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Plan for today

Key concepts in assuring safety
Models, assumptions, requirements, invariants, counter-examples

What would it take to assure safety of an autonomous system?
Create a model of a simple safety scenario
|dentify the requirements and assumptions

Analyze model to show that it meets the requirements under the
assumptions



A “simple” safety scenario |

A car moving down a straight road has to detect any
pedestrian in front of it and stop before it collides.

Automatic Emergency Braking

Figure 1

wuw google.com » patents
US20110168504A1 - Emergency braking system - Google ...

Jump to Patent citations (18) - US4053026A * 1975-12-09 1977-10-11 Nissan Motor Co., Ltd. Logic
circuit for an automatic braking system for a motor

I I 1 r T ] ( E r] www google.com» patens.
O a r I V I a re q u I re US5170858A - Automatic braking apparatus with ultrasonic ...

An automatic braking apparatus includes: an ultrasonic wave emitter provided in a .. Info: Patent
citations (13); Cited by (7); Legal events; Similar documents; Priority and ... US652391281 2003-02-25
Autonomous emergency braking system.

Wi google.com » patents

DE102004030994A1 - Brake assistant for motor vehicles ...

B60T7/22 Brake-action iitiating means for automatic intiation; for niation not ... Info: Patent citations
(3); Cited by (9); Legal events; Similar documents ... data from the environment sensor and then
automatically initates emergency braking.

www.google.com.pg » patents.
Braking control system for vehicle - Google Patents

An automatic emergency braking system for a vehicle includes a forward viewing camera and a
control. At least in part responsive to processing of captured ..

wunwautomotiveworld.com » news-releases » toyola-ip... ©
Toyota IP Solutions and IUPUI issue first commercial license ...

Jul 22,2020 - .. and validation of automotive automatic emergency braking (AEB) ... and Director of
Patent Licensing for Toyota Motor North America. “We are

m> oarticle » p -
Patent Application Titled “Multlple Stage Collision Avoidance ..

Apr 3, 2019 - No assignee for this patent application has been made. .. Automatic emergency braking
systems willsimilarly, also, Soon be required for tractor







MPO: Simulate model for testing
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A model as a program

1 Simplecar(Dsensea V0, 10, L20, ab)/ 20 > T10
initially: 1 = z10,v1 = vo, £2 = 20,2 =0
3 s=0,ttzmer=20
it =

5 @——’// no baclcxhgu]b

if v1 > qp
7 U1 =@
ttimer = timer + 1
9 else
V1 = 0

11 x1 = 21 +—61




1 SimpleCar(Djsense, vo, 10, £20, G5), 20 > Z10
. . . m
1n1t1a11y: T1 = T19,V1 = Vo, T3 = T20,v2 = 0
3 s=0,ttzmer =0

Behaviors of the system model| -, #zre <
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» An execution of the model captures a single run or behavior
» An execution a is a sequence x(0), x(1), ... such that ” ) 1

» x(0) satisfies the initially clause;;and—
» for each t, x(t) goes to or transitions to x(t + 1) by executing SimpleCar

» x(t) is the complete state of the model at time t; x(t). v, is the velocity at time t
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“All models are wrong, some are usefu




THE

Wrong and useless models BLACK SWAN
—

=

The Tmpact of the

HICHLY IMPROBABLE

Nassim Nicholas Taleb

FIGURE 4. A turkey using “evidence”; unaware of Thanksgiving, it is making “rigorous” future
projections based on the past. Credit: George Nasr
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l[dentifying requirements: Define safety

A requirement is a precise statement about what the behaviors of the
system should and should not do.

An invariant is a requirement that something always holds. Examples:
“Car always remains far from the pedestrian”
“Drones never cross over to above 400ft in the airspace”

“A fully attentive safety driver should always be present during autonomy
experiments”
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How to prove that our model satisties the

requirement?

An invariant is a requirement that something always holds.
Examples:
“Car always remains far from the pedestrian”

Invariant 1. For all x4q, X290, Vg, Dsense, @p and for all t x(t).d > 0
r -

Does this invariant hold? Why or why not?

