4o

Principles of Safe Autonomy
Lecture 4: Perception, edge detection
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Perception

Programs for object
detection, lane
tracking, scene

understanding, etc.




Outline

» Linear filtering
 Edge detection
« Assumptions in simple safety model (read)
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Perception: EM to objects

Problem: Process electromagnetic radiation from
the environment to construct a model of the
world, so that the constructed model is close to
the real world
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Challenging for computers: millions of years of
evolution

Non-lonising Radiation

lll-defined problem: impossibility of defining

meaning “car”, “bicycle”, etc.




A practical perception pipeline in an AV
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This architecture from a slide from M. James
of Toyota Research Institute, North America



Recognition pipeline (more details in next lecture)

Trained weights (w)

!

Feature Features (x) Classification Scoresa
Extraction’,.- ~< (w'x)
— Scores per class
- Sao (select class based
S eo .on max or threshold)
.~~~ Handcrafted Features Learned Features  ~~<
(e.g. HOG) (e.g. CNN)

Towards Closing the Energy Gap Between HOG and CNN Features for Embedded Vision, Amr Suleiman, Yu-Hsin Chen, Joel Emer, Vivienne Sze
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Natural vision “pipeline”

LGN
-_— Bottom-up analysis path

- Top-down synthesis path
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The role of the primary visual cortex in higher level vision, Tai Sing Lee, David Mumford, Richard Romero, Victor A.F.Lamme
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Edge detection

Winter in Krakow photographed by Marcin Ryczek
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http://www.likecool.com/Winter_in_Krak_w_photographed_by_Marcin_Ryczek--Pic--Gear.html

Edge detection

« Goal: Ildentify sudden changes (discontinuities)

In an image

* Intuitively, edges carry most of the semantic
and shape information from the image

4o

« E.g., Lanes, traffic signs, cars

Ao~

surface normal discontinuity

depth discontinuity

surface color discontinuity

illumination discontinuity

Sources: D. Lowe and S. Seitz



4o

Edge detection

* An edge is a place of rapid change in the
iImage intensity function

image

intensity function
(along horizontal scanline)

first derivative

\ |

edges correspond to
extrema of derivative




Derivatives with convolution

For 2D function f(x,y), the partial derivative w.r.t x is:

af(xay) :lirnf(x_l_gay)_f(x:y)

ax e—0 E

For discrete data, we can approximate using finite differences:

o (xy)  JE+Ly)—f(xy)
ox |

To implement the above as convolution, what would be
the associated filter?

6 : Source: K. Grauman
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Convolution

convolution
mask g[,]

JEIE

Output or convolved image
f=g*img
fli,j] = -1.img[i,j-_1] + 1. img[i,j]

\
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Imageli,j]

[1.1]

[1.2]
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Partial derivatives of an image

Which shows changes with respect to x?




Finite difference filters

Other approximations of derivative filters exist:

| |0 1| [T 1] 1
Prewitt: M, = 0]1 y M, = 0] o] o
T ExENEN
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Sobel: M, = [-2]0]2 s M, = 0] 0] 0
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(( o Source: K. Grauman
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https://create.kahoot.it/share/4a8862f8-402c-42f9-bb61-2d63336a1171

Image gradient
The gradient of an image: V[ = [giv gi]

il L 5, v =[50
= S

The gradient points in the direction of most rapid increase
In intensity
How does this direction relate to the direction of the edge?

The gradient direction is given by 6 = tan—1 (af/ )

The edge strength is given by the gradient magnitude (norm)

VAl = /(D% + (33

Source: Steve Seitz



Effects of noise

Consider a single row or column of the image

.....................................................
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Where is the edge?

6 o Source: S. Seitz
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Solution: smooth first

f*g

d
a(f*g)

Sigma = 50
©
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To find edges, look for peaks in i(f*g)
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Derivative theorem of convolution

« Differentiation is convolution, and convolution

. o] d
IS associative: 2 (frg)=fr—g
dx dx

This saves us one operation:

Sigma = 50

.................................................

~
Signal

1 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

..............................................................................................

oQ
Kernel

I I I I ! ! I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

*
oQ
Convolution

Source: S. Seitz
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Derivative of Gaussian filters

2

x-direction y-dii'ection

Which one finds horizontal/vertical edges?
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Derivative of Gaussian filters
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x-direction y—difection

Are these filters separable?




