ECE 498SMA: Principles of safe autonomy Fall 2020
Written by: Tiangi Liu, Minghao Jiang, Sayan Mitra MP 3: Path Planning
Due date: October 30, 11:59PM

1 Introduction

In this MP, you will implement a path planning module and add it on top of the controller you developed
in MP2. The module will accept the map of Gazebo environment with some walls and obstacles, the GEM
car’s starting state, and the goal state as input, and it will produce as output a feasible path, that is, a series
of way points, that takes the car from the start position to the goal.

In the real world, we will need hardware and software to localize the vehicle. Localization will be
covered in next MP, but right now you have perfect indoor localization. That is, you can get the ground
truth car position from a ROS topic published by Gazebo simulator. Then the controller should drive the
vehicle to the goal area without colliding with the obstacles in the Gazebo simulator. You will implement
both A* and Hybrid A* path planners.

Same a previous MPs, this MP is divided into two parts. In the first part of this MP (section 2), you
will be working on some theoretical problems about planning and clustering. In the second part of this MP
(section 3), you will work with the Gazebo simulator. You will need to use the knowledge from previous
part of this MP and lecture, to develop path planning algorithms. You will also need to use the controller
from MP2 to drive the GEM car.

For part one, you will individually submit the solution to Problems 1-3 in one file MP3_1_netid.pdf.

For part two, your group will need to submit a single file MP3_2_ groupnumber . pdf with the solution
to Problems 4-6. Name all the group members and cite any external resources you may have used in your
solutions. More details for submission are given in Section 5. All the regulations for academic integrity and
plagiarism spelled out in the student code apply.

Learning objectives
¢ Path planning
¢ A*and Hybrid A* Algorithm

System requirements
e Ubuntu 16
® ROS Kinetic
¢ ros-kinetic-ros-control
¢ ros-kinetic-effort-controllers
* ros-kinetic-joint-state-controller

* ros-kinetic-ackermann-msgs

2 Written Problems

Problem 1. A* search (10 points)

(@) Construct an example of a graph G with at least 6 nodes and 10 edges where A* search fails to find
the optimal path. Clearly mark the values of the heuristic function & at each vertex, the start and the goal
vertices, the optimal path. Then show the step-by-step execution of the algorithm in a table to illustrate the
sub-optimal path that the algorithm finds. Do not use the graph from the lecture slides or search for an example
online.

(b) Change the heuristic function & on the above graph G to an admissible heuristic. Illustrate the execu-
tion of A* on this changed graph.

Problem 2. Probabilistic Road Maps (10 points)

(@) Recall the Probabilistic Road Maps algorithms from lecture. In particular, recall that the function
Near(G = (V, E),v,r) returns the vertices in V that are within r distance of v.

Consider the partially constructed PRM shown in the figure below. Suppose the next three vertices
chosen in the outer for loop are marked by 1, 2, and 3, and the corresponding r-radius circles is shown.
Suppose also that CollisionFree paths are found by drawing straight lines. Then, draw the edges that are
added to he PRM graph after these vertices are processed.

(b) What are some of the advantages of PRMs?

Problem 3. Rapidly-exploring Random Tree (10 points) In the RRT algorithm, when generating a ran-
dom sample 2;.nq, Suppose with some probability 6 > 0 we pick the goal 24,4, Will the algorithm preserve
probabilistic completeness? How will the behavior of the algorithm change? Explain your answer.

Problem 4. K-Means Clustering (5 points) Give an example of a set of data points and initial choice of
cluster heads, such that the K-means clustering algorithm does not converge to the optimal clustering.

3 Implementation

In this part of the MP, you will need to implement A* and Hybrid A* algorithms to help the GEM car
navigate in either Highbay laboratory or ECE building. The first step is to implement the 2 path planning
algorithms and test them with some test cases. Then, to drive the GEM car in Highbay or ECEB, you need
to use your controller from MP2.

To start, you need to download the code from a gitlab repo . All the code blocks you need to write
should be inside the file a_star.py, hybrid_a_star.py and controller.py from /src/mp3/. This
document gives you the first steps to get started. You will have to take advantage of tutorials and docu-
mentations available online. Cite all resources in your report. All the regulations for academic integrity
and plagiarism spelled out in the student code apply.

