
ECE 498SM: Principles of safe autonomy Spring 2020

Written by: Yangge Li, Aamir Hasan, Sayan Mitra MP0: Safety Verification

Website Due Date: 9/11/20

1 Introduction

Welcome! In this first assignment, you get to practice an invariance proof, play with the GAZEBO simulator,
and explore the gaps between simulations and analysis.

In part one (Section 2), you will use the inductive method from Lecture 2 to prove safety of the Auto-
matic Emergency Braking scenario. You will need to show that, under some assumptions, the system is
indeed safe, i.e., the vehicle will never hit the pedestrian. In part two (Section 3), you will work with a
GAZEBO model of the scenario and compare the simulations with the invariant and the assumptions in
part one.

For part one, you will individually submit the solution to Problems 1-4 in one file MP0_1_netid.pdf.
For part two, your group will need to submit a single file MP0_2_groupnumber.pdf with the solution
to Problems 5-8. Name all the group members and cite any external resources you may have used in your
solutions. More details for submission are given in Section 4. All the regulations for academic integrity and
plagiarism spelled out in the student code apply.

Learning objectives

• Know and use inductive method for proving invariants

• Get introduced to ROS and GAZEBO

• Understand gaps between simulation model and mathematical analysis model

System requirements

• Ubuntu 16.04

• ROS Kinetic

• GAZEBO 9

• ros-kinetic-ackermann-msgs

2 Safety Analysis of Automatic Emergency Braking

In Lecture 2, we defined an explicit model of scenario involving a vehicle and a pedestrian as shown in
Figure 1. Review that model from the lecture and the notes posted on the website. Recall that x1 and the
velocity v1 of our vehicle are state variables. So are the position x2 and the velocity v2 of the pedestrian. We
are using the convention that d(t) is the valuation of the state variable at time t. That is, d(0) = x2(0)−x1(0) =
x20 − x10, d(1) is the value of d after the program is executed once, d(2) after the program is executed a
second time, and so on. Similarly we could talk about x1(t), x1(t+ 1), etc. Dsense is a constant, which is the
sensing distance: if d(t) ≤ Dsense , the vehicle applies brakes.

1

https://publish.illinois.edu/safe-autonomy/
https://studentcode.illinois.edu/article1/part4/1-402/


Figure 1: Vehicle and pedestrian on a single lane. Left: Initial positions of the two are at x10 and x20,
respectively. Right: Vehicle brakes with constant deceleration ab once the pedestrian is detected by the
vehicle.

The model shown below is almost identical to the model from Lecture 2, except that we added a second
timer (timer2 ) which may prove to be handy.

SimpleCar (Dsense,v0,x10,x20,ab ) ,x20 > x10

I n i t i a l l y : x1(0) = x10, x2(0) = x20, v1(0) = v0, v2(0) = 0
s(0) = 0, timer(0) = 0, timer2(0) = 0
d(t) = x2(t)− x1(t)
i f d(t) ≤ Dsense

s(t+ 1) = 1
i f v1(t) ≥ ab

v1(t+ 1) = v1(t)− ab
timer(t+ 1) = timer(t) + 1
timer2(t+ 1) = timer2(t)

e l s e
v1(t+ 1) = 0
timer(t+ 1) = timer(t)
timer2(t+ 1) = timer2(t)

e l s e
s(t+ 1) = 0
v1(t+ 1) = v1(t)
timer(t+ 1) = timer(t)
timer2(t+ 1) = timer2(t) + 1

x1(t+ 1) = x1(t) + v1(t)

We will use the above model and we call it model A. In Lecture 2, we proved the invariant:

Invariant 1. Over all executions of A, timer(t) + v1(t)/ab ≤ v0/ab.

Problem 1 (5 points). Is 0 ≤ v(t) ≤ v0 an invariant ofA? No need to write a complete proof; a two sentence
argument would suffice.

Problem 2 (5 points). Is timer(t) ≤ v0/ab an invariant ofA? Explain why. Can we use the induction method

2



to prove this invariant directly from the model, i.e., without using any of the previous invariants?

Problem 3 (20 points). Identify additional assumptions on x20, x10, Dsense under which the system is safe.
That is, come up with an new invariant such that you can prove this invariant using the method of induc-
tion, the assumptions, and the previously proved invariants.

Hint: Try the assumptions: x20 − x10 ≥ Dsense and Dsense > v20/ab + 2v0 and the invariant d(t) > 0.

Problem 4 (20 points). Let us now introduce some delay in the sensing-computation-actuation pipeline,
say Treact. This could model cognitive delay of a human driver or processing delay in electronics and
computers. Assume we have exactly Treact seconds delay between the sensing of the pedestrian and the
application of the brakes. (a) Rewrite the new updated model with this delay. (b) How should we update
the assumptions in Problem 3 to maintain safety with the new model? Explain briefly; proof optional.

