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Principles of Safe Autonomy:
Probabilistic Sensor Models

Joohyung Kim

Reference: Probabilistic Robotics by Sebastian Thrun, Wolfram Burgard, and Dieter Fox

Slides: From the book’s website
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Sensors for Mobile Robots

Contact sensors: Bumpers

Internal sensors
* Accelerometers (spring-mounted masses)
* Gyroscopes (spinning mass, laser light)
* Compasses, inclinometers (earth magnetic field, gravity)

Proximity sensors
e Sonar (time of flight)
* Radar (phase and frequency)
* Laser range-finders (triangulation, tof, phase)
* Infrared (intensity)

Visual sensors: Cameras

Satellite-based sensors: GPS




Proximity Sensors
|

* The central task is to determine P(z/x), i.e., the probability of a measurement z given that
the robot is at position x.

* Question: Where do the probabilities come from?
* Approach: Let’s try to explain a measurement.
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Beam-based Sensor Model

e Scan z consists of K measurements.

Z=4{Z,,2Zys s Zx }

* Individual measurements are independent given the robot position.

P(z|x,m)= HP(Zk | x, m)
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Beam-based Sensor Model

S|

P(z|x,m)= HP(Zk | x,m)
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Proximity Measurement

* Measurement can be caused by ...
* a known obstacle.
* cross-talk.
e an unexpected obstacle (people, furniture, ...).
* missing all obstacles (total reflection, glass, ...).

* Noise is due to uncertainty ...
* in measuring distance to known obstacle.
* in position of known obstacles.
* in position of additional obstacles.
e whether obstacle is missed.



Resulting Mixture Density

A * Correct range with local measurement noise
e Unexpected objects
* Failures

:  Random measurements

Zmaz Pmax (2 e m)

Prand (ZZ“C |xt» m)

Znit \ T phit(Zﬂxt, m)
p(Zth; m) _ <Zshort> . Pshort(zflxt,m)

Zrand




Beam-based Proximity Model

Measurement noise Unexpected obstacles

\

0 z exp Z max 0 4 exp Z max
Gaussian distribution (b = g5,;42) Exponential distribution
(z—2)° -z
1 L 2o nAie Z < Zy,
I)hit (Z | X, m) =1 e 2 b })unexp (Z | X, m) — .
2 7h 0 otherwise
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Beam-based Proximity Model

Random measurement

Max range

0 zexp Z max

Uniform distribution

1
B’and(z|x9m):772—

max

z exp

Uniform distribution

P (2| x,m) =17

z

1

small




Resulting Mixture Density

Computing the likelihood
.-’ﬂ\\
‘ \ L: Algorithm beam_range_finder_model(z;, ;. m):
2: g=1
_ 3: fork =1to i do
T / \ 4. compute zF* for the measurement = using ray casting
L \ i t
, - 5: P = 2hit - Phit (2F | T4, M) + Zehort - Pshort (2F | T¢,m)
6: + Zmax -pma}{(:f | xg,m) + Zrand 'I)rand(-:f,c | xp,m)
7: Gg=¢q-p
Zhit T Phit (ZfJ{Xt, m) 8: return g
k . Zshort pshort(Zt |xtim)
p(Zt |.X't, m) — 7 y K
max Pmax (Zt |xt' m)
Zrand ( K | X m) .
Prana\Zt | Xt How can we determine the model parameters?
Znit  Zshort t Zmax t Zrana = 1
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Raw Sensor Data
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Estimation

* Maximize log likelihood of the data

p(Z | X, m,0)

* O: all intrinsic parameters
* Znit, Zshort) Zmax» Zrand» and Ohit Amax

* Line 3-9 : estimate auxiliary variables

e Line 10-15: estimate the intrinsic
parameters
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Algorithm learn_intrinsic_parameters(Z, X, m):

repeat until convergence criterion satisfied
forall z; m Z do
n = [ pnit(2i | Ti,m) + Pshort (2 | i, M)
+ Pnae (21 | T4y ) + Prama(zs | 2iym) |71
calculate =
€ihit = 7 Phit.(?é-e: | Ty, m-)
€i short = 1) Pshort (21 | 1, M)
€imax = 1) Pmax(2i | Ti, M)

€irand = 1) Prand(2i | i, m)

2y = | 2|71 i €ihit
Zshort = |‘2"|_;L Z? €i short
Zmax — |Z|_1 Z-i €i,max

Zrand = |Z|_1 Zi €4 rand

_ I it (25 — 27)2
Ohit = \/m Z.; €i hit (2 ‘*:)

short —
E _[.ei'_ahurt Zi

refurn © = {zhit-: Zshorts “max: “rands Thit; A:;hr.n't }




Estimation Results
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Example

P(z[x,m)
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Scan-based Model

* Beam-based model is ...
* not smooth for small obstacles and at edges.
* not very efficient.

