Principles of Safe Autonomy ECE 498SM Lecture 5: Object recognition

Sayan Mitra

slides from Svetlana Lazebnik

Overview

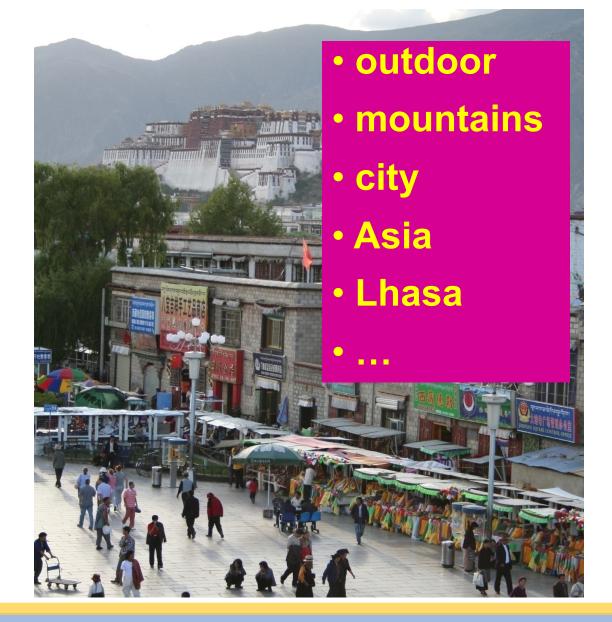
- Recognition tasks
- A statistical learning approach
- "Classic" recognition pipeline
 - Bags of features
 - Spatial pyramids
- k-means clustering
- k-NN classification

Announcement:

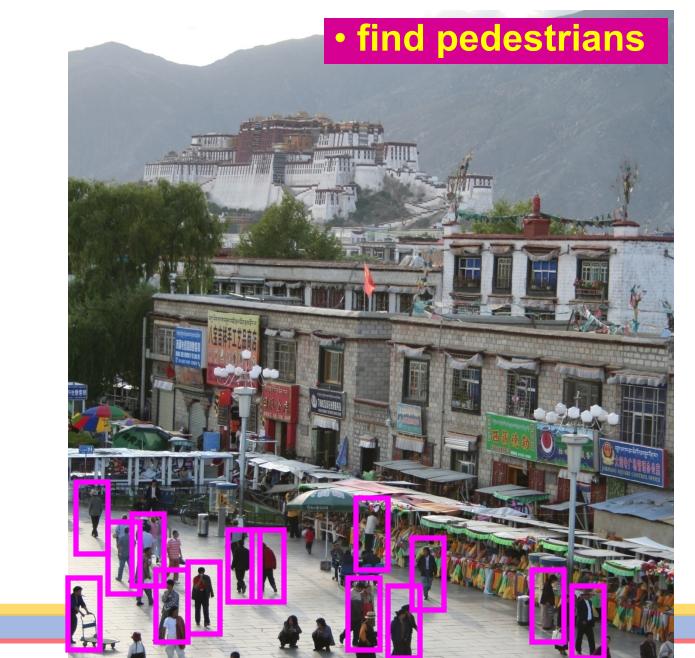
- MPO due this Friday
- Project proposal discussion next Wed

Common recognition tasks

Image classification and tagging



Object detection



Activity recognition

Semantic segmentation

Semantic segmentation

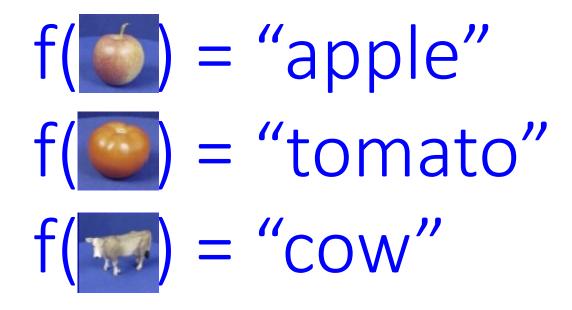
Image description

This is a busy street in an Asian city. Mountains and a large palace or fortress loom in the background. In the foreground, we see colorful souvenir stalls and people walking around and shopping. One person in the lower left is pushing an empty cart, and a couple of people in the middle are sitting, possibly posing for a photograph.

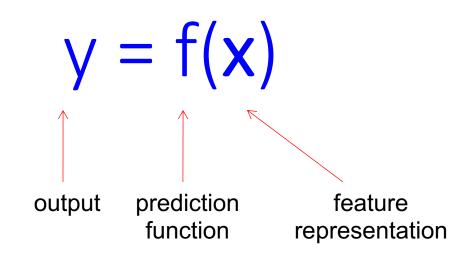
Image classification

The statistical learning framework

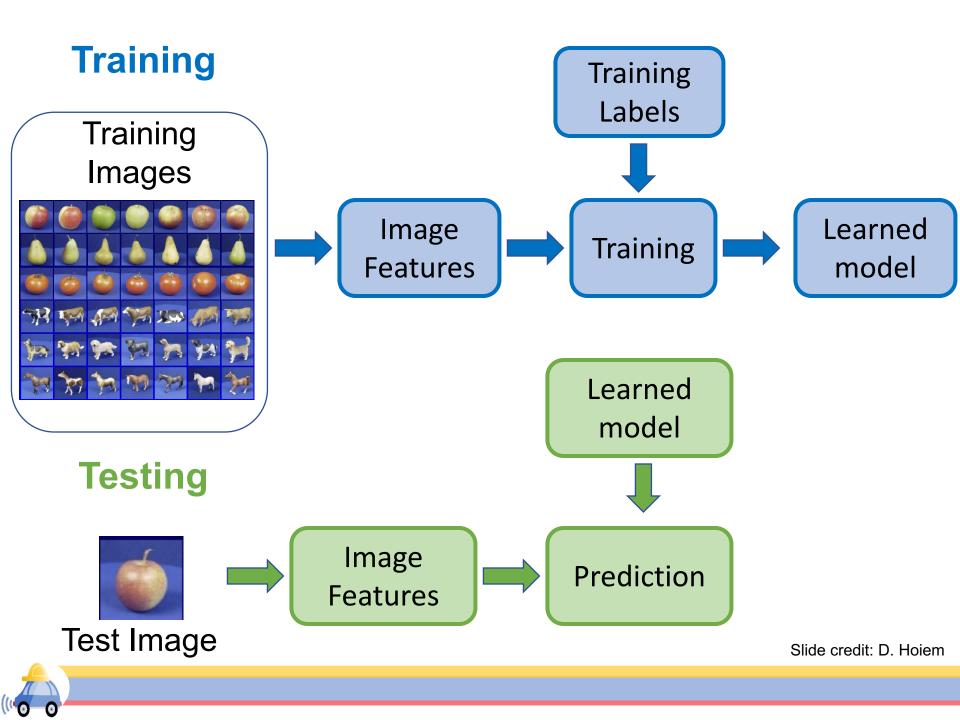
• Apply a prediction function to a feature representation of the image to get the desired output:



