
MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

6 Specifying requirements

Overview In the previous chapters, we introduced models for cyberphysical systems that

define their behaviors. The rest of this book is about techniques for verifying whether those

behaviors are correct. To proceed with verification, one has to first define what it means

for a behavior to be “correct”. This is the subject of the current chapter. The definition of

correct behavior usually comes from what are called the design requirement documents for

the system or the product. These documents describe what the system does—capabilities,

functions, operations—and may also contain information on how the system works, how it

should interact with users, how it should be maintained, etc. We begin the chapter introduc-

ing requirements analysis which is the human process of pinning down the requirements.

In the first part of this chapter, we discuss existing safety standards that are written in-

formally, but often drive the safety-critical requirements of cyberphysical systems. In the

second part, we present formal requirements in terms of safety, liveness, and more general

temporal logic statements. In between, in section 6.3, we discuss the roles of human and

computational resources in the formal verification process.

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

150 Chapter 6 Specifying requirements

6.1 Requirements analysis

Requirements analysis for a product or a component is a set of tasks that ultimately lead to

determination and documentation of the design requirements that the product must meet.

Requirements are sometimes referred to as technical specifications, specifications, and

functional attributes. For example, “0 to 60 mph in 2.8 seconds” is an example of a high-

level specification for an electric vehicle. For a more realistic example, the 416 pages long

software requirements document for the A-7 E aircraft by. Alspaugh et al. (1992),x will

be instructive.

As products have many stakeholders—users, designers, regulators, and maintainers—

they often have conflicting needs and incentives. Therefore, requirements analysis is an

iterative human process for eliciting input from stakeholders, analyzing use cases, cross-

validating possibly conflicting requirements, and then documenting the requirements in a

contract. Beyond the core hardware and software functionalities (a.k.a. behavioral re-

quirements), requirements can cover aspects such as performance, user interfaces, energy

efficiency, environmental impact (such as emissions), and cost-effectiveness. Here, we will

not discuss this topic in any detail (for more information, see, for example, the book Rajan

and Wahl (2013)), but we note some of the common challenges in using requirements for

the purpose of verification.

First, requirements are typically written using a combination of natural language, flowcharts,

and pseudocode. As a result, requirements are ambiguous and under-constrained. There

are requirement specification languages (RSL) that reduce some of those ambiguities. For

example, variants of temporal logics (see Sections 6.4.2 and 6.5) have been proposed for

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

6.2 Safety standards 151

mathematically defining the requirements of cyberphysical systems. Another alternative

for avoiding ambiguities is to use natural language processing (NLP) tools that convert the

requirements to a machine-readable, and therefore consistent and unambiguous, form (Kof

(2004)). Adoption of RSLs and NLP tools has been limited in part because they involve a

learning curve, and are often seen as impractical.

6.2 Safety standards

Safety standards provide guidelines and processes for developing safety-critical systems.

For example, the Federal Aviation Administration (FAA) of the United States uses the DO-

178C standard (RTCA (2011)) as guidance for determining and certifying the airworthiness

of aviation software, and it is enforced as part of the Federal Aviation Regulations. ISO

26262 ISO is the relevant standard for functional safety of electronic and software com-

ponents in road vehicles, but in contrast to the situation for aviation systems, its adoption

is voluntary. Other safety standards include MIL-STD-882E, the Department of Defense

Standard Practice for System Safety; FMVSS, the Federal Motor Vehicle Safety Stan-

dard; AUTOSAR, the Automotive Open System Architecture; EN 50126, on Reliability,

Availability, Maintainability and Safety of Railway Applications (RAMS); MISRA C, the

Guidelines for the Use of the C Language in Critical Systems; the IEC 62304 Standard for

Medical Devices; and SOTIF, on Safety of the Intended Function (SOTIF).

Most safety standards classify system components or functions into certain integrity lev-

els and give guidelines for developing and testing components in each integrity level. The

classification of a component into an integrity level is typically based on analysis of the

consequences of the component’s failure or malfunction. It is important to remember that

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

152 Chapter 6 Specifying requirements

most of the standards are descriptive but not prescriptive, and that they leave a lot to the

discretion of the suppliers and system builders.

6.2.1 DO-178C

For example, DO-178C has five assurance levels for software modules, also known as

Design Assurance Levels (DAL) (see Table 6.1). A component’s level is determined from

the safety assessment process and hazard analysis through examination of the effects of a

failure condition in the system. The failure conditions are categorized by their effects on

the aircraft, crew, and passengers. For example, at the two extremes, Level A is assigned

for “Catastrophic Outcome,” and Level E is assigned for “No Safety Effect.”

The DAL level classification then establishes the rigor necessary to demonstrate compli-

ance with DO-178C. For example, components that command, control, or monitor safety-

critical functions are classified as Level A. The standard requires any Level A software to

be tested to cover every statement, branch, and function call, and also to pass the so-called

Modified Condition Decision Coverage (MC/DC) tests. Roughly, an MC/DC test suite re-

quires that (i) each entry and exit point in the code be invoked, (ii) each decision take every

possible value, and (iii) each condition in a decision take every possible value. For certain

levels, DO-178C requires that the testing, verification, and validation be performed by a

team that is independent of the software development team.

Dozens of commercial tools (e.g., MATLAB, Esterel, Cantata, VectorCAST, Rapita Sys-

tems, and CodeSonar) can support DO-178C certification in different ways, such as by

applying formal verification. The DO-333 supplement of DO-178C identifies aspects of

airworthiness certification process that pertains to the production of software using formal

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

6.2 Safety standards 153

DAL Failure Condition Code Coverage Requirements ASIL

A Catastrophic
MC/DC unit tests with independence, branch,

functional, call, and statement coverage

-

B Hazardous
Branch and statement coverage with independence,

MC/DC highly recommended

ASIL D

C Major
Statement coverage

MC/DC unit tests, branch coverage recommended

ASIL B/C

D Minor
Statement coverage

branch coverage recommended

ASIL A

E No safety effect -

Table 6.1
Design Assurance Levels (DAL) of DO-178C and ASILs of ISO26262.

methods. For example, DO-333 requires the soundness of each formal analysis method to

be documented. Implementation of tool soundness issues is addressed separately as part of

the tool qualification process described in DO-330. Use cases for classical theorem prov-

ing, model checking, and abstract interpretation in D0-178C certification, in accordance

with DO-333, appear in Cofer and Miller (2014); however, applications of hybrid system

verification are currently absent.

