Principles of Safe Autonomy: Probabilistic Sensor Models

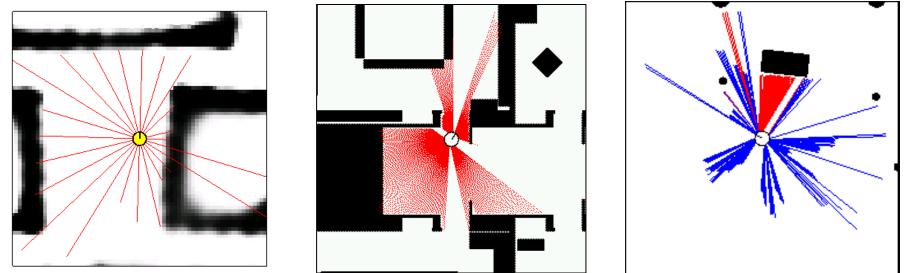
Joohyung Kim

Reference: Probabilistic Robotics by Sebastian Thrun, Wolfram Burgard, and Dieter Fox Slides: From the book's website

Sensors for Mobile Robots

- Contact sensors: Bumpers
- Internal sensors
 - Accelerometers (spring-mounted masses)
 - Gyroscopes (spinning mass, laser light)
 - Compasses, inclinometers (earth magnetic field, gravity)
- Proximity sensors
 - Sonar (time of flight)
 - Radar (phase and frequency)
 - Laser range-finders (triangulation, tof, phase)
 - Infrared (intensity)
- Visual sensors: Cameras
- Satellite-based sensors: GPS

Proximity Sensors



- The central task is to determine *P*(*z*/*x*), i.e., the probability of a measurement *z* given that the robot is at position *x*.
- **Question**: Where do the probabilities come from?
- Approach: Let's try to explain a measurement.

Beam-based Sensor Model

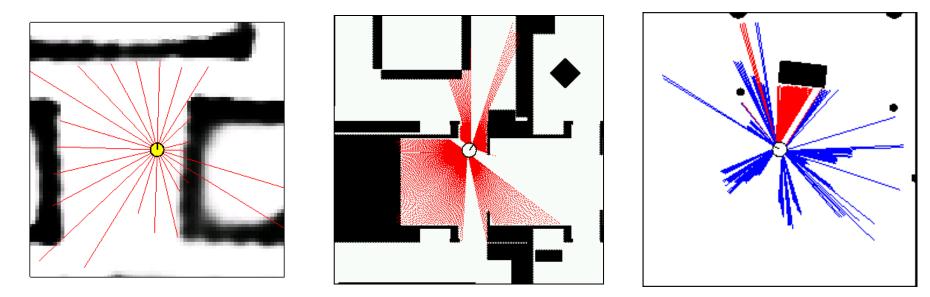
• Scan z consists of K measurements.

$$z = \{z_1, z_2, \dots, z_K\}$$

• Individual measurements are independent given the robot position.

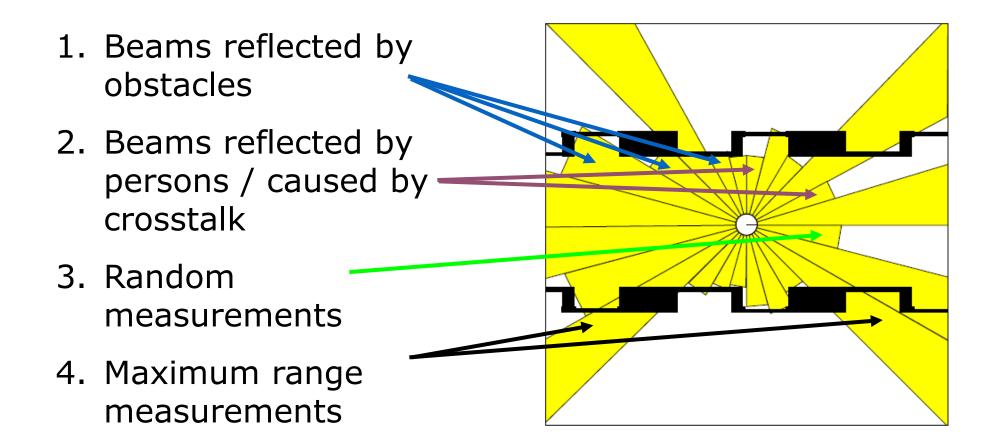
$$P(z \mid x, m) = \prod_{k=1}^{K} P(z_k \mid x, m)$$