D = %Zo - 9‘-'10 — 9@
Jense

q_}o - q«;a ’%IO t 6

A counter-example is an execution that violates a requirement

We will need to add some assumptions on model parameters
(X10, X20, Vo» Dsense, ap) for Invariant 1 to hold (Homework)

1 Simplecar(Dsensea V0, 10, L20, ab)/ 20 > T10
initially: TT—TOTT — 00, L2 — ZL20,V2 = 0
3 s=0,tzmer=20
if d < Dgense
5 s8=1
if vy > ap
7 V1 =1 —Qp
timer = timer + 1
9 else
V1 = 0
1121 =21 +7v1

C/(/ =Ky~ X
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1 Simplecar(Dsensea V0, 10, L20, ab)/ T20 > T10
initially: T1 = x10,V1 = Vo, T2 = To9,V2 =0
3 s=0,timer=20
if d < Dsense

Another invariant S

if’UlZab
7 V1 = V1 — Qp
timer = timer + 1
) , (21 9 else
Invariant 2. timer +— < vy/a, H v =0
ab 111 =21 +11

—
C—

Invariant 2. For all x1¢, X209, Vo, Dsense, @p and for all t, <
x(t).v1
ap

x(t).timer + < vo/a

e

How can we prove this invariant?
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1 SiW(Dsense’ Vo, T10, 20, ab)/ T20 > Z10
initially: T] = T10,V1 = Vo, Ty = T20,V2 =0
3 s=0,ttmer=20
if d < Dsense
5 s=1
if (%] Z ap
7 V1 =01 —Qp
timer = timer + 1
9 else
V1 = 0

Invariant 2. For all X10,X20, Vo, DSBTLS@' ap and for all t, i

. x(t).vq R
x(t).timer + o < vo/ap 5 P M

Proof. Fix arbitrary X419, X290, Vo, Dsenser Qb - 2
o U= "

x(

t).v
)V < Uo/ab
Ap

We have to show thatVt € N, x(t). timer +

Use induction!
Recall, to show V t € N, P(t) it suffices to show that
P(0) and P(t) = P(t+ 1) R
Here, P(x(0)) and P(x(t)) = P(x(t + 1))
P(x(0))and P(x(t)) = P(SimpleCar(x(t)))
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Writing the model more explicitly

1 Simplecar(Dsensea V0, 10, 220, ab)/ T20 > 10
initially: x (0) = 210, V1 (0) = o, :UQ(O) = 90, ’02(0) =0
3 s(0) =0, timer(0) =0

\\ d(t) = z2(t) — z1(¢)
1 SimpIeCar(Dsense, V0o, 10, L20, ab), 20 > T10 f 5 if d(t) < Dsense <l
initially: T1 = T19,V1 = Vg, Ty = T20,V2 =0 [m
3 s=0,ttmer =0 7 ifvi(t) > ap é)
if d < Dyense 0+ 1) = vi(t) —a |
E 9 Tmer = timer(t) + 1
ifo; > ap else
7 w’) 11 vi(t+1)=0
Py | timer(t + 1) = timer(t)
9 else Lo EISE +1)=0
L = / 15 v(t+1) = v(t)
11 x1 =21 + v1 timner(t +1) = tzmer (Q

l(fl(H 1) = z,(t) + vy

TTT




Proof (continued)

x(t).vq

ap

x(t).timer + < vo/ay

Proof (continued).
Base case. P(x(0))
x(0).timer + 0,

ap
=0+ <
ap

Induction. P(;(t)) = P(SimpleCar(x(t)))

Three cases to consider

d> Dsense @
d < Dsense A (%1 > ap

d < Dsense A (%1 < ap
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1 SimpIeCar(Dsense, V0, £10, £20, ab), T20 > T10
initially: 1 (0) = T10,V1 (0) = Uo,wz(O) = I90, 'UQ(C
3 s(0) =0,timer(0) =0
d(t) = z2(t) — x1(t)
=2 5 if d(t) < Diense
st+1)=1
7 ifvi(t) > ap
@ vi(t+1) =v1(t) — ap
?, timer(t + 1) tzmer(t) +1
else