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

154 Chapter 6 Specifying requirements

6.2.2 ISO 26262

Much like DO-178C, the ISO 26262 standard classifies components into levels; in this

case, they are four Automotive Safety Integrity Levels (ASIL), which are based on exposure

to issues that affect the controllability of the vehicle. Roughly, an ASIL level captures a

more general notion of risk, and is expressed as:

Risk = (Probability of accident) × (Expected loss in case of accident) (6.1)

ASIL = (Exposure × Controllability) × Severity. (6.2)

The standard divides probabilities of exposure into five classes, ranging from “Very low

probability” (E1) to “High probability” (E4). For severity, it has four classes, from “No

injuries” to “fatal injuries.” For controllability (by the driver), it has four classes, from

“Controllable ” to “Difficult to control.” The standard shows how these variables must be

combined to determine the required ASIL for an electronic subsystem or component in

the vehicle. For example, a component that must be relied upon in a situation that has a

medium probability of occurrence, and is considered normally controllable but can result

in life-threatening injuries, requires an ASIL of B.

It would be a misconception to think that an ASIL can be attributed to a device; rather,

an ASIL can only be attributed to a functionality or a property. For example, it would not

make sense to talk about “ASIL B LIDAR.” In contrast, a valid requirement might be of

the form “With ASIL B, it is assured that in 99% of the cases in which there is an object of

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

6.2 Safety standards 155

s specified dimension in a specified range in front of the sensor, then the sensor will report

it in the object list.”

The ASIL level classification establishes the rigor necessary to demonstrate compliance

with ISO 26262, again, in a manner similar to that of DO-178C. Although the two standards

are similar in spirit, the requirements for meeting ASIL and DAL levels are not precisely

comparable. ISO 26262 specifies testing requirements both at the unit level and at the

architectural level, and there is no requirement for independence. Also, although MC/DC

testing is highly recommended at the highest level (ASIL D), the requirement for how

thats achieved is different from the requirements in DO-178C. Table 6.1 provides a rough

alignment between DAL levels and ASIL levels.

Several case studies have been published that show how testing and formal verification

can be applied for ISO 26262 compliance and risk analysis (Altinger et al. (2014); Rana

et al. (2013)). A simulation-based analysis method for Automatic Emergency Braking

(AEB) systems is proposed in Fabris (2012). More recently, that analysis has been recre-

ated more efficiently using data-driven verification (Fan et al. (2018)). The broad idea is

as follows. The question of whether or not the (automatic) braking profile of a sequence of

cars on the highway is safe depends on several parameters: initial separation, initial speeds,

vehicle dynamics, reaction times, road surface, etc. The analysis determines (through sim-

ulation or formal analysis) whether a given braking profile is safe for a set of scenarios

characterized by the above parameters. That determination is then combined with statis-

tical information about the distributions of the parameters (for example, from road traffic

camera data) to obtain the probability of accidents. In the case of unsafe scenarios, the

worst-case relative velocity of the collision is computed; it serves as a proxy for the sever-

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

156 Chapter 6 Specifying requirements

ity of the accident. By combining the probability and the severity, one determines the

overall risk associated with the braking profile. That type of analysis can be used as a

design tool for tuning the braking profiles for different highway speeds, road conditions,

etc.

6.2.3 Beyond current safety standards and requirements

Safety standards and requirements are useful for dealing with many potential design and

implementation defects. As of early 2020, many areas of autonomous systems are not ap-

propriately covered by existing standards Koopman and Wagner (2016). This realization is

driving research activities and the creation of new standards and specifications that go be-

yond ISO 26262 and DO-178C. One such emerging standard for highly automated driving

is Safety of the Intended Functionality (SOTIF) (ISO/WD (2018)). SOTIF accommodates

the statistical correctness of functionality, such as in image-based object detection, and it

covers unsafe situations that arise outside of hardware failures.

Responsibility Sensitive Safety (RSS) is another emerging model for safety introduced by

Shalev-Shwartz et al. (2017b). RSS formalizes what it means for an autonomous vehicle

to drive safely on its own and how it should exercise reasonable caution to protect against

the unsafe driving behavior of others. RSS aims to satisfy the need for sound, useful (i.e.,

not overly conservative), and verifiable driving policies.

Autonomous systems that use test-driving data to train machine learning (ML) functions,

such as deep neural networks (DNN), are also beyond the current safety standards. There

is intense ongoing research on topics related to specification and verification of machine

learning algorithms, and autonomous systems built with those ML algorithms. We briefly

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

6.3 From requirements to verification 157

point to some of the ongoing activities in Section 11.8.5, but dust is yet to settle, for us to

venture out into these topics in this book.

6.3 From requirements to verification

Formally, a requirement defines a predicate over the set of system behaviors. It defines

which behaviors are allowed and which ones are forbidden. More generally, for example

for stochastic models, it makes sense to have quantitative requirements that define metrics

over probability distributions of behaviors. For example, a requirement could be that the

expected fuel efficiency of a vehicle model is within some range, for a given set of driving

conditions. In this book, we will stick to the simpler binary requirements. In the rest of this

chapter, we will discuss formal or mathematically precise requirements. Automatic tools

need the requirements to be represented in a formal and machine-readable format. There

are many such formats that cater to different modeling formalisms, application domains,

and analysis approaches. Instead of getting into tool-specific formats, in the rest of this

section, we discuss the dominant mathematical notions that define allowed system behav-

iors. Unless otherwise stated, our model of the system in question could be a discrete,

continuous, or a hybrid automaton. The rest of the book is about verification techniques.

At this point, we make a few remarks about algorithms, and the roles they play, in the

overall verification and validation enterprise.

6.3.1 Formal verification algorithms

First and foremost, the goal of a verification process is to correctly check whether a given

cyberphysical system meets a given requirement. Secondly, as users and developers of

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

158 Chapter 6 Specifying requirements

verification techniques, we would prefer for the verification process to use resources opti-

mally. More about resources and optimality in Section 6.3.2, but first let us define what it

means for a verification process to be correct.

