑥𝑡)

23

Piecewise Constant Representation

),,(= yxxBel t
Fixing an input ut we
can compute the new
belief

Start

Motion Model without measurements

𝑚𝑒𝑎𝑛 𝑥𝑘

Proximity Sensor Model

Laser sensor Sonar sensor

𝑥𝑘

𝑝 𝑧𝑡 𝑋𝑡 = 𝑥𝑘)

𝑚

26

Grid localization,
𝑏𝑒𝑙 𝑥𝑡 represented by a
histogram over grid 𝑝(𝑧|𝑥)

𝑝(𝑧|𝑥)

Summary

• Key variable: Grid resolution

• Two approaches

• Topological: break-up pose space into regions of significance (landmarks)

• Metric: fine-grained uniform partitioning; more accurate at the expense of higher computation costs

• Important to compensate for coarseness of resolution

• Evaluating measurement/motion based on the center of the region may not be enough. If motion is updated
every 1s, robot moves at 10 cm/s, and the grid resolution is 1m, then naïve implementation will not have any
state transition!

• Computation

• Motion model update for a 3D grid required a 6D operation, measurement update 3D

• With fine-grained models, the algorithm cannot be run in real-time

• Some calculations can be cached (ray-casting results)

28

Grid-based Localization

32

Sonars and
Occupancy Grid Map

Monte Carlo Localization

• Represents beliefs by particles

• Represent belief by finite number of parameters (just like histogram filter)

• But, they differ in how the parameters (particles) are generated and populate

the state space

• Key idea: represent belief 𝑏𝑒𝑙 𝑥𝑡 by a random set of state samples

• Advantages

• The representation is approximate and nonparametric and therefore can

represent a broader set of distributions than e.g., Gaussian

• Can handle nonlinear tranformations

• Related ideas: Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap

filter, Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96], Dynamic Bayesian

Networks: [Kanazawa et al., 95]d

Particle Filters

Particle filtering algorithm

𝑋𝑡 = 𝑥𝑡
[1]
, 𝑥𝑡

[2]
, … 𝑥𝑡

[𝑀]
particles

Algorithm Particle_filter(𝑋𝑡−1, 𝑢𝑡 , 𝑧𝑡):
ത𝑋𝑡−1 = 𝑋𝑡 = ∅

for all 𝑚 in [M] do:

sample 𝑥𝑡
[𝑚]

~𝑝 𝑥𝑡 𝑢𝑡 , 𝑥𝑡−1
[𝑚]

)

𝑤𝑡
[𝑚]

= 𝑝 𝑧𝑡 𝑥𝑡
𝑚

ത𝑋𝑡 = ത𝑋𝑡 + ⟨ 𝑥𝑡
𝑚
, 𝑤𝑡

[𝑚]
⟩

end for

for all 𝑚 in [M] do:

draw 𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝ 𝑤𝑡
[𝑖]

add 𝑥𝑡
[𝑖]
𝑡𝑜 𝑋𝑡

end for

return 𝑋𝑡

ideally, 𝑥𝑡
[𝑚]

is selected with probability prop. to
𝑝 𝑥𝑡 𝑧1:𝑡, 𝑢1:𝑡)

ത𝑋𝑡−1 is the temporary particle set

// sampling from state transition dist.

// calculates importance factor 𝑤𝑡 or weight

// resampling or importance sampling; these are

distributed according to 𝜂 𝑝 𝑧𝑡 𝑥𝑡
[𝑚]

𝑏𝑒𝑙 𝑥𝑡

// survival of fittest: moves/adds particles to parts of
the state space with higher probability