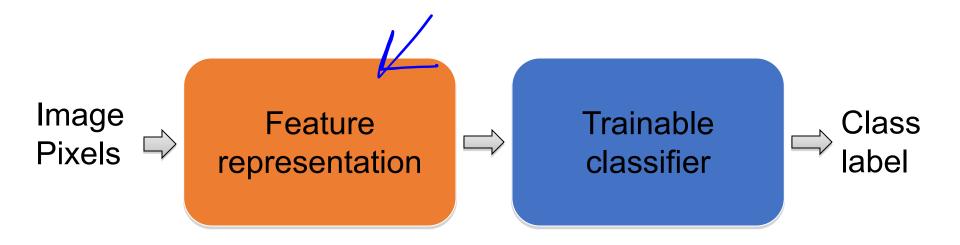
The statistical learning framework



- Training: given a training set of labeled examples
 {(x₁,y₁), ..., (x_N,y_N)}, estimate the prediction function f by minimizing
 the prediction error on the training set
- Testing: apply f to a never before seen test example x and output the predicted value y = f(x)



Creating a "Classic" recognition pipeline



- Hand-crafted feature representation
- Off-the-shelf trainable classifier

Starting with a simpler problem

Document classification: Given a big collection of documents, quickly classify them into a set of categories, e.g., politics, science, sports,...

• Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

• Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

2007-01-23: State of the Union Address

George W. Bush (2001-)

abandon accountable affordable afghanistan africa aided ally anbar armed army **baghdad** bless **challenges** chamber chaos choices civilians coalition commanders **commitment** confident confront congressman constitution corps debates deduction deficit deliver **democratic** deploy dikembe diplomacy disruptions earmarks **ECONOMY** einstein **elections** eliminates expand **extremists** failing faithful families **freedom** fuel **funding** god haven ideology immigration impose insurgents iran iran islam julie lebanon love madam marine math medicare moderation neighborhoods nuclear offensive palestinian payroll province pursuing **qaeda** radical regimes resolve retreat rieman sacrifices science sectarian senate september **shia** stays strength students succeed sunni **tax** territories **terriorists** threats uphold victory violence violent War washington weapons wesley

> US Presidential Speeches Tag Cloud http://chir.ag/projects/preztags/

• Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

2007-0	1-23: State of the Union Address George W. Bush (2001-)
abandon choices c	1962-10-22: Soviet Missiles in Cuba John F. Kennedy (1961-63)
deficit c expand	abandon achieving adversaries aggression agricultural appropriate armaments arms assessments atlantic ballistic berlin
insurgen	buildup burdens cargo college commitment communist constitution consumers cooperation crisis CUDA dangers declined defensive deficit depended disarmament divisions domination doubled economic education
palestini: septemt	elimination emergence endangered equals europe expand exports fact false family forum freedom fulfill gromyko
violenc	modernization neglect macroar bas obligation observer of refront or pent pleaged predicted partialsing dual antine duote
	recession rejection republics retaliatory safeguard sites solution ${\sf Soviet}$ space spur stability standby ${\sf strength}$
	surveillance tax territory treaty undertakings unemployment War warhead Weapons welfare western widen withdraw

US Presidential Speeches Tag Cloud http://chir.ag/projects/preztags/

• Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

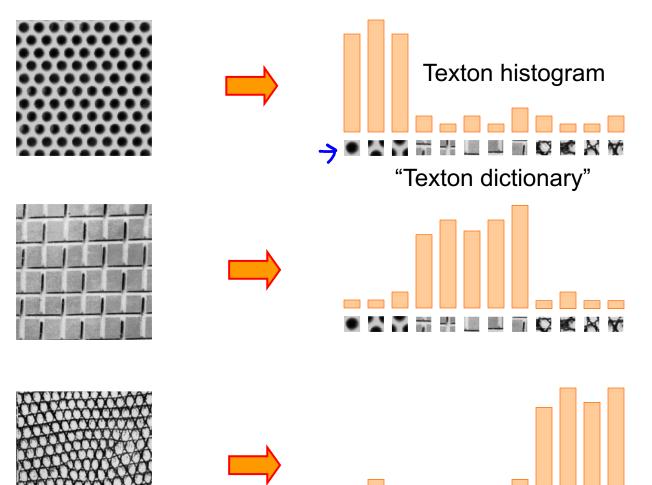
2007-0	2007-01-23: State of the Union Address George W. Bush (2001-)			
abandon choices c deficit c	1962-	10-22: Soviet Missiles in Cuba John F. Kennedy (1961-63)		
expand	abando build i	1941-12-08: Request for a Declaration of War Franklin D. Roosevelt (1933-45)		
septemb halt ha e violenc	elimina	abandoning acknowledge aggression aggressors airplanes armaments armed army assault assembly authorizations bombing britain british cheerfully claiming constitution curtail december defeats defending delays democratic dictators disclose economic empire endanger facts false forgotten fortunes france freedom fulfilled fullness fundamental gangsters		
	german germany god guam harbor hawaii hemisphere hint hitler hostilities immune improving indies innumerable invasion islands isolate japanese labor metals midst midway navy nazis obligation offensive			
	recessio surveil	invasion ISLANDS isolate JCA PCATTE SC labor metals midst midway NAVY nazis obligation offensive officially PACIFIC partisanship patriotism pearl peril perpetrated perpetual philippine preservation privilege reject repaired resisting retain revealing rumors seas soldiers speaks speedy stamina strength sunday sunk supremacy tanks taxes		
		treachery true tyranny undertaken victory War wartime washington		
		US Presidential Speeches Tag Cloud		

http://chir.ag/projects/preztags/

How to apply the same idea to images?

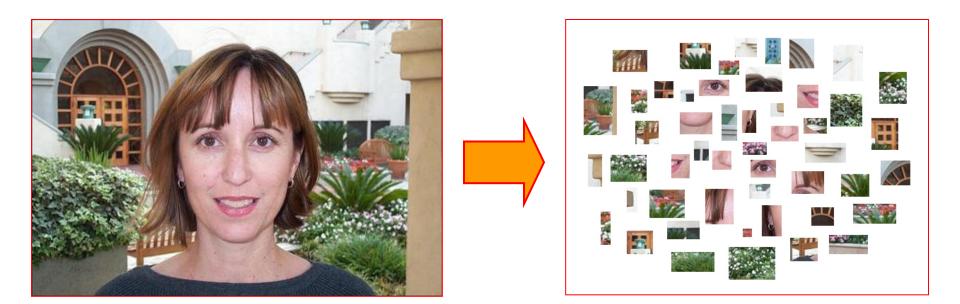
What are "visual words" ?