Recall that for an automatonA, the set of all possible behaviors or executions is denoted

by ExecsA (see Sections 2.4, 3.4, and 4.4). A requirement R, therefore, can be seen as a

subset of ExecsA. An execution α ∈ ExecsA meets the requirement R if α ∈ R; otherwise,

it is said to violate the requirement. An execution α ∈ ExecsA that violates a requirement

R is called a counterexample to R.

In an ideal world, verification would be a fully automatic process carried out by an al-

gorithm executing on a computer. Such a verification algorithm Alg would come with a

warranty to work for a class of models and a class of requirements. Given an input model

A from that model class and a requirement R from that class of requirements, Alg would

decide whether all executions of A meet the requirement R. Indeed, this is a decision

problem (defined in Appendix B.2.1). That is, Alg would produce one of two kinds of out-

puts: (a) if A violates R, then Alg finds a counterexample execution α ∈ ExecsA \ R that

witnesses the violation; or (b) Alg gives a proof establishing that ∀ α ∈ ExecsA, α ∈ R.

Counterexamples can help designers fix design bugs, help product managers revise oper-

ating conditions and usage models, and help customers redefine requirements R. A proof

establishing that A meets the requirement R can be used in the certification process (for

example, for D0-178C); proofs can also be useful for explaining the correctness of the

design ofA.

For model and requirement classes with such warrantied verification algorithms, we can

happily shift our attention to investigating the optimality of the algorithm in terms of com-

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

6.3 From requirements to verification 159

Figure 6.1

A verification algorithm takes as input an automaton A from a class of models and a requirement R

from a class of requirements, and either gives a proof establishing that all behaviors ofA meet R, or

gives a particular behavior ofA that violates R.

putational resource usage. For example, checking invariant requirements for the class of

integer timed automaton, presents one such ideal situation, as we shall see in Chapter 9.

But, for general cyberphysical system mode classes, the situation is known to be grim-

mer. There is no perfect algorithm that always works. We will see an example of this in

Section 9.5. The verification enterprise has to rely on imperfect algorithms that may be

wrong—missing bugs or giving false alarms, that may not terminate on other inputs, or

worse. In such situations, the verification team has to navigate the complex trade-offs be-

tween the expressive power of the model class and the precision and computational efficacy

of the available imperfect verification algorithm (or tool) for that class.

A verification algorithm Alg is said to be sound if it answers the verification query cor-

rectly. That is, when it gives a proof, the proof is valid, and indeed all behaviors ofAmeet

the requirement R; and when it gives a counterexample behavior, then the counterexample

is indeed an actual behavior of A that violates R. An algorithm is said to be complete if

it is guaranteed to terminate for all A,R inputs. Most of the verification algorithms and

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

160 Chapter 6 Specifying requirements

techniques we discuss in the later chapters are sound. While some, like the reachability

analysis algorithms of Chapter 9 and the data-driven verification algorithms of Chapter 11,

are fully automatic, others, like the invariance and termination verification techniques of

Chapters 7 and 10 can be partially automated with manual inputs.

6.3.2 Resource usage for verification and computational complexity

Even with perfect algorithms, the verification and validation enterprise requires human ef-

fort in (a) encoding the requirements and the models in a verification tool; (b) validating

the models—which means checking that the models indeed correspond to the real system

that has been designed or prototyped. (c) Effort is also needed in interpreting the output

results of the verification tool. Usually, the models and requirements have to be manu-

ally refined several times, in a closed-loop iterative process, before the desired results are

achived. As it happens, there is no agreed upon definition for precisely accounting for

these human efforts.

For algorithms, on the other hand, the resources concerned are memory usage, computing

cycles, bits needed for communication, etc.—things that can be measured. For any given

algorithm Alg, the amount of resource (e.g., number of CPU cycles) used will obviously

depend on its inputs A and R. Alg will require more cycles to verify a bigger A than a

smaller one. Therefore, to study the efficiency of Alg, it makes sense more sense to see

how the cycles used by Alg scales with the size of the inputs, rather than fixate on the actual

number of cycles used by a particular input.

The computer science view of measuring resource usage is to count resources (number of

computational steps, bits of memory, bits sent, random bits drawn, etc.) used by a Turing

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

6.3 From requirements to verification 161

machine representation of Alg. Turing machines and computational complexity concepts

are reviewed in Appendix B.2. Owing to the complexity theoretic Church-Turing thesis,

the actual resources used by Alg (running on any real computer, implemented with any

programming language, operating system, etc.) is proportional to the resources used by

this Turing machine representation. Since we are mainly interested in how the resource

usage scales with the size of the input, we can rigorously derive the worst case resource

usage of Alg—up to a constant factor—from any representation (e.g., pseudocode used in

this book) without writing down a Turing machine.

It is worth noting that representing a real-valued output, even from a small input, may

require infinite number of bits. Real-valued calculations are abound in verification algo-

rithms for cyberphysical systems. This can complicate the Turing machine-based disci-

pline of measuring complexity. One practical workaround is to use finite precision rep-

resentations of real numbers, but this requires careful analysis of the of propagation of

errors. A branch of complexity theory that using more powerful machines that can repre-

sent real numbers has been developed by Blum et al. (1997, 1988). These developments

are theoretical and the connections with verification are yet to be drawn.

In contrast, the control theorists take a more abstract mathematical view of resource us-

age, without worrying too much about how the objects being computed are represented

in a computer. For example, the resource usage of two algorithms would be compared in

terms the number and dimension of the mathematical operations (e.g., matrix multiplica-

tion, constraint solving, optimization, etc.) that each of them invokes.

Finally, we remark that what can be called an “efficient” algorithm depends on the con-

text. The commonly held interpretation, that a problem is efficiently solvable if there is

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

162 Chapter 6 Specifying requirements

a polynomial time algorithm for solving it, does not make sense in some contexts. For

example, in the context of data science problems, the inputs are huge and polynomial

time algorithms would be uselessly inefficient. A logarithmic time algorithm or at least a

sub-linear time algorithm would be considered efficient. In contrast, many important veri-

fication problems are known to be undecidable, and for such problems, even an exponential

time algorithm for a relaxation of the problem might be considered a good start.

6.3.3 Invariants and safety requirements

By far the most common requirements are invariants or safety requirements (also known

as safety properties). The idea of invariance for cyberphysical systems or programs comes

from generalization of fundamental conserved quantities, like energy or momentum in

physics—quantities that do not vary in a closed system. Roughly, an invariant asserts

requirements that must always hold. They capture the idea that “some things always hold”

or equivalently that “bad things never happen.”