Beam-based Sensor Model



$$P(z \mid x, m) = \prod_{k=1}^{K} P(z_k \mid x, m)$$

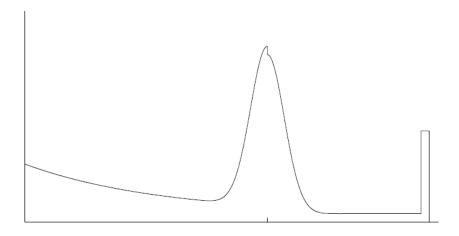
Typical Range Measurement Errors



Proximity Measurement

- Measurement can be caused by ...
 - a known obstacle.
 - cross-talk.
 - an unexpected obstacle (people, furniture, ...).
 - missing all obstacles (total reflection, glass, ...).
- Noise is due to uncertainty ...
 - in measuring distance to known obstacle.
 - in position of known obstacles.
 - in position of additional obstacles.
 - whether obstacle is missed.

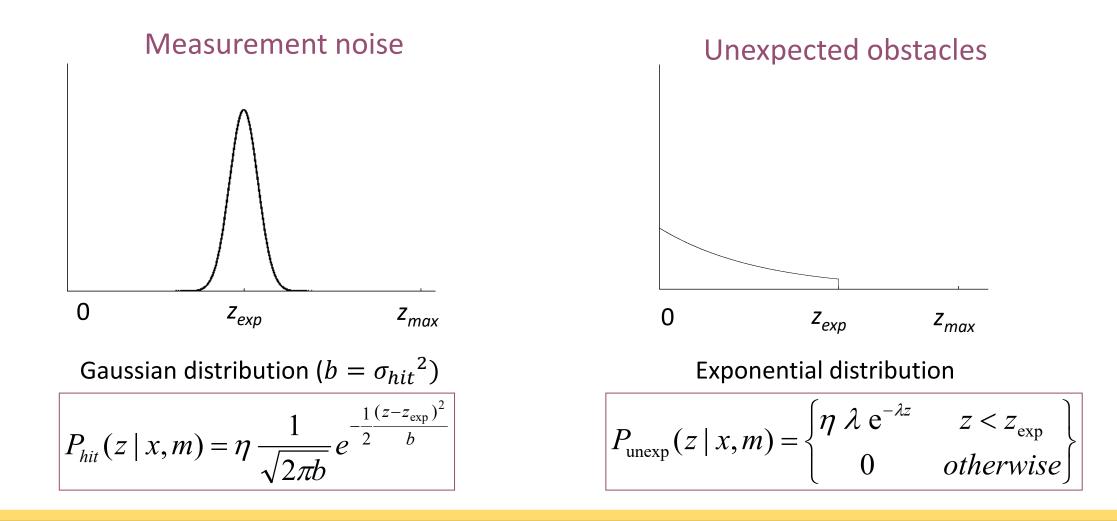
Resulting Mixture Density



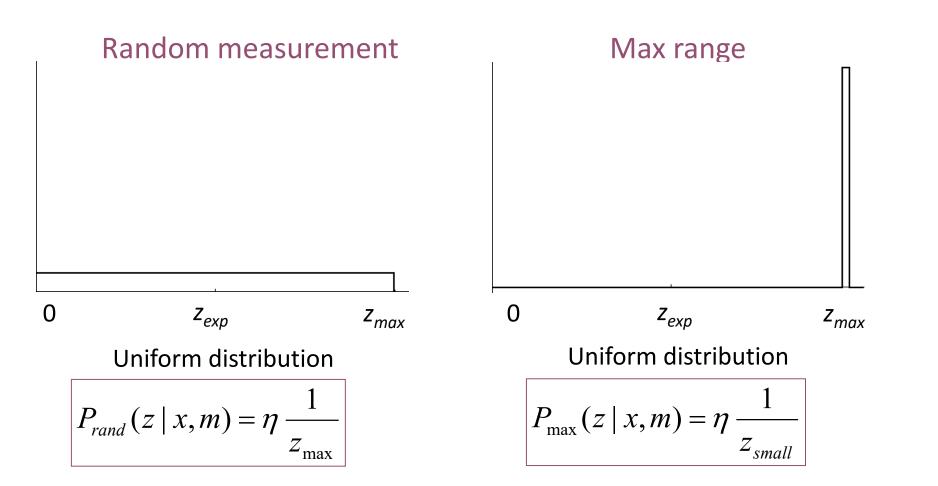
- Correct range with local measurement noise
- Unexpected objects
- Failures
- Random measurements

