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Roomba mapping 

iRobot Roomba uses VSLAM algorithm to create maps for cleaning areas



Announcements
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Outline of filtering and state estimation 
module
• Introduction: Localization problem, taxonomy

• Probabilistic models

• Discrete Bayes Filter
• Review of Bayes rule and conditional probability

• Histogram filter
• Grid localization

• Particle filter (next time)
• Monte Carlo localization



Localization problem (MP4)

• Determine the pose of the robot relative to the 
given map of the environment

• Pose: position, velocity, attitude, angles

• Also known as position or state estimation problem

• First: why localize?

• How does your robot know its position in ECEB?

• “Localization is the biggest hack in autonomous 
cars” --- people drive without localization



Setup: State evolution and measurement models

• Deterministic model:
System evolution: 𝑥𝑡+1 = 𝑓 𝑥𝑡 , 𝑢𝑡
• 𝑥𝑡: unknown state of the system at time t

• 𝑢𝑡: known control input at time t

• 𝑓: known dynamic function, possibly stochastic

Measurement: 𝑧𝑡 = 𝑔(𝑥𝑡 , 𝑚)

• 𝑧𝑡: known measurement of state 𝑥𝑡 at time 𝑡

• 𝑚: unknown underlying map

• 𝑔: known measurement function

• We will work with probabilistic models going 
forward 𝑚

This is not exactly the measurement model of MP4 

𝑥𝑡

𝑧𝑡[1]

𝑧𝑡[2]

𝑧𝑡[3]



Localization as coordinate transformation

m

zt-1
zt zt+1

ut-1 ut ut+1

xt-1 xt xt+1

Shaded known: 
map (m), control inputs (u), 
measurements(z). White nodes 
to be determined (x)

maps (m) are described in 
global coordinates. Localization 
= establish coord transf. 
between m and robot’s local 
coordinates

Transformation used for objects 
of interest (obstacles, 
pedestrians) for decision, 
planning and control 



Localization taxonomy
Global vs Local

• Local: assumes initial pose is known, has to only account for the uncertainty coming from robot 
motion (position tracking problem)

• Global: initial pose unknown; harder and subsumes position tracking

• Kidnapped robot problem: during operation the robot can get teleported to a new unknown 
location (models failures)

Static vs Dynamic Environments

Single vs Multi-robot localization

Passive vs Active Approaches

• Passive: localization module only observes and is controlled by other means; motion not designed 
to help localization (Filtering problem)

• Active: controls robot to improve localization



Ambiguity in global localization arising from 
locally symmetric environment



Discrete Bayes Filter Algorithm

• System evolution: 𝑥𝑡+1 = 𝑓 𝑥𝑡 , 𝑢𝑡
• 𝑥𝑡: state of the system at time t

• 𝑢𝑡: control input at time t

• Measurement: 𝑧𝑡 = 𝑔(𝑥𝑡 , 𝑚)
• 𝑧𝑡: measurement of state 𝑥𝑡 at time 𝑡

• 𝑚: unknown underlying map



Setup, notations

• Discrete time model

• 𝑥𝑡1:𝑡2 = 𝑥𝑡1 , 𝑥𝑡1+1, 𝑥𝑡1+2, … , 𝑥𝑡2 sequence of robot states 𝑡1to 𝑡2

• Robot takes one measurement at a time
• 𝑧𝑡1:𝑡2 = 𝑧𝑡1 , … , 𝑧𝑡2 sequence of all measurements from 𝑡1to 𝑡2

• Control also exercised at discrete steps
• 𝑢𝑡1:𝑡2 = 𝑢𝑡1 , 𝑢𝑡1+1, 𝑢𝑡1+2, … , 𝑢𝑡2 sequence control inputs



Review of conditional probabilities

Random variable 𝑋 takes values 𝑥1, 𝑥2, . .