For an automaton A with a set of variables V and state space val(V), a candidate in-

variant I is a subset of val(V). A candidate invariant can be equivalently expressed as a

predicate over V . A candidate invariant I is an invariant if all states along all executions of

A satisfy I:

∀α ∈ ExecsA,∀ t, α(t) ∈ I. (6.3)

More generally, a safety requirement is defined by Alpern and Schneider (Alpern and

Schneider (1987)) as a set S ⊆ ExecsA such that for any α ∈ ExecsA, α ∈ S ⇔

∀ β ∈ FragsA : β ≤ α ⇒ β ∈ S . That is, a safety requirement S is a requirement

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

6.3 From requirements to verification 163

such that if α satisfies S then so does any prefix of α. Invariant requirements are a popular

subclass of safety requirements. Invariant requirements can be alternatively defined as a set

I ⊆ val(V) such that the reachable states ofA (from a given set of initial states Θ ⊆ val(V))

are contained in I, that is, ReachA ⊆ I.

For the Dijkstra’s token ring algorithm of 2.5, the statement “the system always has a

single token” represents a candidate invariant that is the set of all the states in which the

system has a single token. This set can be equivalently written as the predicate φlegal (Sec-

tion 2.5.1). As we saw in Section 2.5, the candidate invariant φlegal is indeed an invariant if

all initial states of DijkstraTR have a single token. The driving safety requirement “unless

a turn signal is given, a car always stays inside lanes” can be expressed by the predicate:

¬turnSignal⇒ leftLane ≤ x ≤ rightLane,

where x is the lateral position of the car and leftLane and rightLane are positions of the left

and right lane markers.

Invariant properties can also be specified negatively in terms of a bad thing or an unsafe

thing that should never happen. An example of such a requirement in a traffic intersection

would be, “The lights on intersecting lanes should never be green simultaneously.” The

invariant requirement in that case is indirectly specified by the set of bad states or unsafe

states that should not be reached.

Exercise 6.1. Write five traffic safety rules as invariants. Give the English statement and

the corresponding predicate over the involved state variables.

Exercise 6.2. If I1, I2 ⊆ val(V) are invariants of A, then show that I1 ∪ I2 and I1 ∩ I2 are

also invariants.

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

164 Chapter 6 Specifying requirements

Proposition 6.1. For any candidate invariant (or safety) requirement I, if A violates I,

then there exists a finite witnessing counterexample.

Proof. Suppose A violates the candidate invariant I. Then, there exists a reachable state

v ∈ ReachA that is v < I. That is, there exists a finite execution α that ends in v. This α is

a finite witnessing counterexample.

A natural weakening of an invariant requirement is a bounded invariant or a bounded

safety requirement. A candidate invariant I ⊆ val(V) is a bounded invariant up to time T ,

for some time bound T ≥ 0, provided the states reachable within time T are contained in I.

In other words, ReachA(Θ,T) ⊆ I. The unbounded time invariant verification problem is

usually hard if not impossible to solve exactly for most classes of models. That is the reason

why recent research has concentrated around the more practical bounded time verification

problem. We will discuss techniques for invariant verification in Chapters 9, 11, and 7.

6.3.4 Progress requirements

The second most common type of requirement, after invariants, is progress requirements.

Roughly, a progress requirement captures the idea that “something good eventually hap-

pens.” Achievement of safety requirements can be trivial, unless the system also has to

meet some progress requirements.

Progress requirements come in several flavors. For an automaton A with a set of vari-

ables V and state space val(V), a simple type of progress property can be specified by a

subset P ⊆ val(V). Automaton A is then said to meet this progress requirement (from a

given set of initial states Θ ⊆ val(V)) if every execution of A eventually reaches P. That

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

6.3 From requirements to verification 165

is,

∀α ∈ ExecsA,∃ t, α(t) ∈ P. (6.4)

The above is akin to termination of programs. More generally, a liveness requirement is

defined in Alpern and Schneider (1987) as a set L ⊆ ExecsA such that ∀ β ∈ FragsA,∃β
′ ∈

FragsA, β
_ β′ ∈ L. That is, every finite execution can be extended (possibly by an infinite

suffix) to meet such a requirement. Termination is a particularly familiar liveness require-

ment.

A stronger progress requirement would be to require every execution fragment of A

eventually to reach P, regardless of the starting state. The stabilization property is an

example of this type of requirement: after failures, the system can end up in any state, but

then it recovers within finite time, that is, it comes back to a legal state. In Dijkstra’s token

ring algorithm, the stabilization requirement says that “the system eventually comes back

to a state with a single token,” and the predicate φlegal defines this set (see Section 2.5).

For automata on metric spaces, a more meaningful version of progress is captured by

asymptotic stability. It requires all executions ofA to converge to P as time goes to infinity.

For a vehicle control system, for instance, it makes more sense to converge towards a

waypoint than to hit the waypoint precisely. The reader may find it helpful at this point to

revisit Sections 3.4 and 4.4.2 for the related definitions of global and local stability.

The above requirements do not say anything about how soon progress to P is achieved.

A stronger version of progress bounds the time within which P must be achieved:

∀α ∈ ExecsA,∃ t ≤ TP, α(t) ∈ P. (6.5)

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

166 Chapter 6 Specifying requirements

Here, TP is a uniform upper bound within which P is achieved. Other versions of bounded

progress allow TP to be a function of the initial state of α. Bounded progress is actually an

invariant in disguise. To make that clear, we rewrite Equation (6.5) as:

∀α ∈ ExecsA′ ,∀ t, α(t) d timer ≤ TP ∨ α(t) d (V \ {timer}) ∈ P, (6.6)

where A′ is an augmented version of automaton A with a timer variable. The invariant

predicate here says that either timer ≤ TP or the state ofA′ (without timer) is in P.

Exercise 6.3. Write five traffic rules that are progress requirements. Give the English

statement and the corresponding predicate over the involved state variables.

Exercise 6.4. Construct a finite automatonA and two progress predicates P1 and P2 such

thatA meets the progress requirements P1 and P2, but not P1 ∧ P2.