$$p(z_t^k | x_t, m) = \begin{pmatrix} z_{hit} \\ z_{short} \\ z_{max} \\ z_{rand} \end{pmatrix}^T \cdot \begin{pmatrix} p_{hit}(z_t^k | x_t, m) \\ p_{short}(z_t^k | x_t, m) \\ p_{max}(z_t^k | x_t, m) \\ p_{rand}(z_t^k | x_t, m) \end{pmatrix}$$

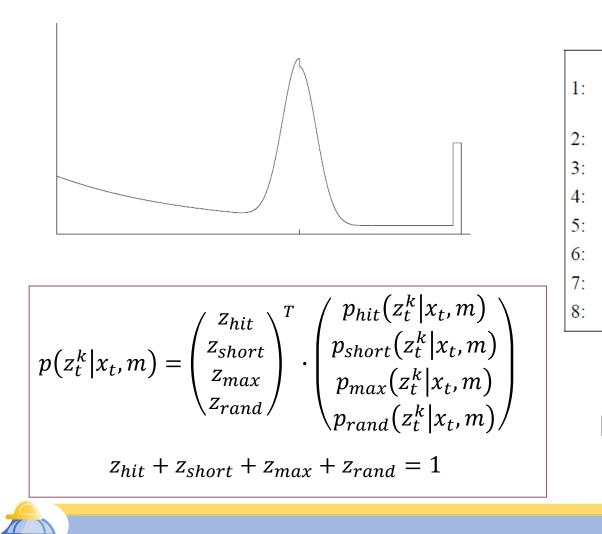
Beam-based Proximity Model



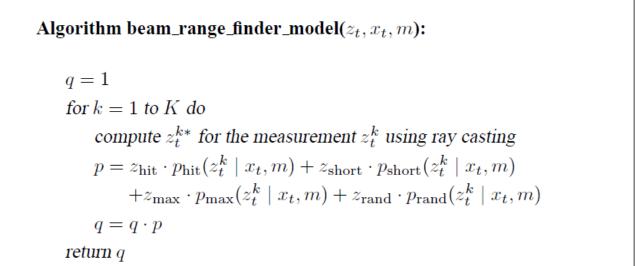
Beam-based Proximity Model



Resulting Mixture Density



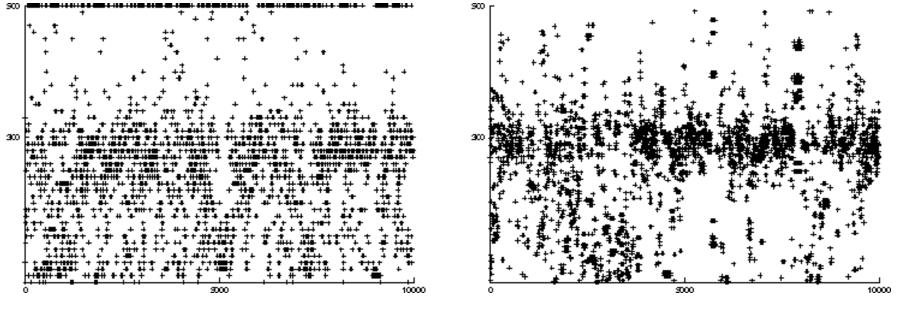
Computing the likelihood



How can we determine the model parameters?

Raw Sensor Data

Measured distances for expected distance of 300 cm.



