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Plan for today
▶Key concepts in assuring safety

▶ Models, assumptions, requirements, invariants, counter-examples

▶What would it take to assure safety of an autonomous system? 
1. Create a model of a simple safety scenario
2. Identify the requirements and assumptions
3. Analyze model to show that it meets the requirements under the 

assumptions



A “simple” safety scenario

A car moving down a straight road has to detect any 
pedestrian in front of it and stop before it collides.

Automatic Emergency Braking

Not a trivial requirement





MP0: Simulate model for testing



Our model



A model as a program



Behaviors of the system model

▶ An execution of the model captures a single run or behavior
▶ An execution 𝛼 is a sequence 𝒙 𝟎 , 𝒙 𝟏 ,… such that

▶ 𝒙 𝟎 satisfies the initially clause, and
▶ for each t, 𝒙 𝒕 goes to or transitions to 𝒙 𝒕 + 𝟏 by executing SimpleCar

▶ 𝒙 𝒕 is the complete state of the model at time t; 𝒙 𝑡 . 𝑣! is the velocity at time t



“All models are wrong, some are useful.”



Wrong and useless models



Identifying requirements: Define safety

▶A requirement is a precise statement about what the behaviors of the 
system should and should not do.

▶An invariant is a requirement that something always holds. Examples:
▶ “Car always remains far from the pedestrian”
▶ “Drones never cross over to above 400ft in the airspace”
▶ “A fully attentive safety driver should always be present during autonomy 

experiments” 



How to prove that our model satisfies the 
requirement? 
▶ An invariant is a requirement that something always holds. 

Examples:
▶ “Car always remains far from the pedestrian”
▶ Invariant 1. For all  𝑥!", 𝑥#", 𝑣", 𝐷$%&$%, 𝑎' and for all t 𝒙(𝑡). 𝑑 > 0

▶ Does this invariant hold? Why or why not? 

▶ A counter-example is an execution that violates a requirement
▶ We will need to add some assumptions on model parameters 

(𝑥!", 𝑥#", 𝑣", 𝐷$%&$% , 𝑎') for Invariant 1 to hold (Homework)



Another invariant

▶ Invariant 2. 𝑡𝑖𝑚𝑒𝑟 + +&
,'
≤ 𝑣-/𝑎.

▶ Invariant 2. For all  𝑥/-, 𝑥0-, 𝑣-, 𝐷12312 , 𝑎. and for all t,

𝒙(𝑡). 𝑡𝑖𝑚𝑒𝑟 + 𝒙(5).+&
,'

≤ 𝑣-/𝑎.

▶How can we prove this invariant? 



▶ Invariant 2. For all  𝑥./, 𝑥0/, 𝑣/, 𝐷12312 , 𝑎4 and for all t,

𝒙(𝑡). 𝑡𝑖𝑚𝑒𝑟 + 𝒙(5).6(
7)

≤ 𝑣//𝑎4
▶Proof. Fix arbitrary 𝑥./, 𝑥0/, 𝑣/, 𝐷12312 , 𝑎4. 

▶We have to show that ∀ 𝑡 ∈ ℕ, 𝒙(𝑡). 𝑡𝑖𝑚𝑒𝑟 + 𝒙(5).6(
7)

≤ 𝑣//𝑎4
▶Use induction!

▶ Recall, to show ∀ 𝑡 ∈ ℕ, 𝑃(𝑡) it suffices to show that 
▶ 𝑃(0) and 𝑃 𝑡 ⇒ 𝑃(𝑡 + 1)
▶ Here, 𝑃(𝒙(0)) and 𝑃 𝒙(𝑡) ⇒ 𝑃(𝒙(𝑡 + 1))
▶ 𝑃(𝒙(0)) and 𝑃 𝒙(𝑡) ⇒ 𝑃(SimpleCar(𝒙(𝑡)))



Writing the model more explicitly



Proof (continued)
▶ Invariant 2. For all  𝑥!", 𝑥#", 𝑣", 𝐷$%&$%, 𝑎' and for all t,

𝒙(𝑡). 𝑡𝑖𝑚𝑒𝑟 + 𝒙(*).-(
.)