Motivation 2: Texture models



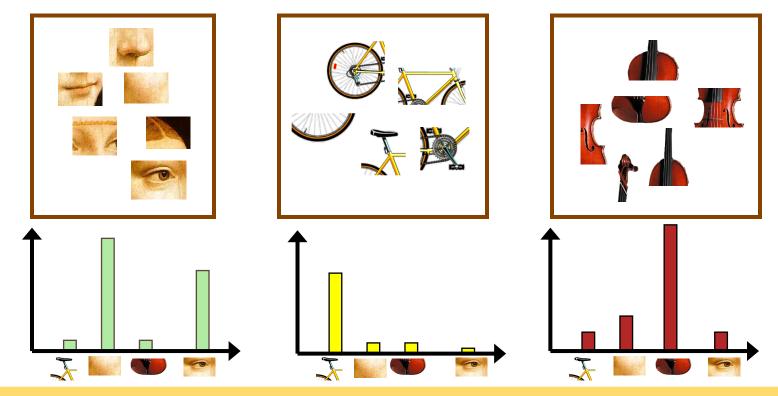
XX

"Classic" representation: Bag of features



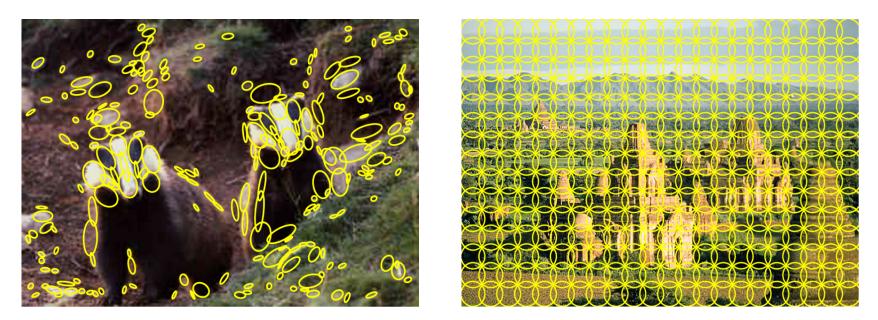
Bag of features: Outline

- 1. Extract local features
- 2. Learn "visual vocabulary"
- 3. Quantize local features using visual vocabulary
- 4. Represent images by frequencies of "visual words"



1. Local feature extraction

• Sample patches and extract descriptors

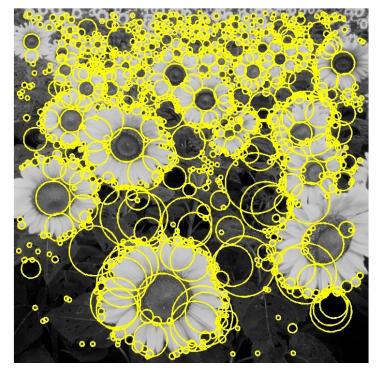


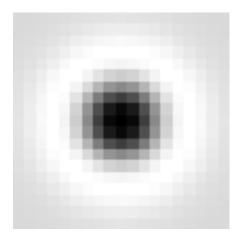
• We want to extract keypoints with *characteristic scales* that are *covariant* w.r.t. the image transformation

One idea: scale-invariant feature transform (SIFT)

• Convolve the image with a "blob filter" at multiple scales and look for extrema of filter response in the resulting *scale space*

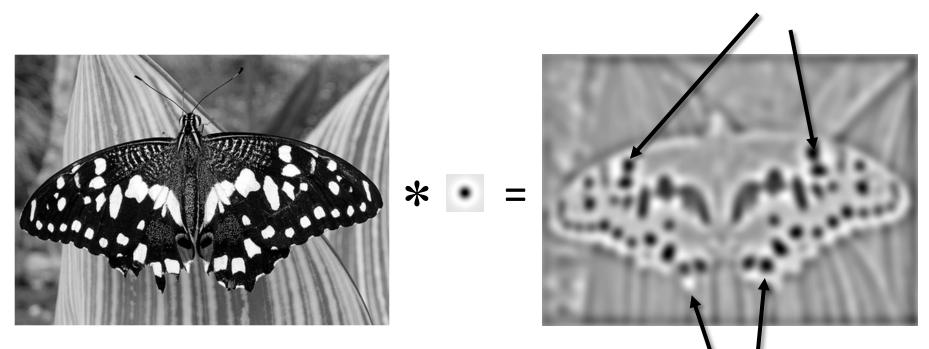
SIFT not for exams (NFE)





T. Lindeberg, Feature detection with automatic scale selection, *IJCV* 30(2), pp 77-116, 1998

Blob detection



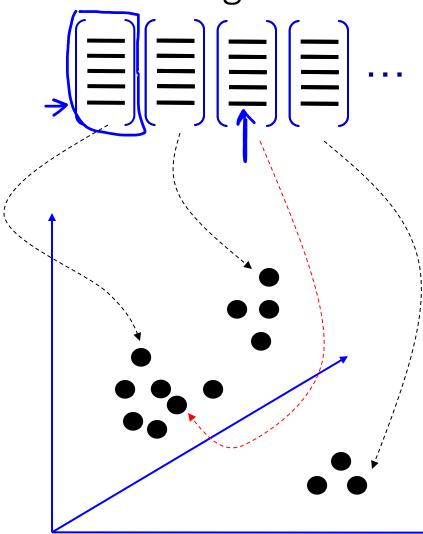
maxima

minima

Find maxima and minima of blob filter response in space and scale

Source: N. Snavely

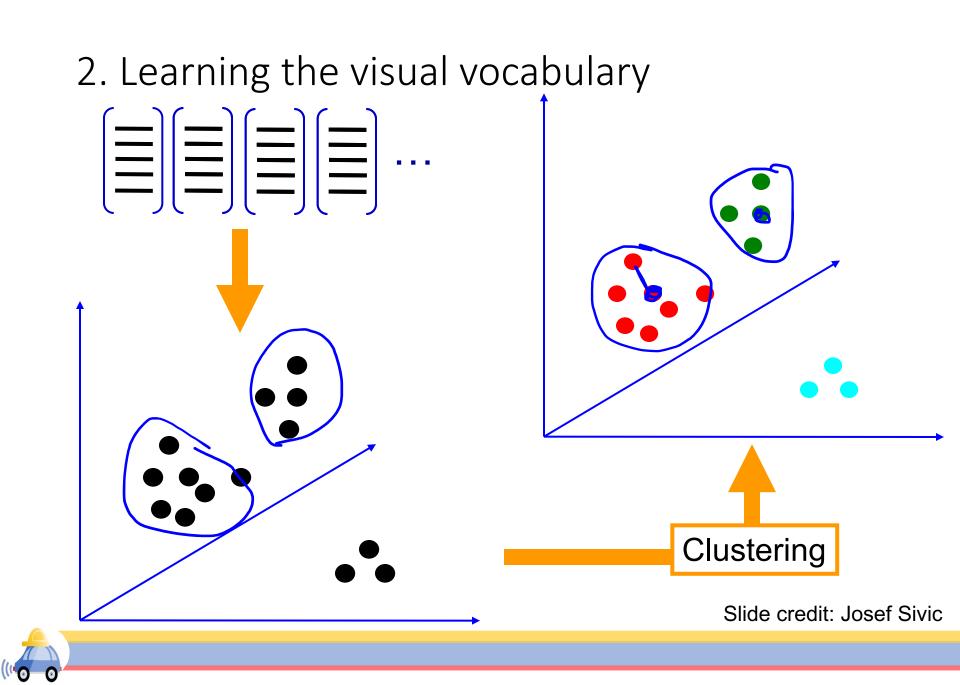
2. Learning the visual vocabulary



training set of images

From each image [] patch [–] in the training set, extract descriptors (e.g., HOG, SIFT). This gives a vector in Rⁿ which is used for clustering