Sonar

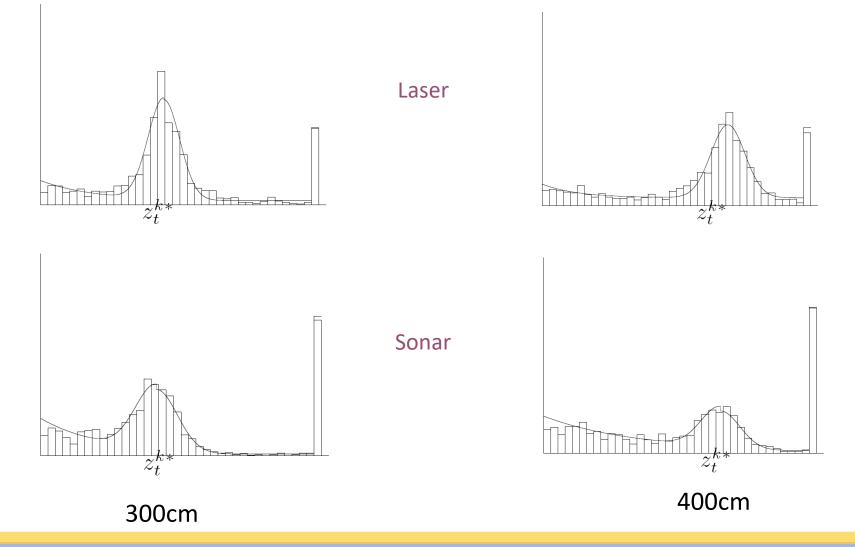
Laser

Estimation

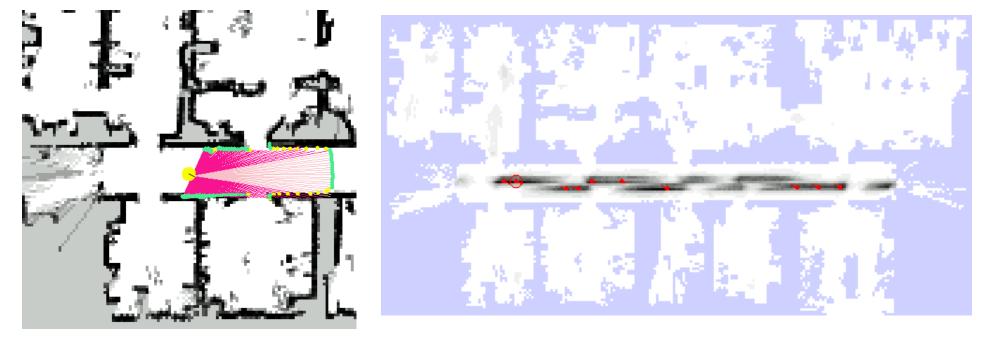
- Maximize log likelihood of the data $p(Z | X, m, \Theta)$
- Θ: all intrinsic parameters
 - z_{hit} , z_{short} , z_{max} , z_{rand} , and σ_{hit} , λ_{max}
- Line 3-9 : estimate auxiliary variables
- Line 10-15: estimate the intrinsic parameters

1:	Algorithm learn_intrinsic_parameters (Z, X, m):
2:	repeat until convergence criterion satisfied
3:	for all z_i in Z do
4:	$\eta = [p_{\text{hit}}(z_i \mid x_i, m) + p_{\text{short}}(z_i \mid x_i, m)]$
	$+ p_{\max}(z_i \mid x_i, m) + p_{rand}(z_i \mid x_i, m)]^{-1}$
5:	calculate z_i^*
6:	$e_{i,\text{hit}} = \eta \ p_{\text{hit}}(z_i \mid x_i, m)$
7:	$e_{i,\text{short}} = \eta \ p_{\text{short}}(z_i \mid x_i, m)$
8:	$e_{i,\max} = \eta \ p_{\max}(z_i \mid x_i, m)$
9:	$e_{i,\mathrm{rand}} = \eta \ p_{\mathrm{rand}}(z_i \mid x_i, m)$
10:	$z_{\rm hit} = Z ^{-1} \sum_i e_{i,\rm hit}$
11:	$z_{\rm short} = Z ^{-1} \sum_{i} e_{i,\rm short}$
12:	$z_{\max} = Z ^{-1} \sum_{i} e_{i,\max}$
13:	$z_{\text{rand}} = Z ^{-1} \sum_{i} e_{i,\text{rand}}$
14:	$\sigma_{\rm hit} = \sqrt{\frac{1}{\sum_{i} e_{i,\rm hit}} \sum_{i} e_{i,\rm hit} (z_i - z_i^*)^2}$
15:	$\lambda_{\text{short}} = \frac{\sum_{i} e_{i,\text{short}}}{\sum_{i} e_{i,\text{short}} z_{i}}$
16:	return $\Theta = \{z_{\text{hit}}, z_{\text{short}}, z_{\text{max}}, z_{\text{rand}}, \sigma_{\text{hit}}, \lambda_{\text{short}}\}$