Example: Result of a dice roll (𝑋) and 𝑥𝑖 = 1,… , 6

𝑃 𝑋 = 𝑥 is written as 𝑃 𝑥

Conditional probability: 𝑃 𝑥 𝑦 =
𝑃 𝑥,𝑦

𝑃(𝑦)
provided 𝑃 𝑦 > 0

𝑃 𝑥, 𝑦 = 𝑃 𝑥 𝑦 𝑃(𝑦)

= 𝑃 𝑦 𝑥 𝑃(𝑥)

Substituting in the definition of Conditional Prob. we get Bayes Rule

𝑃 𝑥 𝑦 =
𝑃 𝑦 𝑥 𝑃 𝑥

𝑃(𝑦)
, provided 𝑃 𝑦 > 0



Using measurements to update state 
estimates

𝑃 𝑥 𝑦 =
𝑃 𝑦 𝑥 𝑃 𝑥

𝑃(𝑦)
, provided 𝑃 𝑦 > 0---- Equation (*)

𝑋 : Robot position, 𝑌 : measurement, 

𝑃 𝑥 : Prior distribution (before measurement)

𝑃 𝑥 𝑦 : Posterior distribution (after measurement)

𝑃 𝑦 𝑥 : Measurement model / inverse conditional / generative model

𝑃(𝑦): does not depend on x; normalization constant



State evolution and measurement: 
probabilistic  models
Evolution of state and measurements governed by probabilistic laws

𝑝 𝑥𝑡 𝑥0:𝑡−1, 𝑧1:𝑡−1, 𝑢1:𝑡) describes motion/state evolution model

• If state is complete, sufficient summary of the history then
• 𝑝 𝑥𝑡 𝑥0:𝑡−1, 𝑧0:𝑡−1, 𝑢0:𝑡−1) = 𝑝 𝑥𝑡 𝑥𝑡−1, 𝑢𝑡) state transition prob. 

• 𝑝 𝑥′ 𝑥, 𝑢) if transition probabilities are time invariant

zt-1
zt

zt+

1

ut-

1
ut

ut+

1

xt-1 xt

xt+

1

𝑥𝑡+1 = 𝑓 𝑥𝑡, 𝑢𝑡



Measurement model

Measurement process 𝑝 𝑧𝑡 𝑥0:𝑡 , 𝑧1:𝑡−1, 𝑢0:𝑡−1)
• Again, if state is complete

• 𝑝 𝑧𝑡 𝑥0:𝑡 , 𝑧1:𝑡−1, 𝑢1:𝑡) = 𝑝 𝑧𝑡 𝑥𝑡)

• 𝑝 𝑧𝑡 𝑥𝑡): measurement probability

• 𝑝 𝑧 𝑥): time invariant measurement probability

zt-1
zt

zt+

1

ut-

1
ut

ut+

1

xt-1 xt

xt+

1

𝑧𝑡 = 𝑔 𝑥𝑡



Beliefs
Belief: Robot’s knowledge about the state of the environment

True state is unknowable / measurable typically, so, robot must infer state from data 

and we have to distinguish this inferred/estimated state from the actual state 𝑥𝑡
𝑏𝑒𝑙(𝑥𝑡) = 𝑝(𝑥𝑡|𝑧1:𝑡, 𝑢1:𝑡)

Posterior distribution over state at time t given all past measurements and control. 