3.1 Module architecture

As usual, we will discuss the important functions needed to run the code. Note that you only need to
implement some of the functions. The functions marked by + are not required for you to implement, but
you can experiment with them.

Gazebo simulator™ This whole MP will be tested in Gazebo simulator [1], which simulates the physical
characteristics of objects like velocities, forces, friction, and collision. Each object is modeled in “models”
folder. Some of the objects can be observed and controlled through ROS topics. Those need to be set up in
.urdf files.

A* path planner A* algorithm is a graph search algorithm. For an admissible heuristic cost-to-go, it is
optimal. That is, it is guaranteed to find the optimal path provided one exists. With the information of
current GEM (discretized) position (x,y), the goal position (z’,3’), and the positions of obstacles in the
environment, the vanilla A* path planner needs to generate a path containing a series of adjacent way
points that leads the vehicle from start position to goal position.

Hybrid A* path planner Hybrid A* algorithm is an extended version of A* that works over continuous
spaces [2]. It can take into account the physics of the vehicle.

Controller Given the position of the goal point, the controller should navigate the vehicle to reach it. You
should have already finished this part in MP2. If you do not have the controller code, ask us.

3.2 A* path planner

The A* algorithm remains one of the most popular searching algorithm since its introduction in 1960s. It is
has been successfully applied to many applications including robot planning. It uses a heuristic function
h to estimate the most likely optimal cost-to-go. The main idea of A* algorithm is to minimize the cost

https://gitlab.engr.illinois.edu/GolfCar/mp3-release-20fa
https://studentcode.illinois.edu/article1/part4/1-402/

function: f(n) = g(n) + h(n), where g(n) is the actual cost from the starting position to current position n
and h(n) is the estimated cost from n to goal.

Figure 1: Simple A* [4]

The A* algorithm only works in discrete graphs. We need to divide our environment into a grid and
assume the car is always at the center of that grid. To make our life easier, we can just set the size of the
grid to be 1. Thus, each state will only contain the vehicle’s x, y coordinates, which will always be integers.
The vehicle can move to any of the 8 neighboring cells. To decide which cell to move to, we just need to
minimize the heuristic function 4(n). You can use the Euclidean distance to the goal position as the heuristic
function. You can also try other heuristic functions like Manhattan distance, L1-distance, and others.

In order to find the optimal path, we need to store not only the state itself, but also the path connecting
to that state, and the current estimated cost f and actual cost g. We call such a bundle of information a
Node. The nodes will be sorted based on their f values. For the starting node, the estimated cost & is the
Euclidean distance between starting position (sz, sy) and goal position (gz, gy), and the actual cost g is 0.

Once you finished the simple A* code in a_star.py, you can just run it. A simple test case is offered. If
everything works fine you are supposed to see a planned path connecting the starting point with the goal
point.

python3 a_star.py

3.3 Hybrid A* path planner

The real world is better modeled in terms of a continuous space. Also, the results from A* algorithm may
not be implementable by the actual vehicle since the physical constraints of the actual vehicle could may
be properly represented. For example, a vehicle cannot stop instantaneously because of inertia; a wheeled
vehicle has a minimum turning radius. and cannot change its heading too dramatically. These physical
constraints make driving safety harder.

Hybrid A* works with continuous state space and physical constraints. Hybrid A* is a modified version
of A*. It has been successfully applied on many autonomous driving platforms, such as Junior from the
Stanford [2], which won the second place in the famous DARPA Urban Challenge in 2007. Read the above
paper for a succinct overview of the algorithm.

https://en.wikipedia.org/wiki/Euclidean_distance

15

10

-15

1 L
=15 =10 =5 0 5 10 15

Figure 2: A path found by A* search. A test case.

The idea behind hybrid A* is that each node, represented by a coordinate («',y’) in discrete space,
should be mapped to a coordinate (x, y) in continuous space that is reachable from the starting point based
on the physical model of the vehicle. To represent the real world, we need to have the position of the
vehicle in continuous space (z,y). Just as before, we also need to represent the vehicle state in discrete
space (otherwise we will have uncountably many of nodes). In addition to z, y the nodes will also contain
the heading angle 6. To simplify the calculation, we round all angles to integers. So the discrete state
becomes (z/,y’,0"). If the discrete states of two nodes are the same, we can treat them as if they are at the
same position.