Estimation Results



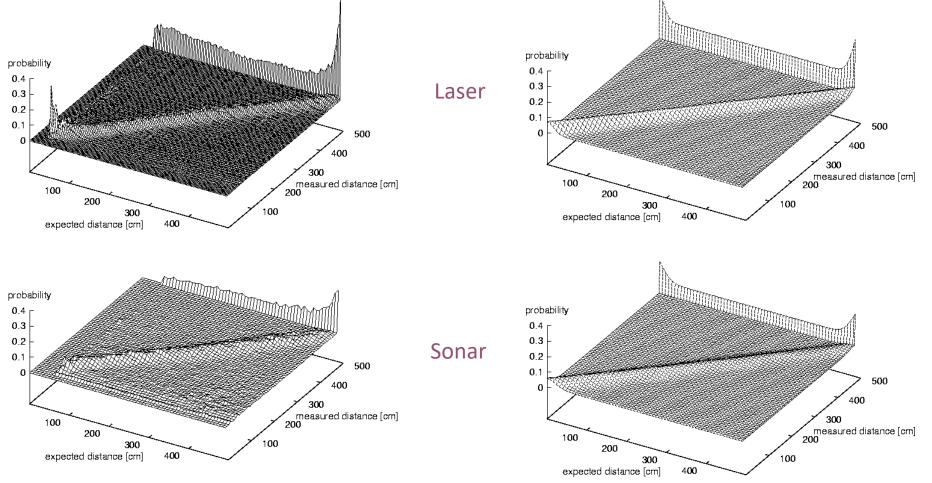
Example



Ζ

P(z|x,m)

Approximation Results



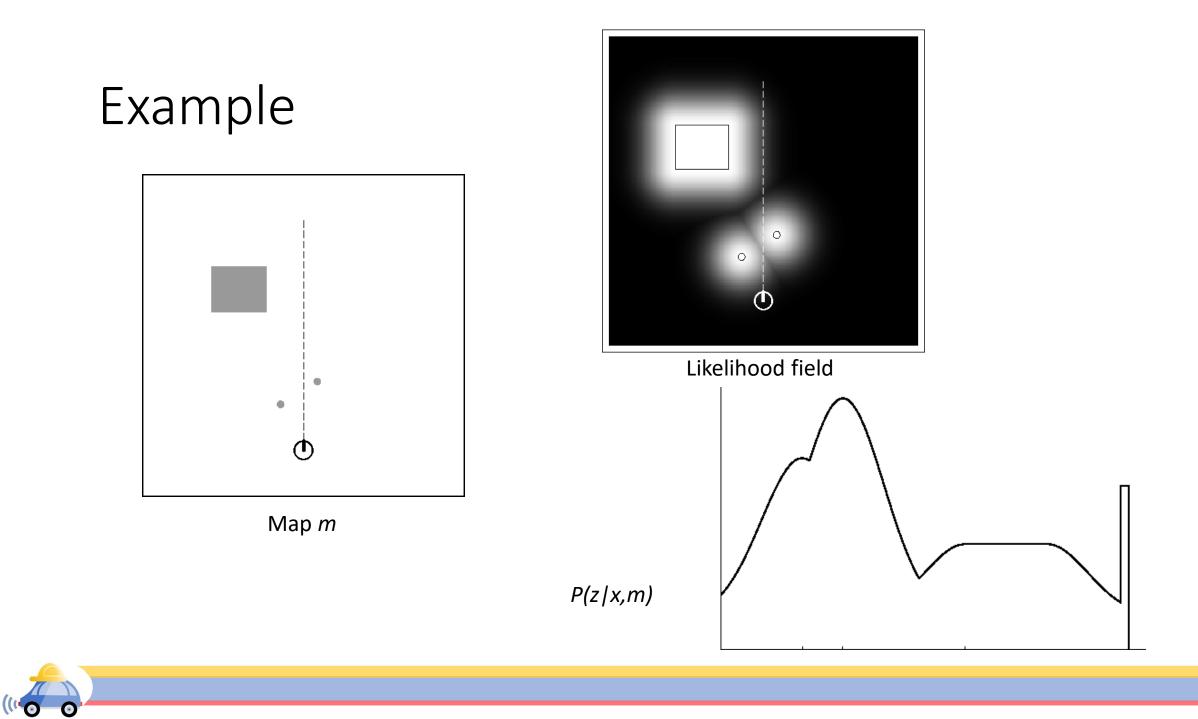
Scan-based Model

- Beam-based model is ...
 - not smooth for small obstacles and at edges.
 - not very efficient.