Slide credit: Josef Sivic



Clustering (To be discussed later)

Given N vectors $x_1, ..., x_N \in \mathbb{R}^n$, the goal is to partition them into k groups so that the vectors in the same group are close to one another

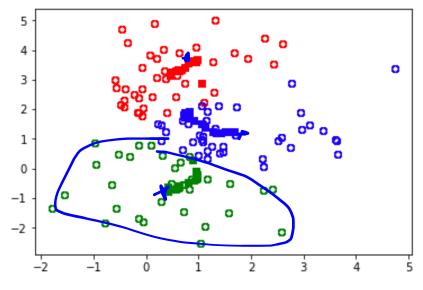
Examples: image compression (vectors are pixel values); patient clustering (patient attributes, tests);

$$c_i \in \{1, \dots, k\}$$
 is the group x_i belongs to

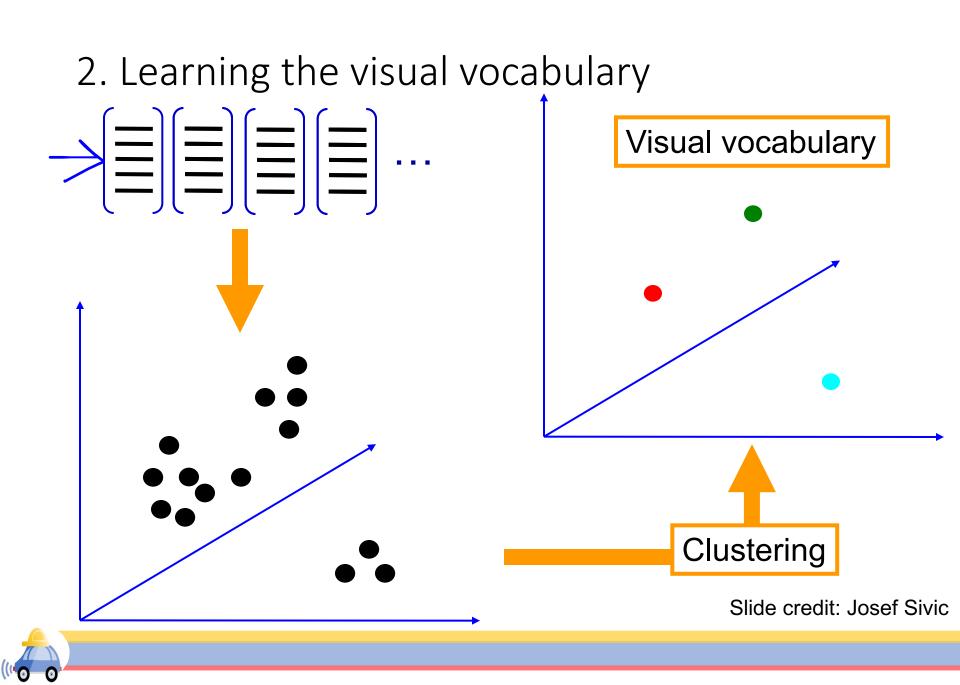
 $G_{c_i} \subseteq \{x_1, \dots, x_n\}$ group

 $\sum_{c_i} z_{c_i}$ group representative

Clustering objective minimize $J_{clust} = \frac{1}{N} \sum_{i=1}^{N} |x_i - z_{c_i}|^2$ by choosing the groups $\{c_i\}$ and the representatives



from Boyd & Vandenl



K-means clustering

 Want to minimize sum of squared Euclidean distances between features x_i and their nearest cluster centers m_k

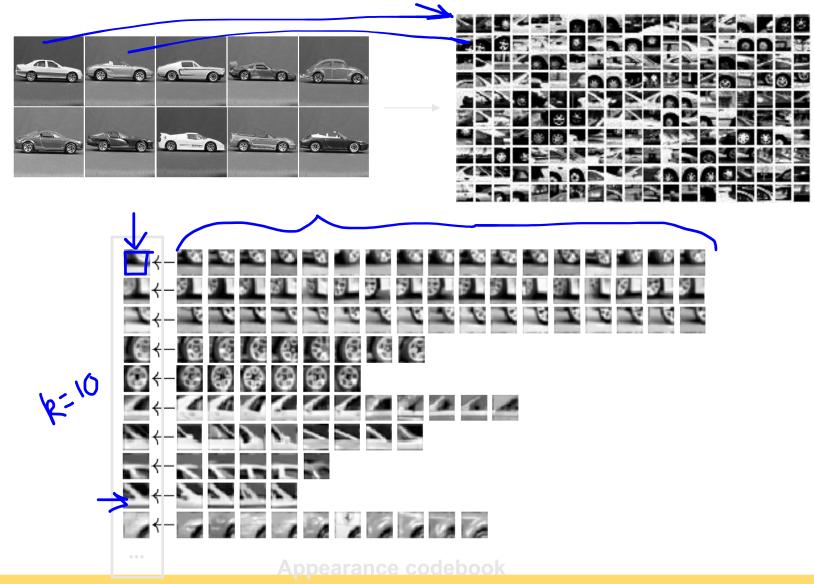
$$D(X,M) = \sum_{i=1}^{k} \sum_{i=1}^{k} (\mathbf{x}_i - \mathbf{m}_k)^2$$

• Algorithm:

cluster k point i in cluster k

- Randomly initialize K cluster centers
- Iterate until convergence:
 - Assign each feature to the nearest center
 - Recompute each cluster center as the mean of all features assigned to it

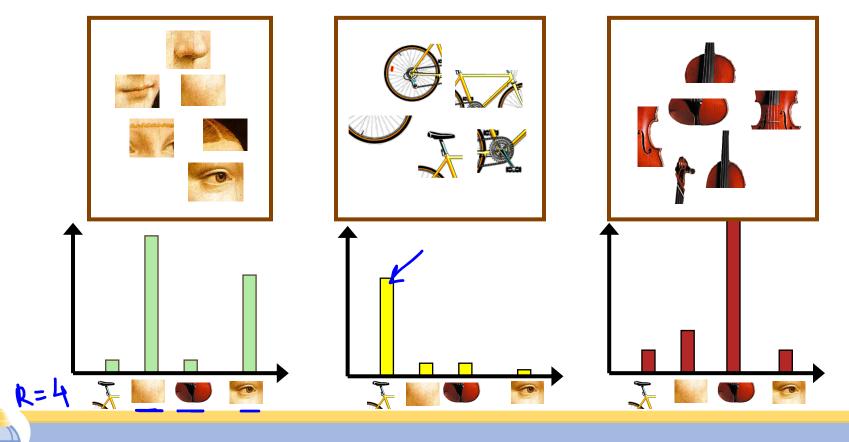
Recall: Visual vocabularies from cluster centers



.