In order to ensure that the planned path is actually achievable for our vehicle, we need to introduce
the rear wheel model that we have discussed previously in the modeling lecture. Instead of using the
neighboring states of the current states as new states, now for each of the possible steering ¢ and speed v,
we use this model to calculate the new states in continuous space. Note [is the length of the vehicle.

Tnew = T + veos(6)
Ynew = Y + ’USZTL(@)
Opew = 0+ %tan(é)

The new cost g (at the new state) should be increased based on the control commands. For example,
larger steering input should have higher cost.

Once you finish the hybrid A* implementation in in a_star.py, you can just run it. A simple test case
is offered. If everything works fine, after a few seconds you should see a plot of a feasible planned path.
Notice that this path, unlike the A* generated path, can be followed by our vehicle model.

python3 hybrid_a_star.py

http://publish.illinois.edu/safe-autonomy/files/2020/02/2020-Lecture7_Modeling_Control_1.pdf

Figure 3: Rear wheel car model [3].

¥

!

/
¥

"--...)..

Figure 4: Construction of the graph for the hybrid A* algorithm. The edges are defined by discrete states
that can be reached by the vehicle model with different inputs [4].

3.4

1.

Design choices to consider

If your code runs too slowly, you may try to use existing python data structures like heapq to improve
the performance. These implementations are highly optimized and usually bug free. Again, cite all
libraries used in your report.

To further increase the performance, for each possible motion you can compute and store the changes
to the current state before the propagation starts.

If you want to have a smoother path, you can add more steering angles to the possible steering control
in the beginning of Hybrid_astar.py.

If your generated path contains too much reversing, you can adjust the cost g to “encourage” going
forward.

When converting floats to integers in Python, use round() rather than int().

https://docs.python.org/2/library/heapq.html

2L

-6 | L 1 1
5 -4 -2 0 2 4 6

Figure 5: Hybrid A* Test Case

3.5 Start Gazebo simulator environment

Just like in MP2, MP3 also requires Gazebo simulator. First, go to the root folder of git repo, which is also
the root for our catkin workspace, and build the code

catkin_make

Hopefully you did not get any errors. Now, if you look in your current directory you should have a
‘build” and "devel’ folder. Inside the “devel’ folder you can see that there are several setup.*sh files. Sourcing
any of these files will overlay this work space on top of your environment. For every new terminal you
open, you need to source again in that terminal before you run anything related to this ROS package.

source devel/setup.bash

Then we need to import the model we created into Gazebo.

export GAZEBO_MODEL_PATH=$GAZEBO_MODEL PATH: <path to work space>/src/mp3/models

Now we can launch the Gazebo. The GEM car, the surrounding walls and obstacles should show up
in the simulator. We have created two environment for you. One is the "highbay" environment, the other
is "eceb" environment. Fill in the environment name at <environment> and remember to use the same
environment for mp3.py.

Figure 6: Two simulation environments for you to work in. Highbay (left) and ECEBI1 (right).

roslaunch mp3 mp3_<environment >.launch

3.6 Start the controller

Just like MP2, we need to start the mp3.py. It will use the path planner to find the path from current location
of the vehicle to the target position. Then it will call the controller you developed in MP2 to drive the car in
Gazebo simulator. Hence you need to copy some of the code blocks from the controller.py from your
src folder in MP2 into the controller.py in src folder in MP3.

To test your A* in Gazebo, run:

python mp3.py --algo a_star —-env <env> ——gx x1 x2 ——gy yl y2 ——gtheta thetal theta2

To test your Hybrid A* in Gazebo, run:

python mp3.py —-algo hybrid_a_star ——env <env> ——gx x1 x2 ——gy yl y2 ——gtheta thetal

During your development, if you want to move the GEM car to a different position (x, y), just run:

python reset.py —x 0 —y 0

3.7 Test cases

We will grade you MP based on the following test cases. You can use reset.py to set the starting state,then
go to mp3.py to set the goal state.

1. highbay, Start:(-10, 10), End:(10, 10, 0)
2. eceb, Start:(0, 0), End:(30, 0, 90)
3. eceb, Start:(-75, 60), Then:(-50, 45, -90), End:(-95, 50, 90)

theta2

4. eceb, Start:(50, 30), Then:(77, 15, -90), End:(90, -15, 0)

5. eceb, Start:(-100, -100), End:(50, 80, 0); (For this test case, you are only required to use A* path planner.
The Hybrid A* might take too much time to finish. There will be a 5-point extra credit if your Hybrid
A* planner can find the optimal path for this test case within 5 minutes when demo to TA.)