• Idea: Instead of following along the beam, just check the end point.

Scan-based Model

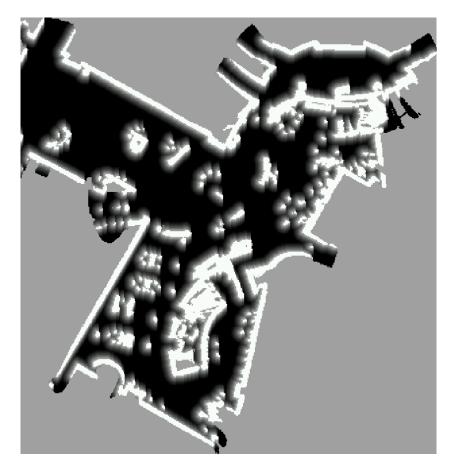
- Probability is a mixture of ...
 - a Gaussian distribution with mean at distance to closest obstacle,
 - a uniform distribution for random measurements, and
 - a small uniform distribution for max range measurements.
- Again, independence between different components is assumed.



How to compute the Likelihood

1: Algorithm likelihood_field_range_finder_model(z_t, x_t, m): 2: q=13: for all k do if $z_t^k \neq z_{\max}$ 4: $x_{z_{t}^{k}} = x + x_{k,\text{sens}} \cos \theta - y_{k,\text{sens}} \sin \theta + z_{t}^{k} \cos(\theta + \theta_{k,\text{sens}})$ 5: $y_{z_{\star}^{k}} = y + y_{k,\text{sens}} \cos \theta + x_{k,\text{sens}} \sin \theta + z_{t}^{k} \sin(\theta + \theta_{k,\text{sens}})$ 6: $dist^{2} = \min_{x',y'} \left\{ (x_{z_{t}^{k}} - x')^{2} + (y_{z_{t}^{k}} - y')^{2} \mid \langle x', y' \rangle \text{ occupied in } m \right\}$ 7: $q = q \cdot \left(z_{\text{hit}} \cdot \mathbf{prob}(dist \ , \sigma_{\text{hit}}) + \frac{z_{\text{random}}}{z_{\text{max}}} \right)$ 8: 9: return q

San Jose Tech Museum



Occupancy grid map

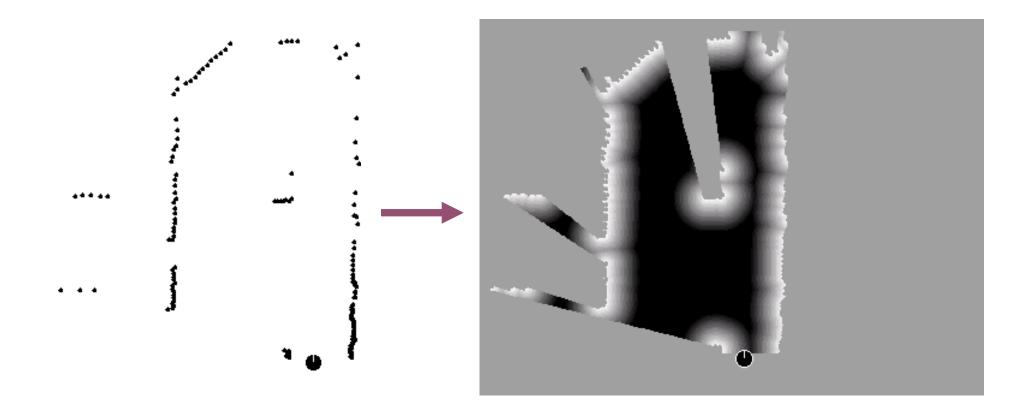
Likelihood field

Summary Beam-based Model

- Assumes independence between beams.
 - Justification?
 - Overconfident!
- Models physical causes for measurements.
 - Mixture of densities for these causes.
 - Assumes independence between causes. Problem?
- Implementation
 - Learn parameters based on real data.
 - Different models should be learned for different angles at which the sensor beam hits the obstacle.
 - Determine expected distances by ray-tracing.
 - Expected distances can be pre-processed.