≤ 𝑣"/𝑎'
▶ Proof (continued). 
▶ Base case. 𝑃(𝒙(0))

▶ 𝒙(0). 𝑡𝑖𝑚𝑒𝑟 + 𝒙($).'!
("

▶ = 0 + '#
("
≤ '#

("
▶ Induction. 𝑃 𝒙(𝑡) ⇒ 𝑃(SimpleCar(𝒙(𝑡)))

▶ Three cases to consider
▶ 𝑑 > 𝐷)*+)*
▶ 𝑑 ≤ 𝐷)*+)* ∧ 𝑣! ≥ 𝑎,
▶ 𝑑 ≤ 𝐷)*+)* ∧ 𝑣! < 𝑎,



Proof (continued)
▶ Invariant 2. For all  𝑥!$, 𝑥-$, 𝑣$, 𝐷)*+)*, 𝑎, and for all t,

𝒙(𝑡). 𝑡𝑖𝑚𝑒𝑟 + 𝒙(.).'!
("

≤ 𝑣$/𝑎,

▶ Proof (continued). 

▶ Base case. 𝑃(𝒙(0))
▶ 𝒙 0 . 𝑡𝑖𝑚𝑒𝑟 + 𝒙 $ .'!

("
= 0 + '#

("
≤ '#

("

▶ Induction. Assume 𝑃 𝒙(𝑡) , i.e., 𝒙(𝑡). 𝑡𝑖𝑚𝑒𝑟 + 𝒙(.).'!
("

≤ 𝑣$/𝑎,
▶ Three cases to consider

𝑑 > 𝐷)*+)*:
𝒙(𝑡 + 1). 𝑡𝑖𝑚𝑒𝑟 + 𝒙(./!).'!

("
=	𝒙 𝑡 . 𝑡𝑖𝑚𝑒𝑟 + 𝒙 . .'!

("
≤ 𝑣$/𝑎,

𝑑 ≤ 𝐷)*+)* ∧ 𝑣! ≥ 𝑎,
𝒙(𝑡 + 1). 𝑡𝑖𝑚𝑒𝑟 + 𝒙(./!).'!

("
=	𝒙 𝑡 . 𝑡𝑖𝑚𝑒𝑟 + 1 + 𝒙 ./! .'!0("

("
≤ 𝑣$/𝑎,

𝑑 ≤ 𝐷)*+)* ∧ 𝑣! < 𝑎,
𝒙(𝑡 + 1). 𝑡𝑖𝑚𝑒𝑟 + 𝒙(./!).'!

("
=	𝒙 𝑡 . 𝑡𝑖𝑚𝑒𝑟 + 0 ≤ 𝑣$/𝑎,



Remarks and takeaway messages from the exercise

▶ Invariant 2 takes us close to proving safety of our model (Invariant 1) 
▶ We will need to add assumptions on the model to complete the proof 

(Homework)
▶ The proof by induction shows a property of all behaviors of our model

▶ The proof is conceptually simple, but can quickly get tedious and error prone
▶ Verification tools like Z3, Dafny, PVS, CoQ, automate this
▶ More on this later in the course



Proving safety (next time)

let us try Kahoot!

https://play.kahoot.it/v2/?quizId=af634e16-05e5-412d-9595-95965a0e5d5f


What are some of the baked-in assumptions in our model? 



Baked-in Assumptions in our scenario

▶Perception. 
▶ Sensor detects obstacle iff distance 𝑑 ≤
𝐷$%&$%

▶ very idealized 
▶ Pedestrian is known to be moving with 

constant velocity from initial position. This will 
be used in the safety analysis, but not in the 
vehicle's automatic braking algorithm

▶No sensing-computation-actuation delay. 
▶ The time step in which 𝑑 ≤ 𝐷$%&$% becomes 

smaller is exactly when the velocity starts to 
decrease



Baked-in Assumptions (continued)

▶Mechanical or Dynamical assumptions
▶ Vehicle and pedestrian moving in 1-D lane.
▶ Does not go backwards.
▶ Perfect discrete kinematic model for velocity and acceleration.

▶Nature of time
▶ Discrete steps. Each execution of the above function models 

advancement of time by 1 step. If 1 step = 1 second, 𝑥! 𝑡 + 1 =
𝑥! 𝑡 + 𝑣! 𝑡 . 1
▶ We cannot talk about what happens between [t, t+1] 

▶ Atomic steps. 1 step = complete (atomic) execution of the program. 
▶ We cannot directly talk about the states visited after partial execution of 

program

{⟨#$, &$⟩}

{ℓ$}

#*, &*

+, ,, &-

.(#*, 01)



Summary

▶An example of an inductive proof for safety verification of a discrete 
time model
▶ Discrete time model: states, initial states, transition function
▶ Requirements, invariants, e.g., safety 
▶ Counter-examples

▶Detailed discussion of baked-in assumptions and discovered 
assumptions