Bag of features: Outline

- 1. Extract local features
- 2. Learn "visual vocabulary"
- 3. Quantize local features using visual vocabulary
- 4. Represent images by frequencies of "visual words"



Example visual vocabulary

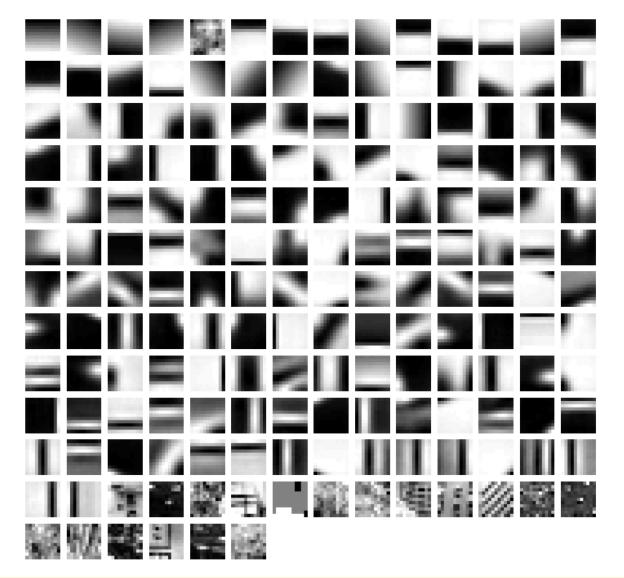
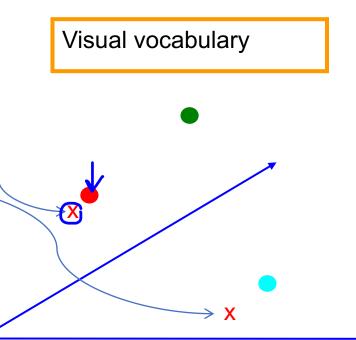
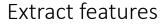


Image Representation

• For a query image



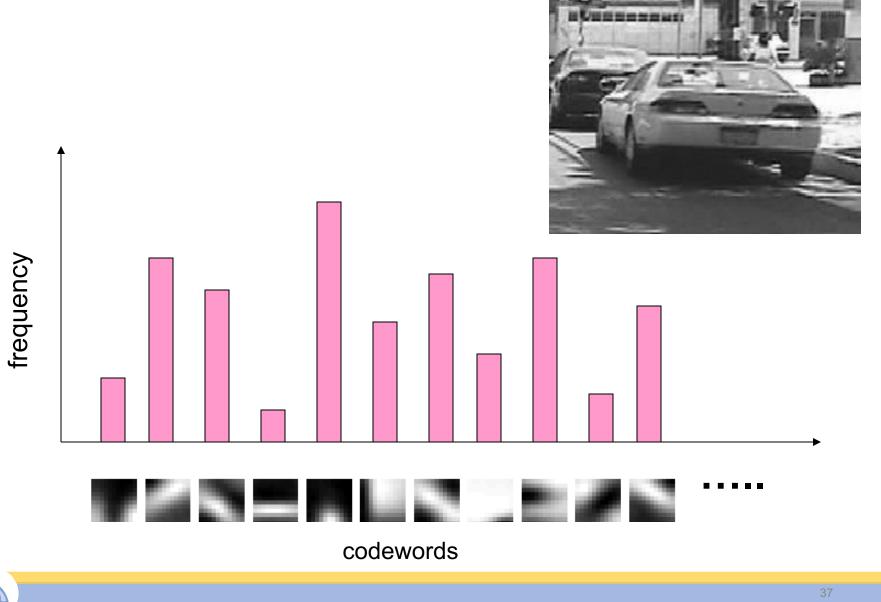


Associate each feature with the nearest cluster center (visual word)

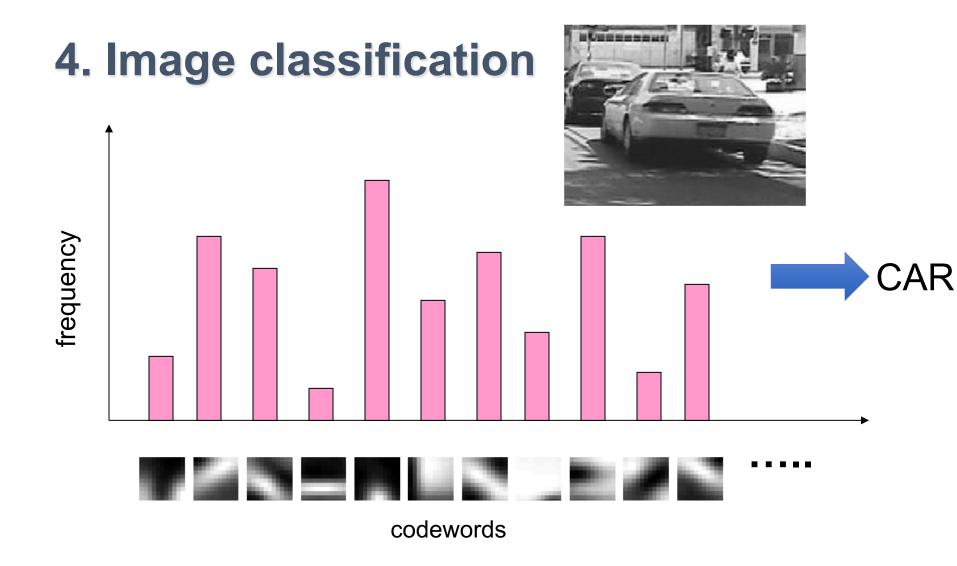
Accumulate visual word frequencies over the image

3. Image representation

.

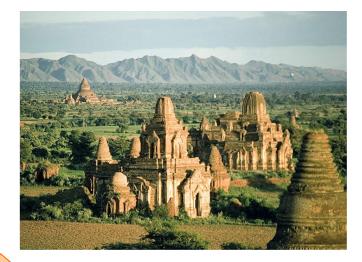


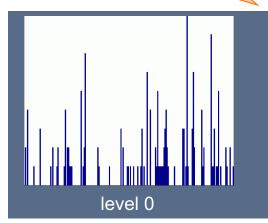
source: Svetlana Lazebnik



Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing them?