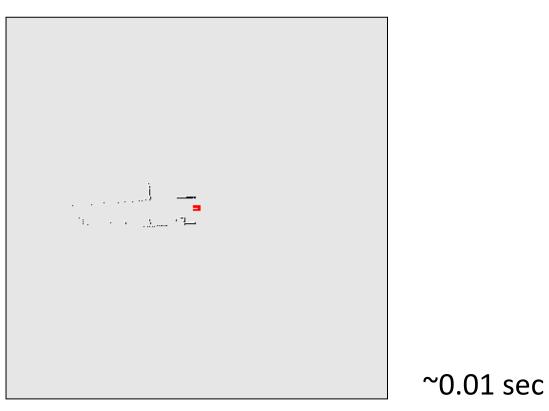
Scan Matching

• Extract likelihood field from scan and use it to match different scan.



Scan Matching

• Extract likelihood field from first scan and use it to match second scan.



Properties of Scan-based Model

- Highly efficient, uses 2D tables only.
- Smooth w.r.t. to small changes in robot position.
- Allows gradient descent, scan matching.
- Ignores physical properties of beams.
- Will it work for ultrasound sensors?

Additional Models of Proximity Sensors

- Map matching (sonar, laser): generate small, local maps from sensor data and match local maps against global model.
- Scan matching (laser): map is represented by scan endpoints, match scan into this map.
- Features (sonar, laser, vision): Extract features such as doors, hallways from sensor data.

Landmarks

- Active beacons (*e.g.*, radio, GPS)
- Passive (e.g., visual, retro-reflective)
- Standard approach is triangulation
- Sensor provides
 - distance, or
 - bearing, or
 - distance and bearing.

Distance and Bearing

Probabilistic Model

1. Algorithm **landmark_detection_model**(z,x,m): $z = \langle i, d, \alpha \rangle, x = \langle x, y, \theta \rangle$

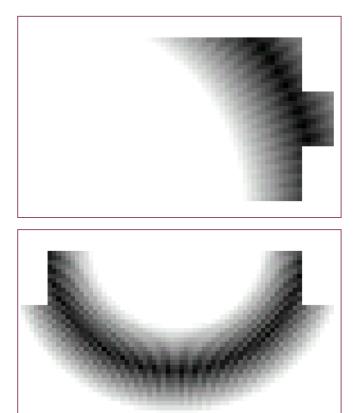
2.
$$\hat{d} = \sqrt{(m_x(i) - x)^2 + (m_y(i) - y)^2}$$

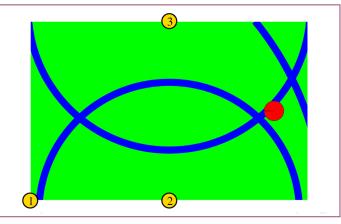
3.
$$\hat{a} = \operatorname{atan2}(m_y(i) - y, m_x(i) - x) - \theta$$

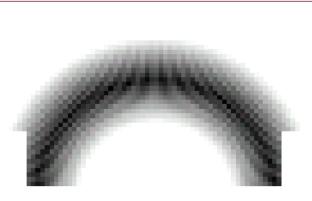
4.
$$p_{det} = \operatorname{prob}(\hat{d} - d, \varepsilon_d) \cdot \operatorname{prob}(\hat{\alpha} - \alpha, \varepsilon_\alpha)$$

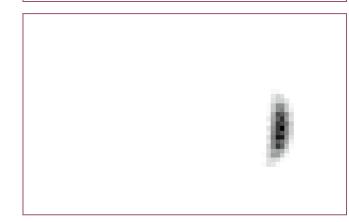
5. Return
$$z_{det} p_{det} + z_{fp} P_{uniform}(z \mid x, m)$$