Recall: Separability of the Gaussian filter

Xty
G, (x — 1 202
oX.y) = S5 eXp ~
1 X2 1 .V2
5 2 ~ A2
= exp 20 exp 20
( 270 P ) V 2To P

The 2D Gaussian can be expressed as the product of two
functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Source: D "Lowe



Scale of Gaussian derivative filter

1 pixel 3 pixels [ pixels

Smoothed derivative removes noise, but blurs edge
Also finds edges at different “scales”




Review: Smoothing vs. derivative filters

Smoothing filters

« Gaussian: remove “high-frequency” components;
“low-pass” filter

« Can the values of a smoothing filter be negative?
« What should the values sum to?

— One: constant regions are not affected by the filter

Derivative filters
« Derivatives of Gaussian -
« Can the values of a derivative filter be negative?

* What should the values sum to?
— Zero: no response in constant regions
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Building an edge detector

Original Image Edge Image

original image final output

norm of the gradient ||Vf| = \/( ) +(‘§ )
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Building an edge detector

Thresholded norm of the gradient

4o

How to turn
these thick
regions of
the gradient
Into
curves?
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Non-maximum suppression

Another problem:
pixels along this
edge didn’t survive
thresholding



Hysteresis thresholding

Use a high threshold to start edge curves, and a
low threshold to continue them.

6 O Source: Steve Seitz



Hysteresis thresholding

high threshold
(strong edges)

4o

=

original image

——— e —

low threshold
(weak edges)

hysteresis threshold

Source: L. Fei-Fei



Recap: Canny edge detector

1. Compute x and y gradient images J. Canny, A Computational Approach To Edge

2. Find magnitude and orientation of Detection, IEEE Trans. Pattern Analysis and
gradient Machine Intelligence, 8:679-714, 1986.

3. Non-maximum suppression:

*  Thin wide “ridges” down to single
pixel width

4. Linking and thresholding

(hySte resis ) . A Computational Approach to Edge Detection
[ ] Defi ne tWO th reShOIdS: IOW’ hig h JOHN CANNY, MEMBER, IEEE

.
i Use the hlgh threshold to start
detection. The success of the approach depends on the definition of a
comprehensive set of goals for the computation of edge points. These P _
e g e C u rve S a n e OW reS O goals must be precise enough to delimit the desired behavior of the

detector while making minimal assumptions about the form of the so-
. lution. We define detection and localization criteria for a class of edges,
and present mathematical forms for these criteria as functionals on the
to continue them e e o s o sttt o e
that the detector has only one response to a single edge. We use the
criteria in numerical optimization to derive detectors for several com-
mon image features, including step edges. On specializing the analysis
to step edges, we find that there is a natural uncertainty principle be-
. - tween detection and localization performance, which are the two main
O e n CV c ann ( lma e th 1 th2 goals. With this principle we derive a single operator shape which is
- 1 4 1 4 optimal at any scale. The optimal detector has a simple approximate
implementation in which edges are marked at maxima in gradient mag-
nitude of a Gaussian-smoothed image. We extend this simple detector
using operators of several widths to cope with different signal-to-noise y
ratios in the image. We present a general method, called feature syn- >
thesis, for the e io-conrse integration of information from operators John E. Canny
at different scales. Finally we show that step edge detector perfor-
mance improves considerably as the operator point spread function is
extended along the edge. This detection scheme uses several elongated
operators at each point, and the directional operator outputs are in-
tegrated with the gradient maximum detector.
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http://ieeexplore.ieee.org/document/4767851/
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Summary

Convolution as translation invariant linear
operations on signals and images

Definition of convolution and its properties
(associativity, commutativity, etc.)

Artifacts of of hard-edge kernels

Gaussian kernel, its definition and properties
(separability)

Median filter, sharpening

Derivatives as convolution (Sobel, etc.)



Outline

» Linear filtering
* Edge detection
* Assumptions in simple safety model (read)




Sharpening

What does blurring take away?




Unsharp mask filter

fra(f-frg)=(+a)f ~af*g=f*((+a)e-g)

o | T

image blurred unit impulse
image (identity)
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unit impulse

Gaussian Laplacian of Gaussian
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