3.8 Report

Each group should upload a report (2-3 pages). First, all group members’ names and netlds should be listed
on the first page. Then, discuss the the following questions possibly with screenshots:

Problem 5 (15 points) Observe the results from your code, what have you noticed? Attach the plots of
paths for all test cases that your A* and Hybrid A* path planners found in your report. Please also record
the time your planner takes to find the paths.

Problem 6 (25 points) Design choices
(@) What heuristic function are you using and why?

(b) Please use at least one different heuristic function other than the one in (a) and run all test cases. Plot
the time it takes for path planners with different heuristic functions to find paths. What have you noticed?

() How do you discretize the control inputs (speed and steering angle)?

(d) What are some other interesting design decisions you considered and executed, in creating the path
planning module?

Problem 7 (10 points) Record a video for one execution of test cases. The video should include the
GAZEBO window. Provide a link to the video and include it in the report.

Problem 8 (5 points) What is each member’s contribution and the number of hours spent (this does
nothave to be equal)? Give a rough breakdown of the time spent in the table format we have given earlier

4 Submission instructions

For Problems 1-4, each student should write a report that contains solutions for individually. You may.
discuss the problems following the tenets of academic integrity and collaboration. This report should be
submitted to Gradescope individually with filename MP3_1_netid.pdf. This part will have 35% of the
total grade of this MP.

For Problems 5-8, each group should write a report that contains the solutions, plots, and discussions.
This report should be submitted to gradescope per group with filename MP3_2_report_#.pdf. In addi-
tion, each group should submit the code to gradescope. The content in folder — should be submitted to
gradescope pergroup in a zip file with filename MP3_2_code_#. zip. This part will have 55% of the total
grade of this MP.

For this MP, you will need to demo your code to one of the TA. You can do the demo during any of the
lab sessions or office hours. The TA will primarily check if the vehicle can properly follow the provided
track. All members should show up and be prepared to answer some questions. The TA might pick a
random person and ask that person to answer the question. So all students should be familiar with the
content. This part will have 10% of the total grade of this MP.

References

[1] C.E. Aguero, N. Koenig, I. Chen, H. Boyer, S. Peters, J. Hsu, B. Gerkey, S. Paepcke, J.L. Rivero, J. Manzo,
E. Krotkov, and G. Pratt. Inside the virtual robotics challenge: Simulating real-time robotic disaster
response. Automation Science and Engineering, IEEE Transactions on, 12(2):494-506, April 2015.

[2] Michael Montemerlo, Jan Becker, Suhrid Bhat, Hendrik Dahlkamp, Dmitri Dolgov, Scott Ettinger, Dirk
Haehnel, Tim Hilden, Gabriel Hoffmann, Burkhard Huhnke, Doug Johnston, Stefan Klumpp, Dirk
Langer, Anthony Levandowski, Jesse Levinson, Julien Marcil, David Orenstein, Johannes Paefgen, Isaac
Penny, and Sebastian Thrun. Junior: The stanford entry in the urban challenge. Journal of Field Robotics,
25:569 — 597, 09 2008.

[3] Brian Paden, Michal Cép, Sze Zheng Yong, Dmitry S. Yershov, and Emilio Frazzoli. A survey of motion
planning and control techniques for self-driving urban vehicles. IEEE Trans. Intelligent Vehicles, 1(1):33—
55, 2016.

[4]]. Petereit, T. Emter, C. W. Frey, T. Kopfstedt, and A. Beutel. Application of hybrid a* to an autonomous
mobile robot for path planning in unstructured outdoor environments. In ROBOTIK 2012; 7th German
Conference on Robotics, pages 1-6, May 2012.

10

	1 Introduction
	2 Written Problems
	3 Implementation
	3.1 Module architecture
	3.2 A* path planner
	3.3 Hybrid A* path planner
	3.4 Design choices to consider
	3.5 Start Gazebo simulator environment
	3.6 Start the controller
	3.7 Test cases
	3.8 Report

	4 Submission instructions