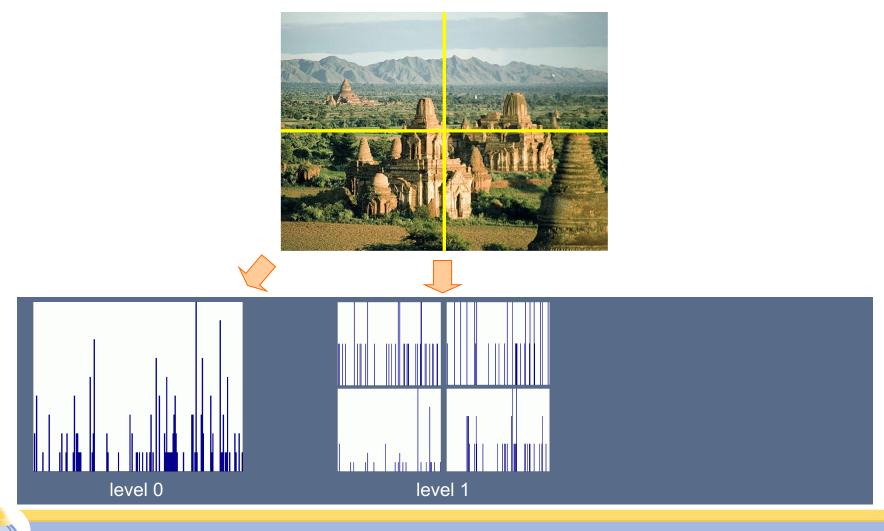
Spatial pyramids (orderless -> locally orderless)





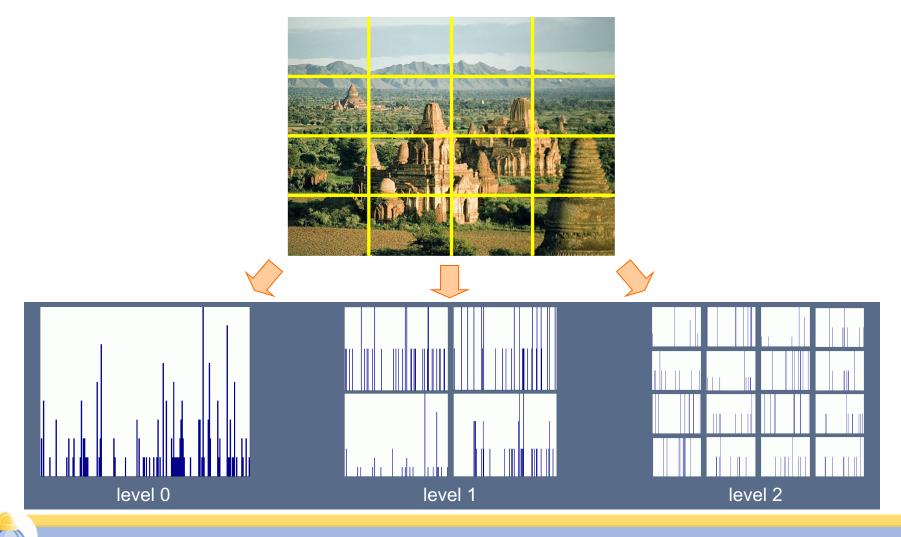
Lazebnik, Schmid & Ponce (CVPR 2006)

Spatial pyramids



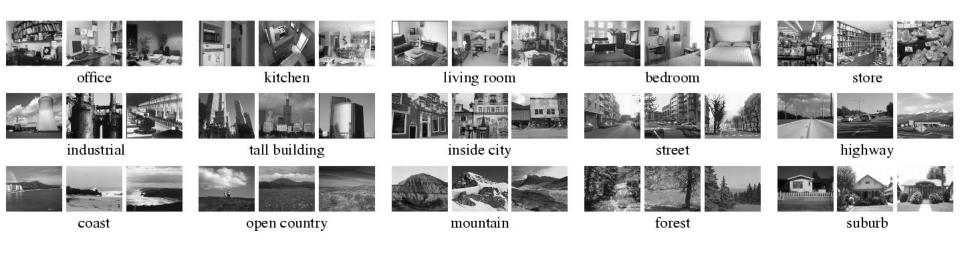
Lazebnik, Schmid & Ponce (CVPR 2006)

Spatial pyramids

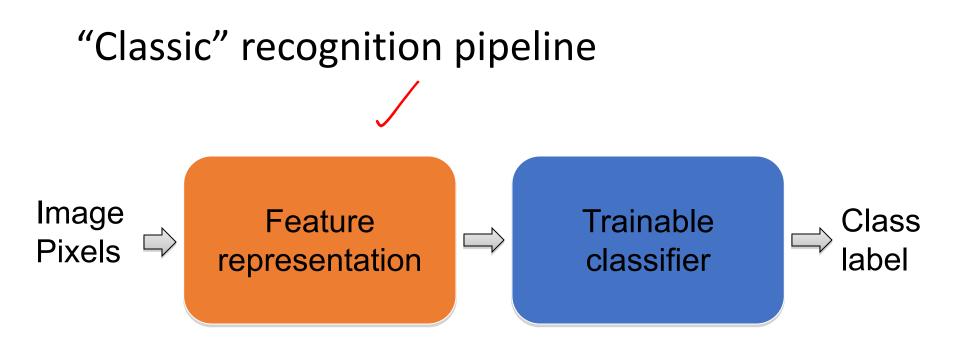


Lazebnik, Schmid & Ponce (CVPR 2006)

Spatial pyramids



	Weak features		Strong features	
	(vocabulary size: 16)		(vocabulary size: 200)	
Level	Single-level	Pyramid	Single-level	Pyramid
$0(1 \times 1)$	45.3 ± 0.5		72.2 ± 0.6	
$1 (2 \times 2)$	53.6 ± 0.3	$56.2\pm\!0.6$	77.9 ± 0.6	79.0 ± 0.5
$2(4 \times 4)$	61.7 ± 0.6	64.7 ± 0.7	79.4 ± 0.3	81.1 ±0.3
$3(8 \times 8)$	63.3 ± 0.8	66.8 ±0.6	77.2 ± 0.4	80.7 ± 0.3



- Hand-crafted feature representation
- Off-the-shelf trainable classifier

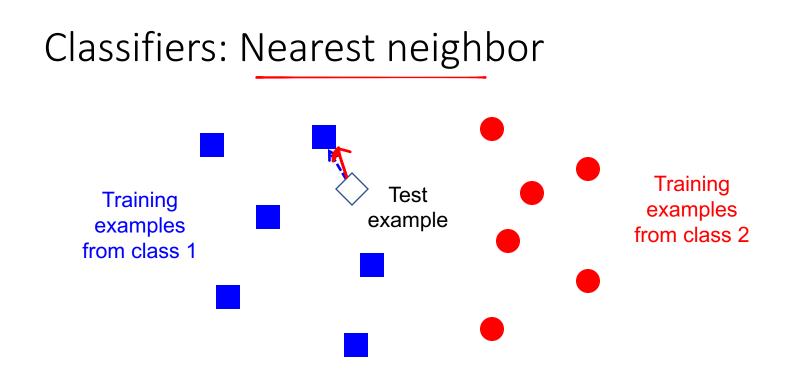
Classification

Given a new image, and the vector of trained visual word histograms, how to classify the new image?