Distributions



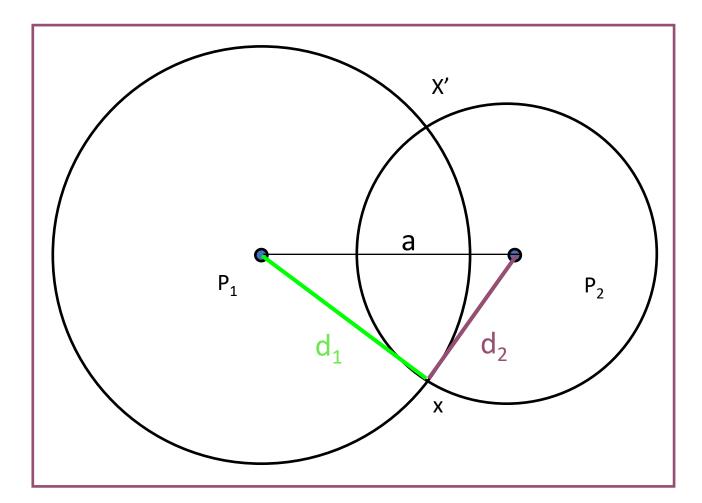


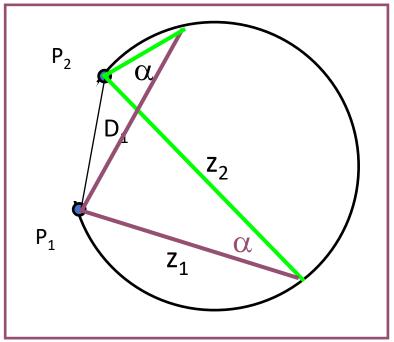




Distances Only No Uncertainty

$$x = (a^{2} + d_{1}^{2} - d_{2}^{2})/2a$$
$$y = \pm \sqrt{(d_{1}^{2} - x^{2})}$$





Law of cosine $D_1^2 = z_1^2 + z_2^2 - 2 \ z_1 z_2 \cos \alpha$

$$P_{3}$$

$$P_{2}$$

$$P_{2}$$

$$D_{1}$$

$$Z_{2}$$

$$D_{1}$$

$$Z_{2}$$

$$D_{1}$$

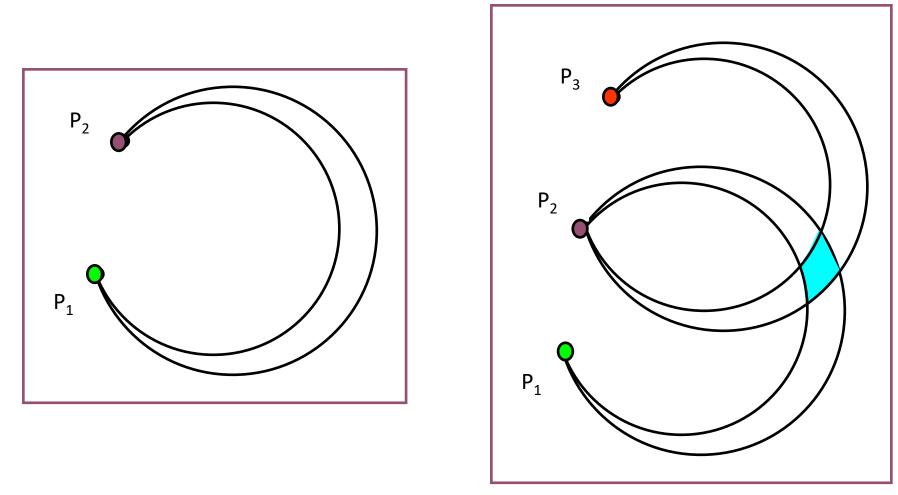
$$Z_{1}$$

$$D_{1}^{2} = z_{1}^{2} + z_{2}^{2} - 2 z_{1} z_{2} \cos(\alpha)$$

$$D_{2}^{2} = z_{2}^{2} + z_{3}^{2} - 2 z_{1} z_{2} \cos(\beta)$$

$$D_{3}^{2} = z_{1}^{2} + z_{3}^{2} - 2 z_{1} z_{2} \cos(\alpha + \beta)$$

Bearings Only With Uncertainty



Most approaches attempt to find estimation mean.

Summary of Sensor Models

- Explicitly modeling uncertainty in sensing is key to robustness.
- In many cases, good models can be found by the following approach:
 - 1. Determine parametric model of noise free measurement.
 - 2. Analyze sources of noise.
 - 3. Add adequate noise to parameters (eventually mix in densities for noise).
 - 4. Learn (and verify) parameters by fitting model to data.
 - 5. Likelihood of measurement is given by "probabilistically comparing" the actual with the expected measurement.
- This holds for motion models as well.
- It is extremely important to be aware of the underlying assumptions!