This will be calculated in two steps:

1. Prediction: 𝑏𝑒𝑙(𝑥𝑡) = 𝑝 𝑥𝑡 𝑧1:𝑡−1, 𝑢1:𝑡

2. Correction: Calculating 𝑏𝑒𝑙(𝑥𝑡) from 𝑏𝑒𝑙(𝑥𝑡) a.k.a measurement update (will 

use Equation (*) from earlier)



Recursive Bayes Filter

Algorithm Bayes_filter(𝑏𝑒𝑙 𝑥𝑡−1 , 𝑢𝑡 , 𝑧𝑡)

for all 𝑥𝑡 do:

𝑏𝑒𝑙 𝑥𝑡 = ∫ 𝑝(𝑥𝑡|𝑢𝑡,𝑥𝑡−1)𝑏𝑒𝑙(𝑥𝑡−1)𝑑𝑥𝑡−1
𝑏𝑒𝑙 𝑥𝑡 = 𝜂 𝑝 𝑧𝑡 𝑥𝑡 𝑏𝑒𝑙(𝑥𝑡)

end for

return 𝑏𝑒𝑙(𝑥𝑡)

𝑏𝑒𝑙 𝑥𝑡−1

𝑥𝑡
𝑝′

1
𝑝1

2
𝑝2

3
𝑝3

𝑝 𝑥𝑡|𝑢𝑡 , 1

𝑝 𝑥𝑡|𝑢𝑡 , 2

𝑝 𝑥𝑡|𝑢𝑡 , 3

𝑏𝑒𝑙 𝑥𝑡−1

𝑏𝑒𝑙(𝑥𝑡)

𝑝 𝑧𝑡 𝑥𝑡



Histogram Filter or Discrete Bayes Filter

Finitely many states 𝑥𝑖 , 𝑥𝑘 , 𝑒𝑡𝑐. Random state vector 𝑋𝑡

𝑝𝑘,𝑡: belief at time t for state 𝑥𝑘; discrete probability distribution

Algorithm Discrete_Bayes_filter( 𝑝𝑘,𝑡−1 , 𝑢𝑡, 𝑧𝑡):

for all 𝑘 do:

ҧ𝑝𝑘,𝑡 = σ𝑖 𝑝(𝑋𝑡 = 𝑥𝑘|𝑢𝑡,𝑋𝑡−1 = 𝑥𝑖)𝑝𝑖,𝑡−1

𝑝𝑘,𝑡 = 𝜂 𝑝 𝑧𝑡 𝑋𝑡 = 𝑥𝑘) ҧ𝑝𝑘,𝑡

end for

return {𝑝𝑘,𝑡}

𝑏𝑒𝑙 𝑥𝑡−1

𝑥𝑘
𝑝′

1
𝑝1,𝑡−1

2
𝑝2,𝑡−1

3
𝑝3,𝑡−1

𝑝 𝑥𝑘|𝑢𝑡, 1

𝑝 𝑥𝑡|𝑢𝑡 , 2

𝑝 𝑥𝑡|𝑢𝑡 , 3

𝑏𝑒𝑙 𝑥𝑡−1

𝑏𝑒𝑙(𝑥𝑡)

𝑝 𝑧𝑡 𝑥𝑡



Grid Localization

• Solves global localization in some cases kidnapped robot problem

• Can process raw sensor data
• No need for feature extraction

• Non-parametric
• In particular, not bound to unimodal distributions (unlike Extended Kalman 

Filter)



Grid localization

Algorithm Grid_localization ( 𝑝𝑘,𝑡−1 , 𝑢𝑡 , 𝑧𝑡, 𝑚)

for all 𝑘 do:

ҧ𝑝𝑘,𝑡 = σ𝑖 𝑝𝑖,𝑡−1𝒎𝒐𝒕𝒊𝒐𝒏_𝒎𝒐𝒅𝒆𝒍(𝑚𝑒𝑎𝑛 𝑥𝑘 , 𝑢𝑡, 𝑚𝑒𝑎𝑛 𝑥𝑖 )

𝑝𝑘,𝑡 = 𝜂 ҧ𝑝𝑘,𝑡𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕_𝒎𝒐𝒅𝒆𝒍(𝑧𝑡 , 𝑚𝑒𝑎𝑛 𝑥𝑘 , 𝑚)

end for

return 𝑏𝑒𝑙(𝑥𝑡)