2007-01-23: State of the Union Address

George W. Bush (2001-

abandon accountable affordable afghanistan africa alded ally anbar armed army **baghdad** bless **challenges** chamber chaos choices civilians coalition commanders **commitment** confident confront congressman constitution corps debates deduction deficit deliver **democratic** deploy dikembe diplomacy disruptions earmarks **ECONOMY** einstein **elections** eliminates expand **extremists** failing faithful families **freedom** fuel funding god haven ideology immigration impose insurgents **iran iraq** islam julie lebanon love madam marine math medicare moderation neighborhoods nuclear offensive palestinian payroll province pursuing **qaeda** radical regimes resolve retreat rieman sacrifices science sectarian senate september **shia** stays strength students succeed sunni **tax** territories **terriorists** threats uphold victory violence violent WaT washington weapons westey



 $f(\mathbf{x})$ = label of the training example nearest to \mathbf{x}

- All we need is a distance or similarity function for our inputs
- No training required!

Functions for comparing histograms

- L1 distance:
- χ^2 distance:

- $D(h_1, h_2) = \sum_{i=1}^{N} |\underline{h_1(i)} \underline{h_2(i)}|$ $D(h_1, h_2) = \sum_{i=1}^{N} \frac{(h_1(i) h_2(i))^2}{h_1(i) + h_2(i)}$
- Quadratic distance (cross-bin distance):

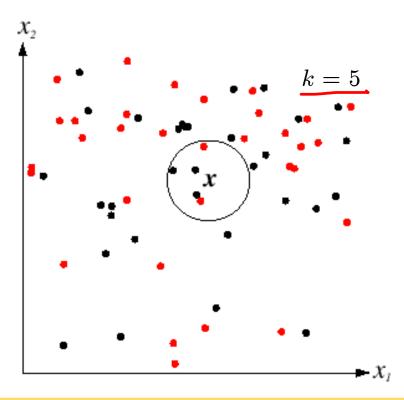
$$D(h_1, h_2) = \sum_{i,j} A_{ij} (h_1(i) - h_2(j))^2$$

• Histogram intersection (similarity function):

$$I(h_1, h_2) = \sum_{i=1}^{N} \min(h_1(i), h_2(i))$$

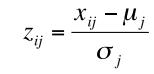
K-nearest neighbor classifier

- For a new point, find the k closest points from training data
- Vote for class label with labels of the k points

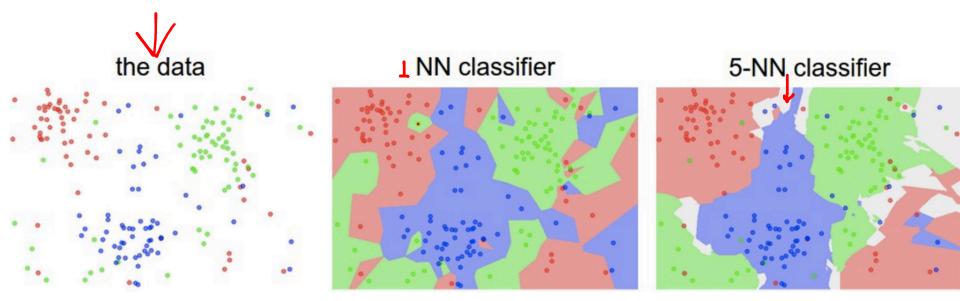


Effects of scaling

- Some components of the vector with large values may influence the classification more than others
- Normalize vectors
 - x_{ij} value for the *i*th sample and *j*th feature
 - μ_j mean of all x_{ij} for feature j
 - σ_j standard deviation of all x_{ij} over all input samples



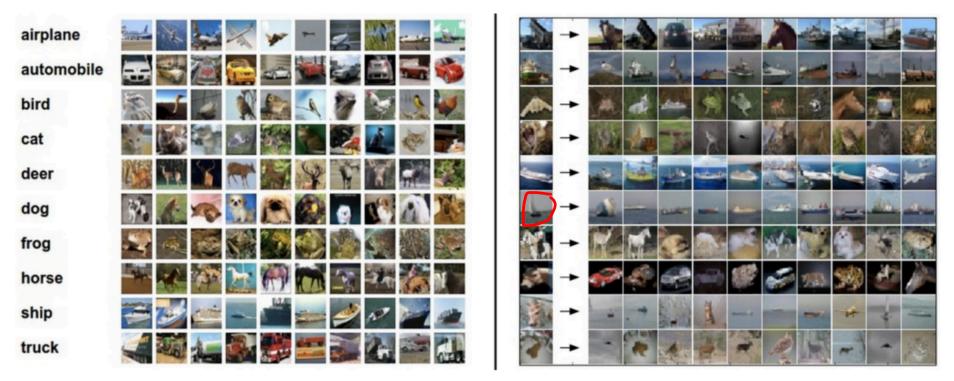
K-nearest neighbor classifier



- 2d points, and 3 classes. White regions are "ambiguous"
- Which classifier is more robust to *outliers*?

Credit: Andrej Karpathy, http://cs231n.github.io/classification/

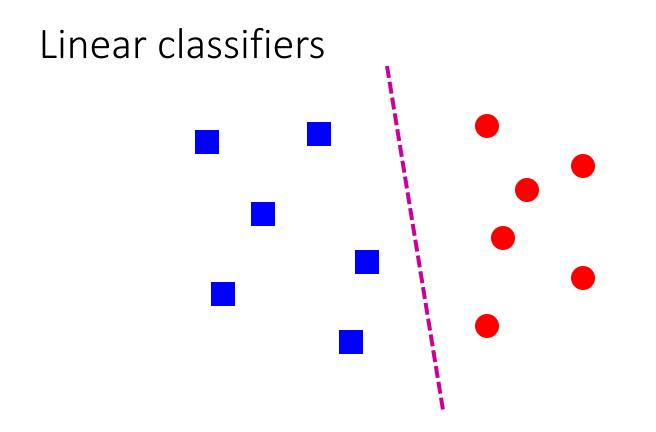
K-nearest neighbor classifier



Left: Example images from the CIFAR-10 dataset. Right: first column shows a few test images and next to each we show the top 10 nearest neighbors in the training set according to pixel-wise difference.