A counterexample for a progress requirement P is an infinite execution α such that

∀ t, α(t) < P. Alternatively, a pair of finite execution fragments α1, α2 can represent

an infinite counterexample. For this counterexample we require that (i) α1.fstate ∈ Θ,

(ii) α1.lstate = α2.fstate = α2.lstate, and (iii) for all t ∈ α1.dom, α1(t) < P and for all

t ∈ α2.dom, α2(t) < P. Then we define α = α1
_ α2

_ α2
_ The process for checking

that α is a valid execution of A and that it violates the requirement P is straightforward.

That type of counterexample, which has a finite initial execution followed by an infinitely

repeating fragment, is called a lasso. We will discuss techniques for verification of progress

properties in Chapter 10.

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

6.4 Linear temporal logic 167

6.4 Linear temporal logic

Temporal logics are a family of formal languages for succinctly specifying complex re-

quirements. For example, temporal logic formulas can express requirements such as “after

the walk button is pressed, the red light and the walk sign eventually turn on” and “after a

failure, the system may exit the safety envelope S , but it eventually re-enters and remains

in S .” The term temporal can be misleading here, as these requirements have nothing to do

with time—at least, not in the sense of real-time in timed and hybrid automaton models2.

Temporal refers to the sequential ordering of certain actions or predicates in the execution

of the automaton in question. At the top level, there are two classes of temporal logics: (a)

branching logics, which allow quantification over executions; and (b) linear logics, which

do not. We will introduce Computational Tree Logic (CTL) and Linear Tree Logic (LTL)

as prominent members of these two classes. Temporal logics can be discussed in the con-

text of different types of automata—discrete state, timed, and hybrid; here, we focus on

discrete models.

6.4.1 Background definitions

Recall Definition 2.1: An automaton is defined as a tuple A = (V,Θ, A,D) where V is the

set of variables, Θ is the set of initial states, A is the set of actions or transition labels, and

D is the set of labeled transitions. In the discussion of temporal logics, it is usual to label

states instead of transitions.

2 Real-time extensions of temporal logics, such as metric temporal logic (MTL) (Koymans (1990a)), are not

covered in any detail in this book.

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

168 Chapter 6 Specifying requirements

Atomic propositions Let AP be a set of atomic propositions. Each p ∈ AP is a basic

(atomic) property or requirement that we care about. Examples of atomic propositions for

the mutual exclusion protocol of Section 2.5 are p1 (“only one process has a token”), p2

(“process 2 does not have a token”), and p3 (“process 2 has value k”). A labeling function

AP assigns to each state v ∈ val(V) a set of atomic propositions that hold in v. The labels for

each state can be enumerated explicitly in the case of a finite state system or else they have

to be defined symbolically. For example, for any state of the mutual exclusion protocol

v ∈ val(V), p3 ∈ Lab(v) if and only if v.x[2] = k.

Automaton with state labels If we replace the transition labels with state labels in Defi-

nition 2.1, we get the following variant of the discrete automaton model.

Definition 6.1. A labeled transition system (LTS)A is a tuple (V,Θ,Lab,D), where

(a) V is set of state variables.

(b) Θ ⊆ val(V) is a nonempty set of start states.

(c) Lab : val(V) → 2AP is a labeling function that assigns each state a set of atomic

propositions.

(d) D ⊆ val(V) × val(V) is the set of transitions.

This type of automaton is also called a Kripke structure. A finite state example is shown

in Figure 6.2.

Since a LTS does not have transition labels, we define executions ofA to be a sequence

of states. An execution fragment or run ofA is a (finite or infinite) sequence α = v0, v1, . . .,

such that for all i, (vi, vi+1) ∈ D. Given an execution α, we will use the notation α[k] to

denote the kth state vk in the sequence. An execution fragment for which α[0] ∈ Θ0 is called

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

6.4 Linear temporal logic 169

an execution. The set of all executions (fragments) of A is denoted by ExecsA (FragsA).

The set of executions (fragments) starting from a given state v ∈ val(V) is denoted by

ExecsA(v) (FragsA(v)).

q0, {a}

q1, {b, c}q2, {c}

Figure 6.2

The states q1, q2, q3 have labels {a}, {b, c}, and {c}, respectively.

6.4.2 LTL syntax

An LTL formula is an expression built from atomic propositions, Boolean connectives, and

special temporal operators. There are five temporal operators: Next (X), Eventually (F),

Always (G), Until (U), and Release (R). The syntax of an LTL formula f is given by the

following grammar:

f := true | p | ¬ f1 | f1 ∧ f2 | f1 ∨ f2 |

| X f1 | F f1 | G f1 | f1 U f2| f1 R f2,

where p ∈ AP is an atomic proposition, and f1, f2 are LTL (sub-)formulas. Other logical

operators, like⇒,⇔, and xor, though not included in the above grammar, can be expressed

in terms of ¬ and ∧, and therefore can be used to connect LTL sub-formulas. Some authors

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

170 Chapter 6 Specifying requirements

use � and 3 to denote the Always and Eventually operators, respectively. Some examples

of syntactically correct LTL formulas are F p1 (“eventually only one process has a token”),

FG p1 (“eventually always p1”), p1 ⇒ X p1 (“if p1, then the next step satisfies p1”), and

p2 ⇒ 3¬p2 (“if process 2 holds the token then eventually it does not”).

6.4.3 LTL semantics

Broadly, any temporal logic formula or requirement R defines a set [[R]] of signals or se-

quences that satisfy R. The semantics of LTL is defined in terms of sequences labeled with

atomic propositions. Here, we will define the semantics of LTL as sets of executions of an

automaton A. Given a state v and an LTL formula f , we write v |=A f if and only if all

executions ofA starting from state v satisfy f . When the underlying automatonA is clear

from context, we write v |=A f as v |= f . Since f is necessarily constructed from one or

two LTL sub-formulas that use the above grammar, the definition of the relation |=A (|=)

will be inductive on the structure of the LTL formula f .