Weight samples: w = f / g

Importance Sampling

suppose we want to compute 𝐸𝑓 𝐼 𝑥 ∈ 𝐴 but
we can only sample from density 𝑔

𝐸𝑓 𝐼 𝑥 ∈ 𝐴

= ∫ 𝑓 𝑥 𝐼 𝑥 ∈ 𝐴 𝑑𝑥

= ∫
𝑓 𝑥

𝑔 𝑥
𝑔 𝑥 𝐼 𝑥 ∈ 𝐴 𝑑𝑥, provided 𝑔 𝑥 > 0

= ∫ 𝑤 𝑥 𝑔 𝑥 𝐼 𝑥 ∈ 𝐴 𝑑𝑥

= 𝐸𝑔 𝑤(𝑥)𝐼 𝑥 ∈ 𝐴

We need 𝑓 𝑥 > 0 ⇒ 𝑔 𝑥 > 0

Monte Carlo Localization (MCL)
𝑋𝑡 = 𝑥𝑡

[1]
, 𝑥𝑡

[2]
, … 𝑥𝑡

[𝑀]
particles

Algorithm MCL(𝑋𝑡−1, 𝑢𝑡 , 𝑧𝑡,m):
ത𝑋𝑡−1 = 𝑋𝑡 = ∅

for all 𝑚 in [M] do:

𝑥𝑡
[𝑚]

= 𝒔𝒂𝒎𝒑𝒍𝒆_𝒎𝒐𝒕𝒊𝒐𝒏_𝒎𝒐𝒅𝒆𝒍(𝑢𝑡 𝑥𝑡−1
[𝑚]

)

𝑤𝑡
[𝑚]

= 𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕_𝒎𝒐𝒅𝒆𝒍(𝑧𝑡 , 𝑥𝑡
𝑚 ,𝑚

)

ത𝑋𝑡 = ത𝑋𝑡 + ⟨ 𝑥𝑡
𝑚
, 𝑤𝑡

[𝑚]
⟩

end for

for all 𝑚 in [M] do:

draw 𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝ 𝑤𝑡
[𝑖]

add 𝑥𝑡
[𝑖]
𝑡𝑜 𝑋𝑡

end for

return 𝑋𝑡

Plug in motion and measurement models
in the particle filter

Particle Filters

)|(
)(

)()|(

)()|()(

xzp
xBel

xBelxzp
w

xBelxzpxBel






=



−

−

−

Sensor Information: Importance Sampling

− 'd)'()'|()(, xxBelxuxpxBel

Robot Motion

)|(
)(

)()|(

)()|()(

xzp
xBel

xBelxzp
w

xBelxzpxBel






=



−

−

−

Sensor Information: Importance Sampling

Robot Motion

− 'd)'()'|()(, xxBelxuxpxBel

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

Sample-based Localization (sonar)

64

Initial Distribution

65

After Incorporating Ten Ultrasound
Scans

66

After Incorporating 65 Ultrasound Scans

67

Estimated Path

Using Ceiling Maps for Localization

Vision-based Localization

P(z|x)

h(x)

z

Under a Light
Measurement z: P(z|x):

Next to a Light
Measurement z: P(z|x):

Elsewhere
Measurement z: P(z|x):

Global Localization Using Vision

74

Limitations

• The approach described so far is able to
• track the pose of a mobile robot and to

• globally localize the robot.

• Can we deal with localization errors (i.e., the kidnapped robot
problem)?

• How to handle localization errors/failures?
• Particularly serious when the number of particles is small

75

Approaches
• Randomly insert samples

• Why?

• The robot can be teleported at any point in time

• How many particles to add? With what distribution?
• Add particles according to localization performance

• Monitor the probability of sensor measurements 𝑝(𝑧𝑡|𝑧1:𝑡−1, 𝑢1:𝑡 , 𝑚)

• For particle filters: 𝑝(𝑧𝑡|𝑧1:𝑡−1, 𝑢1:𝑡 , 𝑚) ≈
1

𝑀
σ𝑤𝑡

[𝑚]

• Insert random samples proportional to the average likelihood of the
particles (the robot has been teleported with higher probability when the
likelihood of its observations drops).

76

Random Samples
Vision-Based Localization
936 Images, 4MB, .6secs/image

Trajectory of the robot:

77

Kidnapping the Robot

83

Summary
• Particle filters are an implementation of recursive

Bayesian filtering

• They represent the posterior by a set of weighted
samples.

• In the context of localization, the particles are
propagated according to the motion model.

• They are then weighted according to the likelihood of
the observations.

• In a re-sampling step, new particles are drawn with a
probability proportional to the likelihood of the
observation.