Summary

- Image classification: training with labels, testing
- Training and testing both require features
- Bag of visual words / vocabulary as a feature
 - Learning visual vocabulary using clustering to deal with quantization
 - Capturing local spatial ordering with pyramids
 - We will study k-means clustering later
- Classification
 - Nearest neighbor classification
 - Hyperparameters for K-NN (distance measure, k)
- Best practices for classification



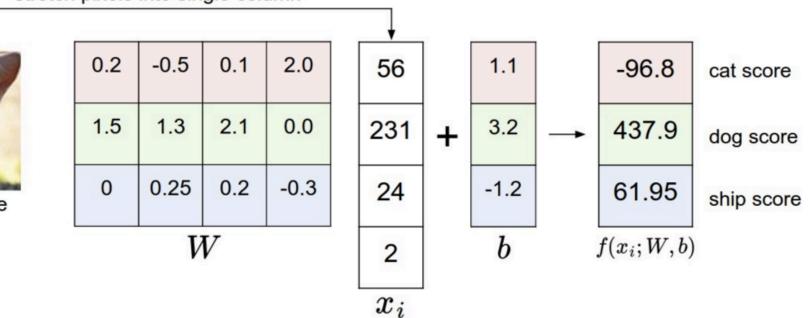
• Find a *linear function* to separate the classes:

 $f(\mathbf{x}) = sgn(\mathbf{w} \cdot \mathbf{x} + b)$

Visualizing linear classifiers

stretch pixels into single column

input image



Source: Andrej Karpathy, http://cs231n.github.io/linear-classify/

Nearest neighbor vs. linear classifiers

• NN pros:

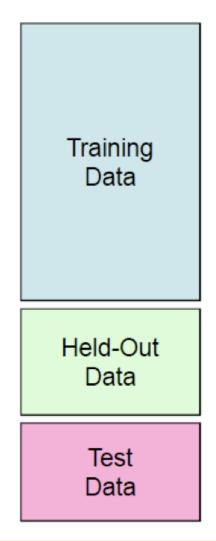
- Simple to implement
- Decision boundaries not necessarily linear
- Works for any number of classes
- Nonparametric method
- NN cons:
 - Need good distance function
 - Slow at test time
- Linear pros:
 - Low-dimensional *parametric* representation
 - Very fast at test time

• Linear cons:

- Works for two classes
- How to train the linear function?
- What if data is not linearly separable?

Best practices for training classifiers

- Goal: obtain a classifier with good generalization or performance on never before seen data
- 1. Learn *parameters* on the *training set*
- 2. Tune *hyperparameters* (implementation choices) on the *held out validation set*
- 3. Evaluate performance on the *test set*
 - Crucial: do not peek at the test set when iterating steps 1 and 2!



What's the big deal?

Baidu admits cheating in international supercomputer competition

Baidu recently apologised for violating the rules of an international supercomputer test in May, when the Chinese search engine giant claimed to beat both Google and Microsoft on the ImageNet image-recognition test.

By Cyrus Lee | June 10, 2015 -- 00:15 GMT (17:15 PDT) | Topic: China

TECHNOLOGY

The New York Times

Computer Scientists Are Astir After Baidu Team Is Barred From A.I. Competition

By JOHN MARKOFF JUNE 3, 2015

Baidu caught gaming recent supercomputer performance test

by Andrew Tarantola | @terrortola | June 3rd 2015 At 11:09pm

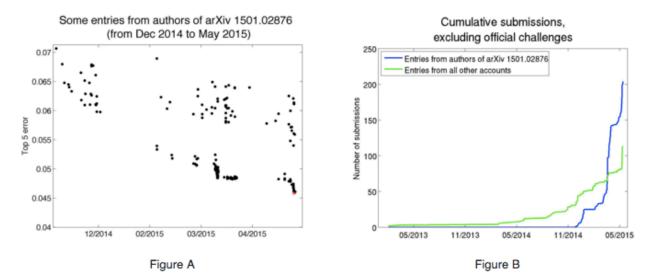
IM GENET Large Scale Visual Recognition Challenge (ILSVRC)

Date: June 2, 2015

Dear ILSVRC community,

This is a follow up to the announcement on May 19, 2015 with some more details and the status of the test server.

During the period of November 28th, 2014 to May 13th, 2015, there were at least 30 accounts used by a team from Baidu to submit to the test server at least 200 times, far exceeding the specified limit of two submissions per week. This includes short periods of very high usage, for example with more than 40 submissions over 5 days from March 15th, 2015 to March 19th, 2015. Figure A below shows submissions from ImageNet accounts known to be associated with the team in question. Figure B shows a comparison to the activity from all other accounts.

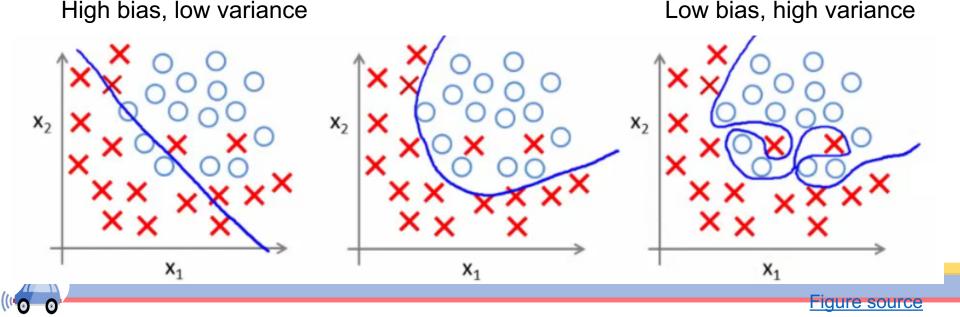


The results obtained during this period are reported in a <u>recent arXiv paper</u>. Because of the violation of the regulations of the test server, these results may not be directly comparable to results obtained and reported by other teams. To make this clear, by exploiting the ability to test many slightly different solutions on the test server it is possible to 1) select the best out of a set of very similar solutions based on test performance and achieve a small but potentially significant advantage and 2) choose methods for further research and development based directly on the test data instead of using only the training and validation data for such choices.

http://www.image-net.org/challenges/LSVRC/announcement-June-2-2015

Bias-variance tradeoff

- Prediction error of learning algorithms has two main components:
 - Bias: error due to simplifying model assumptions
 - Variance: error due to randomness of training set
- Bias-variance tradeoff can be controlled by turning "knobs" that determine model complexity



Underfitting and overfitting

- Underfitting: training and test error are both high
 - Model does an equally poor job on the training and the test set
 - The model is too "simple" to represent the data or the model is not trained well
- Overfitting: Training error is *low* but test error is *high*
 - Model fits irrelevant characteristics (noise) in the training data
 - Model is too complex or amount of training data is insufficient