3 Testing Automatic Emergency Braking with Simulations

In this second part, you will run the vehicle and pedestrian scenario in GAZEBO simulator to cross-validate
your analysis and assumptions. Note that the simulated vehicle dynamics is based on but slightly different
from the SimpleCar model discussed above. One major difference is that for the SimpleCar model, the time
step is 1s but for the simulated vehicle, the time step is 0.01s. In later MPs, you will have the chance to play
around with more detailed vehicle models.

The vehicle starts from position (0, 0) and cruises down a straight road in the x-direction. A static pedestrian
is placed at position (60, 0) in the middle of the road. The vehicle uses LIDAR to detect the pedestrian and
once the pedestrian is detected (Dsense ≤ d(t)), the vehicle will start braking at constant deceleration user
provided. The vehicle will keep decelerating until its speed reaches 0.

You will try different values of the parameters Dsense, v0, ab, Treact and record corresponding d(t) after the
vehicle is stopped. You will need to compare the result from simulation with the invariants you proved in
previous part.

3.1 Documentation of Provided Files

The supporting code is available from this git repo. The provided code for MP0 is located in ./src/mp0/src
folder. In this assignment, you need not implement anything because we have given you a nifty little func-
tion that you have to run with different parameters. However, we strongly encourage you to read through
the code. You will learn ROS mechanics from this and you will have to write modules in later MPs and for
your project. The important files are:

controller.py This file contains the vehicle model and the controller to determine the movement of the
vehicle in the GAZEBO simulator. The vehicle will run straight at constant speed at while the pedestrian
is not detected. After the pedestrian is in the sensing distance from the vehicle, the vehicle will brake with
constant deceleration provided by the user. The calculated velocity will be sent to the vehicle model to
determine the next state of the vehicle. The result will be sent to GAZEBO simulator through ROS topic.
The controller is running at 100Hz, i.e. each simulation step is 0.01s.

lidarProcessing.py This file contains code to process LIDAR data. It will take raw point cloud data from
the simulated sensor and transform it into a bird’s eye view, which is then published through a ROS topic,
and can be further processed by other parts of the simulation. Detailed information about point cloud data
type and algorithm used to process data can be found here.

3

https://gitlab.engr.illinois.edu/GolfCar/mp0-release-20fa.git
http://ronny.rest/tutorials/module/pointclouds_01


positionDetector.py This file contains code that uses the bird’s eye view constructed from lidarProcessing.py
and detects the position of the pedestrian in the bird view image. The position of the pedestrian in the bird
eye view is then published through another ROS topic and can be further used by other parts of the system.
Detailed information about algorithm used can be found here.

safetyDector.py This file contains code that use the pedestrian position calculated from positionDetector
and compute the distance between LIDAR and the pedestrian. The distance calculated is compared with
sensing distance to determine if the vehicle should start braking.

main.py This file contain the main function of the MP. You can run the file with four parameters, --d_sense
is the sensing distance of the LIDAR Dsense, --v_0 is the initial velocity of the vehicle v0, --a_b is the de-
celeration rate ab and --t_react is cognitive delay for human driver Treact. Note that --d_sense should not
exceed 20. Therefore, you can run the vehicle using command

python main . py −−d_sense 15 −−v_0 5 −−a_b 5 −−t _ r e a c t 0 . 0 0

set_pos.py This is a utility function that allows you to set position of the vehicle model without restarting
the simulator. You can set the position of the vehicle using command

python set_pos . py −−x 0 −−y 0

3.2 Short GAZEBO Tutorial

The code for MP0 will come together inside the ROS workspace, which will also be used in later MPs. In
this MP, you will work with vehicle models in GAZEBO simulator using ROS. All 7 machines in our lab
(ECEB5072) have ROS and GAZEBO simulator installed in root directory, so there is no need to install them
again. However, when a user logs in to a machine the first time, he or she needs to set up some environment
variables. Copy and run the following two lines in the command console. Note that you only need to run
these commands once when you are using a new computer in lab.

echo " source /opt/ros/ k i n e t i c /setup . bash " >> ~/. bashrc
source ~/. bashrc

To run the simulator, you should first go to the root directory of the ROS workspace you downloaded from
git repository where you should see a src folder. The next step is to run command

catkin_make

in the folder. There should be no error during the execution of the command and when finished, you should
see two folders devel and build been generated.
The next step is to run command

source ./ devel/setup . bash

4

https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/hough_circle/hough_circle.html


in the root directory of the ROS workspace you downloaded. This command should be executed every
time before you try to run the simulator from a new terminal.
After all the previous setup steps are finished, you can start the simulator by running command

roslaunch mp0 mp0 . launch

You should be able to see two windows opened as shown in Figure 2 and 3.