23

Piecewise Constant Representation

),,( = yxxBel t
Fixing an input ut we 
can compute the new 
belief  



Start

Motion Model without measurements

𝑚𝑒𝑎𝑛 𝑥𝑘



Proximity Sensor Model

Laser sensor Sonar sensor

𝑥𝑘

𝑝 𝑧𝑡 𝑋𝑡 = 𝑥𝑘)

𝑚
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Grid localization, 
𝑏𝑒𝑙 𝑥𝑡 represented by a 
histogram over grid 𝑝(𝑧|𝑥)

𝑝(𝑧|𝑥)



Summary

• Key variable: Grid resolution

• Two approaches

• Topological: break-up pose space into regions of significance (landmarks)

• Metric: fine-grained uniform partitioning; more accurate at the expense of higher computation costs

• Important to compensate for coarseness of resolution

• Evaluating measurement/motion based on the center of the region may not be enough. If motion is updated 
every 1s, robot moves at 10 cm/s, and the grid resolution is 1m, then naïve implementation will not have any 
state transition!

• Computation

• Motion model update for a 3D grid required a 6D operation, measurement update 3D

• With fine-grained models, the algorithm cannot be run in real-time

• Some calculations can be cached (ray-casting results) 
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Grid-based Localization
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Sonars and 
Occupancy Grid Map 



Monte Carlo Localization 

• Represents beliefs by particles 



• Represent belief by finite number of parameters (just like histogram filter)

• But, they differ in how the parameters (particles) are generated and populate 

the state space 

• Key idea: represent belief 𝑏𝑒𝑙 𝑥𝑡 by a random set of state samples

• Advantages

• The representation is approximate and nonparametric and therefore can 

represent a broader set of distributions than e.g., Gaussian 

• Can handle nonlinear tranformations

• Related ideas: Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap 

filter, Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96], Dynamic Bayesian 

Networks: [Kanazawa et al., 95]d

Particle Filters



Particle filtering algorithm 

𝑋𝑡 = 𝑥𝑡
[1]
, 𝑥𝑡

[2]
, … 𝑥𝑡

[𝑀]
particles

Algorithm Particle_filter(𝑋𝑡−1, 𝑢𝑡 , 𝑧𝑡):
ത𝑋𝑡−1 = 𝑋𝑡 = ∅

for all 𝑚 in [M] do:

sample 𝑥𝑡
[𝑚]

~𝑝 𝑥𝑡 𝑢𝑡 , 𝑥𝑡−1
[𝑚]

)

𝑤𝑡
[𝑚]

= 𝑝 𝑧𝑡 𝑥𝑡
𝑚

ത𝑋𝑡 = ത𝑋𝑡 + ⟨ 𝑥𝑡
𝑚
, 𝑤𝑡

[𝑚]
⟩

end for

for all 𝑚 in [M] do:

draw 𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝ 𝑤𝑡
[𝑖]

add 𝑥𝑡
[𝑖]
𝑡𝑜 𝑋𝑡

end for

return 𝑋𝑡

ideally,  𝑥𝑡
[𝑚]

is selected with probability prop. to 
𝑝 𝑥𝑡 𝑧1:𝑡, 𝑢1:𝑡)

ത𝑋𝑡−1 is the temporary particle set

// sampling from state transition dist.

// calculates importance factor 𝑤𝑡 or weight 

// resampling or importance sampling; these are 

distributed according to 𝜂 𝑝 𝑧𝑡 𝑥𝑡
[𝑚]

𝑏𝑒𝑙 𝑥𝑡

// survival of fittest: moves/adds particles to parts of 
the state space with higher probability