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

6.4 Linear temporal logic 171

v |= true ⇐⇒ true

v |= p ⇐⇒ p ∈ Lab(q)

v |= ¬ f ⇐⇒ v 6|= f

v |= f1 ∧ f2 ⇐⇒ v |= f1 and v |= f2

v |= f1 ∨ f2 ⇐⇒ v |= f1 or v |= f2

v |= X f ⇐⇒ ∀v′ ∈ val(V), (v, v′) ∈ D, v′ |= f

v |= F f ⇐⇒ ∀α ∈ FragsA(v),∃i ≥ 0, α[i] |= f2

v |= G f ⇐⇒ ∀α ∈ FragsA(v),∀i ≥ 0, α[i] |= f2

v |= f1 U f2 ⇐⇒ ∀α ∈ FragsA(v),∃i ≥ 0, α[i] |= f2 ∧ ∀ j ≤ i, α[j] |= f1

v |= f1 R f2 ⇐⇒ ∀α ∈ FragsA(v),∃i ≥ 0, α[i] |= f2 ∧ ∀ j ≤ i, α[j] |= f1

A few remarks about the definitions in the above box are needed. First, although here α

is quantified over execution fragments ofA starting from v, a more general interpretation,

independent of an automaton, is given in terms of infinite sequences of subsets of AP

(α : ω → 2AP). In Section 6.5.1, we will see how branching temporal logics allow us to

talk about some but not all executions starting from a state. A state v is defined to satisfy

the LTL formula X f when all possible next states v′ from v satisfy f , that is, for all v′

such that (v, v′) ∈ D is a valid transition, v′ |= f . A state v satisfies f1 U f2 if for every

execution fragment α starting from v, f2 eventually becomes true, and until then f1 holds.

The U is also called the strong until operator to highlight the interpretation that f2 does

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

172 Chapter 6 Specifying requirements

indeed hold sometime in the future. In contrast, a weak until (W) operator does not require

f2 to occur. A state v satisfies f1 R f2 iff f1 has to be true until and including the point

when f2 first becomes true; if f2 never becomes true, then f1 must remain true forever. An

automatonA satisfies an LTL formula f if every execution, α ∈ ExecsA satisfies f . Thus,

[[f]] = {α ∈ ExecsA | α |= f }.

There is redundancy in the above set of temporal operators. It turns out that any LTL

formula f can be translated into a semantically equivalent formula f ′ that uses only X and

U operators. Semantic equivalence means that for any state v, v |= f iff v |= f ′ and f ′ only

uses the temporal operators X and U. For example, you can easily check the following:

3 f ≡ true U f

� f ≡ ¬(true U ¬ f).

A common LTL idiom is to write “always, eventually f ”, or �3 f . It means that from

any point in an execution, there is always a future point when f holds. That is equivalent

to saying that f holds infinitely often. Another common idiom is 3� f , which says that

eventually f holds and remains true. That is equivalent to the stabilization property we

mentioned in ??.

Exercise 6.5. Write LTL formulas that capture the following traffic light properties. Use

the atomic propositions r, y, and g, which correspond to the red, yellow, and green lights’

being on.

1. Exactly one light is on at any given time step.

2. Eventually the green light turns on.

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

6.4 Linear temporal logic 173

3. Always, the green light eventually turns on.

4. After red, there are at least three time steps of yellow, and then the light turns green.

Exercise 6.6. Prove the following identities.

1. 33 f ≡ 3 f

2. �� f ≡ � f

3. ¬X f ≡ X ¬ f

4. ¬3 f ≡ � ¬ f

5. ¬� f ≡ 3 ¬ f

6. f1U f2 ≡ f2 ∨ (f1 ∧ X(f1U f2))

7. 3 f1 ≡ 3 f1 ∨ X 3 f1

8. X(f1U f2) ≡ (X f1)U(X f2)

9. 3(f1 ∨ f2) ≡ 3 f1 ∨3 f2

10. �(f1 ∧ f2) ≡ � f1 ∧� f2

Exercise 6.7. Give counterexample automata for the following identities.

1. 3(f1 ∧ f2) . 3 f1 ∧3 f2

2. �(f1 ∨ f2) . � f1 ∨� f2

Semantics of LTL for discrete and hybrid automata A given automaton A satisfies

an LTL formula if all execution fragments starting from every starting state Θ ofA match

the properties prescribed by the formula. That is, A |= f iff ∀ v0 ∈ Θ, v0 |= f . For the

automaton in Figure 6.2, for f1 := 3�c, A |= f1, and for f2 := 3�b, A 6|= f2. In general,

A 6|= f is not equivalent to A |= ¬ f , since it is possible that some executions of A satisfy

f and others do not.

The above definition of the semantics of LTL can be applied, with a couple of modifica-

tions, to hybrid automata. First, the role of atomic propositions is taken by state predicates.

Given a hybrid automaton A = (V,Θ, A,D,T), let P1, . . . , Pk ⊆ val(V) be a set of predi-

cates. Then, a state v ∈ val(V) is labeled Pi if v ∈ Pi. Second, an execution α ofA evolves

over dense time, and there is no notion of next step or ith step, as is needed in the above

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

174 Chapter 6 Specifying requirements

definition of LTL semantics. The workaround is to sample α (Plaku et al. (2009); Cimatti

et al. (2014)). Given an infinite, diverging, sampling time sequence t0, t1, . . . and an open

execution α, we can define α[i] = α(ti). Using that sampled version of α, we can define

α |= f much as it is defined for discrete automata above.

6.5 Computation tree logic (CTL)

Linear temporal logic (LTL) gives us a way to talk about linear or sequential requirements

that have to hold in every execution of a system. In contrast, computational tree logic

(CTL) allows us to describe requirements of computational trees. For example, we can

state properties like “there exists an execution along which the aircraft returns to the safe

holding zone.”

6.5.1 CTL syntax

CTL has five temporal operators—Next (X), Eventually (F), Always (G), Until (U), and

Release (R)—and two path quantifiers: the Existential quantifier (E) and the Universal

quantifier (A). There are two types of formulas in CTL: state formulas are evaluated at a

state, and path formulas are evaluated along state sequences (executions or paths). The

syntax for state and path formulas is given by the following grammar:

(state formula) f := true | p | ¬ f1 | f1 ∧ f2 | f1 ∨ f2 | E φ | A φ

(path formula) φ := X f1 | F f1 | G f2 | f1 U f2 | f1R f2

where p ∈ AP is an atomic proposition, f1, f2 are state formulas, and φ, φ1 are path for-

mulas. Additional logical operators, like ⇒,⇔, and xor, can be expressed in terms of ¬

and ∧ to connect CTL state formulas. The depth of a CTL formula is the number of pro-

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

6.5 Computation tree logic (CTL) 175

duction rules used in creating it. Some examples of valid CTL formulas and their depths

are EXp (depth 3), AX(EXp) (depth 5), and (AX(EXp))Uq (depth 6). Note that AXX f ,

AEX f , and (pUq)Up are not CTL formulas. The temporal operators must alternate with

the path quantifiers in valid formulas. In other words, any occurrence of operators U and

X is associated with E or A, and vice versa.