Figure 2: The GAZEBO window. The vehicle is stopped before the pedestrian.

GAZEBO Window The window shown in Figure 2 is the GAZEBO simulator window. You should be
able to see the vehicle and pedestrian in the simulator window.

RVIZ Window The window shown in Figure 3 is the RVIZ window. RVIZ is a ROS graphical interface
that allows you to visualize ROS topics. In this MP, we will mainly use RVIZ to visualize LIDAR data from
the vehicle. In this MP, the RVIZ window is divided into 4 different sections.

The window on the right will show a visualization of the point cloud data from the LIDAR. You can see
that the has detected the pedestrian in front of the vehicle.

The window on the top left (Raw Image) is showing the video streaming from the camera on the vehi-
cle.

The window on the middle left (Birds Eye View - LIDAR) will show the raw bird view from the LIDAR
data. You can see a small white spot in the window as the detected pedestrian.

The window on the bottom left (Pedestrian Annotated) will show the relative position between the vehicle
and the detected pedestrian. The detected position of the pedestrian will be marked as red spot in the
window with an arrow connecting the LIDAR and the detected pedestrian.

The Birds Eye View - LIDAR and Pedestrian Annotated windows will show "No Image" when RVIZ is
opened since they are displaying topics published from MP0 code.

3.3 Simulation Problems: Zero Reaction Delay

Assume there is no reaction time. Therefore, the --t_react parameter will be set to default value 0 for
all the problems in this section. For this case, you can try different combinations of values for parameter
--d_sense, --v_0 and --a_b and observe final values of d(t) after the vehicle stopped.

5



Figure 3: The RIVZ window corresponds to the GAZEBO window in Figure 2.

Problem 5 (8 points). Record a video for one example execution of this scenario. The video should include
the GAZEBO window, the RVIZ window, and the terminal window that runs MP0 code. Provide a link to
the video and include the link in the report. In addition, plot the time versus state variables (x1(t), x2(t))
for this execution.

Problem 6 (20 points). Fix d_sense and a_b, and choose 10 different values for v_0. Try to choose interesting
values or “corner cases” that could make the system safe and unsafe.

(a) For each of these choices, plot the final value of d(t) vs your choice of v_0.

(b) Which choices satisfy the assumptions you identified in Problem 3 of part one? Do those executions
indeed turn out to be safe? If not why not?

(c) Are there choices that do not satisfy the assumptions in Problem 3, but yet turn out to be safe? If yes,
can you find such choices of v_0 and explain why do those choices exist?

6



3.4 Adding Reaction Delay

In this case, we will assume that there is an exact reaction time for the vehicle to start braking after the
vehicle detects the pedestrian as mentioned in 4. You can choose the amount of reaction time by setting the
--t_react parameter. For this case, you can try different combinations of values for parameter --d_sense,
--v_0, --a_b and --t_react and observe final values of d(t) after the vehicle stopped.

Problem 7 (8 points). Record a video for one example execution of this scenario. The video should include
the GAZEBO window, the RVIZ window, and the terminal window that runs MP0 code. Provide a link to
the video and include it in the report. In addition, plot the time versus state variables (x1(t), x2(t)) for this
execution.

Problem 8 (14 points). Fix d_sense, v_0 a_b, and choose 10 different t_react. Try to choose interesting values
or “corner cases” that could make the system safe and unsafe.

(a) For each of these choices, plot the final value of d(t) vs your choice of v_0.

(b) Which choices satisfy the assumptions you identified in Problem 4 of part one? Do those executions
indeed turn out to be safe?

(c) Are there choices that do not satisfy the assumptions in Problem 4, but yet turn out to be safe? Can you
find such choices of t_react?

4 Report and Submission

For Problems 1-4, each student should write a report that contains solutions for individually. You may. dis-
cuss the problems following the tenets of academic integrity and collaboration. This report should be sub-
mitted to gradescope individually to assignment MP0.1: Safety Analysis with filename MP0_1_netid.pdf.

For Problems 5-8, each group should write a report that contains the solutions, plots, and discussions. This
report should be submitted to gradescope per group to assignment MP0.2: Simulation-Based Testing with
filename MP0_2_groupnumber.pdf.

7


	1 Introduction
	2 Safety Analysis of Automatic Emergency Braking
	3 Testing Automatic Emergency Braking with Simulations
	3.1 Documentation of Provided Files
	3.2 Short GAZEBO Tutorial
	3.3 Simulation Problems: Zero Reaction Delay
	3.4 Adding Reaction Delay

	4 Report and Submission