Weight samples: w = f / g

Importance Sampling

suppose we want to compute 𝐸𝑓 𝐼 𝑥 ∈ 𝐴 but 
we can only sample from density 𝑔

𝐸𝑓 𝐼 𝑥 ∈ 𝐴

= ∫ 𝑓 𝑥 𝐼 𝑥 ∈ 𝐴 𝑑𝑥

= ∫
𝑓 𝑥

𝑔 𝑥
𝑔 𝑥 𝐼 𝑥 ∈ 𝐴 𝑑𝑥, provided 𝑔 𝑥 > 0

= ∫ 𝑤 𝑥 𝑔 𝑥 𝐼 𝑥 ∈ 𝐴 𝑑𝑥

= 𝐸𝑔 𝑤(𝑥)𝐼 𝑥 ∈ 𝐴

We need 𝑓 𝑥 > 0 ⇒ 𝑔 𝑥 > 0



Monte Carlo Localization (MCL)
𝑋𝑡 = 𝑥𝑡

[1]
, 𝑥𝑡

[2]
, … 𝑥𝑡

[𝑀]
particles

Algorithm MCL(𝑋𝑡−1, 𝑢𝑡 , 𝑧𝑡,m):
ത𝑋𝑡−1 = 𝑋𝑡 = ∅

for all 𝑚 in [M] do:

𝑥𝑡
[𝑚]

= 𝒔𝒂𝒎𝒑𝒍𝒆_𝒎𝒐𝒕𝒊𝒐𝒏_𝒎𝒐𝒅𝒆𝒍(𝑢𝑡 𝑥𝑡−1
[𝑚]

)

𝑤𝑡
[𝑚]

= 𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕_𝒎𝒐𝒅𝒆𝒍(𝑧𝑡 , 𝑥𝑡
𝑚 ,𝑚

)

ത𝑋𝑡 = ത𝑋𝑡 + ⟨ 𝑥𝑡
𝑚
, 𝑤𝑡

[𝑚]
⟩

end for

for all 𝑚 in [M] do:

draw 𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝ 𝑤𝑡
[𝑖]

add 𝑥𝑡
[𝑖]
𝑡𝑜 𝑋𝑡

end for

return 𝑋𝑡

Plug in motion and measurement models 
in the particle filter



Particle Filters
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Robot Motion
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Robot Motion
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Sample-based Localization (sonar)
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Initial Distribution
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After Incorporating Ten Ultrasound 
Scans
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After Incorporating 65 Ultrasound Scans
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Estimated Path



Using Ceiling Maps for Localization



Vision-based Localization

P(z|x)

h(x)

z



Under a Light
Measurement z: P(z|x):



Next to a Light
Measurement z: P(z|x):



Elsewhere
Measurement z: P(z|x):



Global Localization Using Vision
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Limitations

• The approach described so far is able to 
• track the pose of a mobile robot and to

• globally localize the robot.

• Can we deal with localization errors (i.e., the kidnapped robot 
problem)?

• How to handle localization errors/failures? 
• Particularly serious when the number of particles is small
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Approaches
• Randomly insert samples 

• Why? 

• The robot can be teleported at any point in time

• How many particles to add? With what distribution? 
• Add particles according to localization performance

• Monitor the probability of sensor measurements  𝑝(𝑧𝑡|𝑧1:𝑡−1, 𝑢1:𝑡 , 𝑚)

• For particle filters: 𝑝(𝑧𝑡|𝑧1:𝑡−1, 𝑢1:𝑡 , 𝑚) ≈
1

𝑀
σ𝑤𝑡

[𝑚]

• Insert random samples proportional to the average likelihood of the 
particles (the robot has been teleported with higher probability when the 
likelihood of its observations drops). 
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Random Samples
Vision-Based Localization
936 Images, 4MB, .6secs/image

Trajectory of the robot:
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Kidnapping the Robot
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Summary
• Particle filters are an implementation of recursive 

Bayesian filtering

• They represent the posterior by a set of weighted 
samples.

• In the context of localization, the particles are 
propagated according to the motion model.

• They are then weighted according to the likelihood of 
the observations.

• In a re-sampling step, new particles are drawn with a 
probability proportional to the likelihood of the 
observation. 