6.5.2 CTL semantics

As in the case of LTL, the semantics of CTL is defined in the context of sequences of

labeled states, for example, executions of an automatonA. Given a state v and a CTL state

formula f , we write v |= f if and only if v satisfies f . Similarly, given a sequence of states

α and a CTL path formula φ, we write α |= φ if and only if α satisfies φ. The satisfaction

relation for state formulas is defined inductively as follows.

v |= true ⇐⇒ true

v |= p ⇐⇒ p ∈ Lab(q)

v |= ¬ f ⇐⇒ v 6|= f

v |= f1 ∧ f2 ⇐⇒ v |= f1 and v |= f2

v |= f1 ∨ f2 ⇐⇒ v |= f1 or v |= f2

v |= E φ ⇐⇒ ∃α ∈ FragsA(v), α |= φ

v |= A φ ⇐⇒ ∀α ∈ FragsA(v), α |= φ

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

176 Chapter 6 Specifying requirements

The satisfaction relation for path formulas is defined as follows.

α |= X f1 ⇐⇒ α[1] |= f1

α |= F f1 ⇐⇒ ∃i ≥ 0, α[i] |= f1

α |= G f1 ⇐⇒ ∀i ≥ 0, α[i] |= f1

α |= f1 U f2 ⇐⇒ ∃i ≥ 0, α[i] |= f2 ∧ ∀ j ≤ i, α[j] |= f1

α |= f1 R f2 ⇐⇒ ∃i ≥ 0, α[i] |= f2 ∧ ∀ j ≤ i, α[j] |= f1

As in the case of LTL, there is a minimal set of operators that is adequate for expressing

any CTL formula. Specifically, any CTL formula f can be translated into a semantically

equivalent formula f ′ that uses only the E quantifier and the temporal operators X and U.

Exercise 6.8. Convert the following CTL formulas to equivalent formulas that use only E,

X, and U: AX f1, AF f1, AG f1, A f1 U f2, EF f1, EG f1.

Exercise 6.9. Define finite state machines (Kripke structures) that satisfy each of these

CTL formulas: AG f1, AF f1, EG f1, EF f1.

6.5.3 Expressiveness of LTL and CTL

Both CTL and LTL are languages for specifying the ordering of actions and predicates. It

is natural to ask, which is more expressive? For any LTL formula f1, does there exist a

corresponding CTL formula that defines the same set of executions? Similarly, can any

CTL formula be expressed as an LTL formula? It is easy to see that the last statement is

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

6.6 Further reading 177

false. There is no LTL counterpart to the CTL formula EF f1, because LTL does not allow

path quantifiers. The following exercise shows that there are LTL formulas that cannot be

expressed in CTL.

Exercise 6.10. Consider the finite state labeled transition system A defined as follows:

(a) val(V) = {q0, q1, q2}, (b) Θ = {q0}, (c) Lab(q0) = Lab(q2) = p, Lab(q1) = ¬p, (d) D =

{(q0, q0), (q0, q1), (q1, q2), (q2, q2)}. Show that the LTL formula FG p is satisfied by all

executions of A. Is there a corresponding CT L formula that is satisfied by executions of

A? Note that AFG p is not a CTL formula; how about AFAG p?

From the above discussion, it follows that the expressive powers of LTL and CTL are

incomparable. There is a temporal logic called CTL* that freely combines temporal oper-

ators and path quantifiers, and therefore has expressive power that includes those of both

CTL and LTL.

6.6 Further reading

6.6.1 Temporal logic model checking

Given an LTL formula f , checking of whether [[f]] = ∅ is called the LTL satisfiability

problem. It is PSPACE-complete in the size of the formula f . Given an automaton A

and an LTL formula f , we would like to check whether A |= f . That is the LTL model-

checking problem. To answer it, we check whether there exists an execution α ∈ ExecsA

that satisfies ¬ f . Thus, it suffices to be able to search for a path or execution that satis-

fies (the negation of) an LTL formula g. The original LTL model-checking algorithm of

Lichtenstein and Pnueli (2000) uses the so-called tableau construction. The problem is

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

178 Chapter 6 Specifying requirements

PSPACE-complete (the proof is quite technical), but one can easily show NP-hardness by

reducing the Hamiltonian path problem to the above. Although the complexity is exponen-

tial in the size of the formula |g|, it is linear in |D|, the size of the transition system. For

detailed exploration of those ideas, we refer interested readers to the textbooks Clarke et al.

(1999) and Baier and Katoen (2008). Temporal logic model checking is now part of several

academic and commercial tools, such as NuSMV (Cimatti et al. (1999)), SPIN (Holzmann

(1997)), and LTSmin (Kant et al. (2015)). These tools have been used successfully to verify

a range of significant practical applications, from high-level descriptions of distributed al-

gorithms and cache coherence protocols to detailed code for telephone exchanges, railway

interlocking systems, and aircraft collision avoidance systems.

6.6.2 Planning and synthesis with temporal logics

LTL and CTL have been extensively used to specify requirements for the controller syn-

thesis problem for cyberphysical and robotic systems (recall Definition 3.6). The problem

as formulated by Kress-Gazit et al. (2009) is as follows: given (a) an LTL specification for

the tasks of an agent (ψs), (b) a model of the agent’s movements and actions, and (c) a tem-

poral logic specification of how the environment reacts to agent’s actions (ψe), construct (if

possible) a controller so that the agent’s resulting trajectories and actions satisfy the speci-

fication (ψs), in any environment satisfying ψe, from any possible initial state. A standard

synthesis approach for this problem is based on first discretizing the environment of the

agent. Constructing a discrete controller or an automaton that meets an LTL specification

is a well-studied problem in computer science and Pnueli and Rosner (1989) show that

generally the problem is doubly exponential in the size of the formula. However, by re-

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

6.6 Further reading 179

stricting the specification to a special subclass of LTL called generalized reactivity GR(1),

one can use the algorithm of Piterman et al. (2006) which is polynomial in the size of the

state space. Kress-Gazit et al. (2009) take this approach to the above synthesis problem and

then uses low-level continuous state space controllers to implement the discrete transitions

coming from Piterman et al. (2006). In order to gain computational tractability, variants of

this approach exploiting specific properties of the environment such as planarity, restricted

types of dynamics, and restricted types of specifications have been developed by Kloet-

zer and Belta (2008); Tabuada (2008); Sadraddini and Belta (2019); Wongpiromsarn et al.