@ 1 i vi(t+1)=0
timer(t + 1) = timer(t)
13 else
s(t+1)=0

@ 15 v(t+1) = v(t)
timer(t + 1) = timer(t)
17 z1(t + 1) = z1(t) + i (t)



Proof (continued)

x(t).timer + v o Vo/ap
Proof (continued).
Base case. P(x(0))
x(0). timer + XO)vs_ g, Z—Z < Z—‘;
Induction. Assume P(x(t)), i.e., x(t).timer + O vo/ap
Three cases to consider )
d > Dsense:
x(t + 1).timer + X(E41)v =x(t).timer + x(:l)b-vl
dSDS;;;/\vlzabM T -

x(t+1).v4

x(t+ 1).timer + =x(t).timer + 1

—_—

d < Dsense A (%] < Qp
x(t+ 1).timer + He+l).os

4o

_|_

< vo/ap

x(t+1)vi—ap

ap

=x(t).timer + 0 < vy/a,

1 SimpIeCar(Dsense, V0, £10, £20, ab), T20 > T10
initially: 1 (0) = T10,V1 (0) = Uo,wz(O) = I90, 'UQ(C
3 s(0) =0,timer(0) =0
d(t) = za(t) — z1(t)
5 if d(t) < Dsense
st+1)=1
7 ifvi(t) > ap

vi(t+1) =v1(t) — ap
9 timer(t + 1) = timer(t) + 1

else
oI}

’Ul(t + 1) =0
13 else

timer(t + 1) = Timer(t)
Ol s(t+1)=0
\‘ 15

v(t+1) =u(t) G
17 z1(t + 1) = z1(t) + vy (t)

timer(t + 1) = timer(t) é/

< vo/ap

—_—



Remarks and takeaway messages from the exercise

Invariant 2 takes us close to proving safety of our model (Invariant 1)

We will need to add assumptions on the model to complete the proof P
(Homework)
The proof by induction shows a property of all behaviors of our model

The proof is conceptually simple, but can quickly get tedious and error prone S
Verification tools like Z3, Dafny, PVS, CoQ, automate this

| _ CaV
More on this later in the course | %‘\W‘V\} oroof that 4 meet
roo a meets

CPSmodel A ] R
_ Verification
. algorithm Counterexample
showing A violates
~

Requirements R
R
N \W"’l/ T

o



Proving safety (next time)

let us try Kahoot!



https://play.kahoot.it/v2/?quizId=af634e16-05e5-412d-9595-95965a0e5d5f

What are some of the baked-in assumptions in our model?

1 Simplecar(Dsensea V0, 10, L20, ab)/ 20 > T10
initially: 1 = z10,v1 = vo, £2 = 20,2 =0
3 s=0,ttzmer=20
if d S Dsense

5 8= |
if v1 > qp
7 V1 =V1 —Qp
timer = timer + 1
9 else
V1 = 0

1121 =21+ M

Qo



Baked-in Assumptions in our scenario

Perception.
Sensor detects obstacle iff distance d <

DSQTLSQ
very idealized

Pedestrian is known to be moving with
constant velocity from initial position. This will
be used in the safety analysis, but not in the
vehicle's automatic braking algorithm

No sensing-computation-actuation delay.

The time step in which d £ Dgppse becomes
smaller is exactly when the velocity starts to
decrease
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Baked-in Assumptions (continued)

Mechanical or Dynamical assumptions
Vehicle and pedestrian moving in 1-D lane.
Does not go backwards.
Perfect discrete kinematic model for velocity and acceleration.

Nature of time

Discrete steps. Each execution of the above function models
advancement of time by 1 step. If 1 step = 1 second, x;(t + 1) =

x1(t) + v1(t).1

We cannot talk about what happens between [t, t+1]
Atomic steps. 1 step = complete (atomic) execution of the program.
We cannot directly talk about the states visited after partial execution of

program

. // B(pC’ TS)
....... ‘___."""
Perte 1 >
|, {pi ti)}
\
\
X, U, to
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Summary

An example of an inductive proof for safety verification of a discrete
time model

Discrete time model: states, initial states, transition function

Requirements, invariants, e.g., safety

Counter-examples

Detailed discussion of baked-in assumptions and discovered
assumptions