* |dea: Instead of following along the beam, just check the end point.
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Scan-based Model

* Probability is a mixture of ...
e a Gaussian distribution with mean at distance to closest obstacle,
e a uniform distribution for random measurements, and
* a small uniform distribution for max range measurements.

* Again, independence between different components is assumed.
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Example

Map m

P(z/x,m)

Likelihood field




How to compute the Likelihood

l: Algorithm likelihood field_range_finder_model(z;. r;.m):

2. g=1

3! for all k: do

4: l'f:f #F Zmax

S: j_‘.’z:e = T + J.k‘sens (‘053 - yk’geng Si". 9 + :!_k C'{l'i(ﬂ + ekTscn“)

6: Yzk = Y + Yk sens COS 0+ Tk pens SN0 + :f sin(6 + O sens)

T dist® = min {(;rzf — ') + (yr — v)? ‘ (2',y") occupied in m}

’
.y

"

9=q- (:hit - prob(dist o)+ ir.an.dﬂm)

Smax

return ¢

(((A—
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San Jose Tech Museum
v

Occupancy grid map

Likelihood field
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Summary Beam-based Model

* Assumes independence between beams.
 Justification?
e Overconfident!

* Models physical causes for measurements.
* Mixture of densities for these causes.
e Assumes independence between causes. Problem?

* Implementation
* Learn parameters based on real data.

» Different models should be learned for different angles at which the sensor beam hits the
obstacle.

* Determine expected distances by ray-tracing.
e Expected distances can be pre-processed.



Scan Matching

e Extract likelihood field from scan and use it to match different scan.

m hﬂuui._....u “.'i._.._ - &




Scan Matching

e Extract likelihood field from first scan and use it to match second scan.

~0.01 sec
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Properties of Scan-based Model

* Highly efficient, uses 2D tables only.

* Smooth w.r.t. to small changes in robot position.

* Allows gradient descent, scan matching.
* [gnores physical properties of beams.

e Will it work for ultrasound sensors?
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Additional Models of Proximity Sensors

* Map matching (sonar,laser): generate small, local maps from sensor
data and match local maps against global model.

* Scan matching (laser): map is represented by scan endpoints, match
scan into this map.

* Features (sonar, laser, vision): Extract features such as doors, hallways
from sensor data.
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Landmarks

 Active beacons (e.g., radio, GPS)
* Passive (e.qg., visual, retro-reflective)

e Standard approach is triangulation

e Sensor provides
e distance, or
* bearing, or
* distance and bearing.
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Distance and Bearing




Probabilistic Model

1. Algorithm landmark_detection_model(z,x,m):
z=<i,d,a>,x=<x,y,¢9>

2. d=\J(m,()-x)" +(m, (i)~ y)
3. a= atan2(m (i) — y,m (i) —x) -0

4, Dy = prob(d —d,s,)-prob(a —a,¢&,)

5. Return Zdetpdet + pr])uniform (Z | X, m)

(9" 0



Distributions
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Distances Only
No Uncertainty

x=(a’+d—d:)/2a
y:i\/(dlz -x")

P,=(0,0)
P,=(a,0)




Bearings Only
No Uncertainty

D’ =z’ +z; -2 zz, cos(a)
D; =z, +z; —2 z,z, cos(f)

D; =z’ +z; -2 zz, cos(a+ fB)

Law of cosine

2 2 2
Df =z +z,;-2zz,co8

(5
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Bearings Only With Uncertainty

Most approaches attempt to find estimation mean.




Summary of Sensor Models

Explicitly modeling uncertainty in sensing is key to robustness.

* In many cases, good models can be found by the following approach:
Determine parametric model of noise free measurement.

Analyze sources of noise.

Add adequate noise to parameters (eventually mix in densities for noise).
Learn (and verify) parameters by fitting model to data.

A e A

Likelihood of measurement is given by “probabilistically comparing” the actual
with the expected measurement.

This holds for motion models as well.

It is extremely important to be aware of the underlying assumptions!
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