(2011); Raman et al. (2015) and several others.

6.6.3 Dense time, signal, and stochastic temporal logics

There are several variants of temporal logics and corresponding verification algorithms.

Timed CTL (TCTL) adds a timed until operator, clock variables, and clock constraints

in formulas, and thus enables reasoning about clocks and dense time in timed automata.

TCTL is the logic of choice for the UPPAAL model-checking tool (Bengtsson et al. (1996)).

Metric Temporal Logic (MTL) is a linear logic in which the modalities of LTL are aug-

mented with timing constraints (Koymans (1990b)). For example, �(walkButton =⇒

(3(0,10)lightRed)) in MTL means that lightRed will become true sometime in the next 10

time units when walkButton holds. The verification problem for timed automata with re-

spect to MTL requirements has been shown to be undecidable (Alur et al. (1996)). That

led to the creation of Metric Interval Temporal Logic (MITL) (Alur et al. (1996)); it forbids

singleton or punctual intervals (for example, 3{10}), which are allowed in MTL.

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

180 Chapter 6 Specifying requirements

Signal Temporal Logic (STL) introduced by Maler and Nickovic (2004) extends MTL

further to include real-valued constraints. For example, the STL formula

�(x[t] < 5.5 =⇒ (3(0,10)lightGreen))

allows the numerical predicate x[t] < 5.5 to play the role of atomic propositions. That

generalization of the syntax has led several researchers to consider more continuous or

quantitative semantics for temporal logics (Donzé and Maler (2010); Fainekos and Pappas

(2009)). That is, instead of interpreting formulas to be merely true or false, we can consider

the distance of a formula from being true. For example, the Boolean satisfaction of the

inequality x[t] ≤ 5.5 does not distinguish between x = 5.5 + ε and x � 5.5; both are

classified as false. Similarly, we cannot distinguish between marginal satisfaction by x =

c− ε and a more robust satisfaction by x � c. The broad idea is to associate a real number,

often called the robustness degree, with a requirement-behavior pair (R, α) that measures

the distance between α and the set [[R]] of all behaviors that satisfy R. The robustness

degree is positive when α is deeper inside [[R]] and more negative the farther α is from

[[R]]. Donzé and Maler (2010) present an efficient dense-time algorithm for computing

these measures for piecewise-linear signals and for computing the measures’ sensitivity to

parameter variations.

Along a different axis, Probabilistic CTL (PCTL) (Hansson and Jonsson (1994)) and

Continuous Stochastic Logic (CSL) (Aziz et al. (2000)) add probabilistic operators on top

of temporal logics and have been used for analyzing the performance and reliability of

systems. For example, the PCTL formula P≥0.5(walkButton =⇒ (3(0,10)lightRed)) means

that with a probability of at least 0.5, lightRed turns on within 10 time units of walkButton.

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

6.6 Further reading 181

The time domain for PCTL is N and that for CSL is R≥0. The stochastic analog of the

verification problem has to decide, given a PCTL (or CSL) formula f that describes the

requirement and a probabilistic model A (such as a Markov chain or a Markov decision

process), whether the model A satisfies the property f . There are two main approaches

to solving the problem: numerical and statistical. In the numerical approach, symbolic

and numerical methods are used to model-check the formal model A for correctness with

respect to f . The alternative statistical approach is based on Monte Carlo simulation of the

model and performance of sequential hypothesis testing on the generated samples (Younes

and Simmons (2002); Sen et al. (2005a)). Each of those approaches has been implemented

in several tools (Hermanns et al. (2000); Hinton et al. (2006); Sen et al. (2005b)).

6.6.4 Runtime verification and monitoring

Verification algorithms may also be used for monitoring cyberphysical systems Bartocci

and Falcone (2018); Sistla et al. (2011); Duggirala et al. (2014). The problem setup here

is for the monitoring algorithm to execute concurrently with the actual implementation of

the cyberphysical system: it takes as input estimates of the current state of the system and

has to detect or raise an alarm sometime before the requirement is violated. This online

version of the verification problem is referred to as runtime verification or monitoring.

For this use case, the verification algorithm runs periodically, say every δ seconds, on

the system being analyzed. At time t, the algorithm takes as input the system modelA and

the current state estimate Θt ⊆ val(V), and decides whether or not the requirements will

be violated by any of the executions starting from Θt in the future, up to some lookahead

time-bound of T seconds. For the analysis to be actionable, δ must be much smaller than

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

182 Chapter 6 Specifying requirements

T . For an automotive application, the lookahead time-bound T may be 6 seconds, and the

period of computation δ may be 10 to 100 milliseconds. For nondeterministic models with

large errors in state estimation (Θt), the verification algorithms may have to check large

sets of executions in a short amount of time. A survey of requirements-based monitoring

techniques is presented by Bartocci et al. (2018).

6.7 Problems

Exercise 6.11. Consider the SLPlatoon automaton of Section 5.9 modeling a platoon of

3 vehicles on the highway. Define appropriate atomic propositions using the variables of

SLPlatoon and express the following requirements in CTL.

(a) “All vehicles always maintain a separation of at least dmin and at most dmax.”

(b) “If Car1 brakes then the other cars also eventually brake.”

(c) “If any car goes from cruising to braking, then passes through reacting mode in be-

tween.”

Exercise 6.12. Five philosophers are sitting around a table, taking turns thinking and eat-

ing. Let us assume that the system has the following atomic propositions: ei, philosopher

i is currently eating; fi, philosopher i just finished eating. Express the following proper-

ties of the system in CTL using only the EU, EX, and EF operators. Start by using any

operator to write the property, and then convert.

(a) “Philosophers 1 and 4 never eat at the same time.”

(b) “If philosopher 4 has finished eating, she cannot eat again until philosopher 3 has

begun eating.

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

6.7 Problems 183

(c) “Philosopher 2 will be the first to eat.”

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 8, 2020 12:30am

