
Principles of Safe Autonomy:
Lecture 12-13:

Filtering and Robot Localization
Sayan Mitra

March 9, 2020

Reference: Probabilistic Robotics by Sebastian Thrun, Wolfram Burgard, and Dieter Fox
Slides: From the book’s website

Announcements

• No final exam
• Unless Class Project has to be significantly downgraded because of coronavirus

and University closure

• New date for Midterm 2: Wed April 15th

• MP4 + HW3 will be release this week
• Classes may go online after spring break
• Install zoom application
• Stay healthy and stay tuned

Autonomy
pipeline

Control

Dynamical models of
engine, powertrain,
steering, tires, etc.

Decisions and
planning

Programs and multi-
agent models of

pedestrians, cars,
etc.

Perception

Programs for object
detection, lane
tracking, scene

understanding, etc.

Sensing

Physics-based
models of camera,

LIDAR, RADAR, GPS,
etc.

GEM platform

Control

Dynamical models of
engine, powertrain,
steering, tires, etc.

Decisions and
planning

Programs and multi-
agent models of

pedestrians, cars,
etc.

Perception

Programs for object
detection, lane
tracking, scene

understanding, etc.

Sensing

Physics-based
models of camera,

LIDAR, RADAR, GPS,
etc.

Outline

• Introduction: Localization problem, taxonomy
• Discrete Bayes Filter
• Histogram filter
• Grid localization

• Particle filter
• Monte Carlo localization

• Conclusions

Localization problem (MP4)

• Determine the pose of the robot relative to the
given map of the environment
• Pose: position, velocity, attitude, angles
• Also known as position or state estimation problem

• First: why localize?
• How does your robot know its position in ECEB?
• “Localization is the biggest hack in autonomous

cars” --- people drive without localization

Setup

• System evolution: 𝑥"#$ = 𝑓 𝑥", 𝑢"
• 𝑥": unknown state of the system at time t
• 𝑢": known control input at time t
• 𝑓: known dynamic function, possibly

stochastic

• Measurement: 𝑧" = 𝑔(𝑥",𝑚)
• 𝑧": known measurement of state 𝑥" at time 𝑡
• 𝑚: unknown underlying map
• 𝑔: known measurement function

𝑚
This is not exactly the measurement model of MP4

𝑥"

𝑧"[1]

𝑧"[2]

𝑧"[3]

Localization as coordinate transformation

m

zt-1 zt zt+1

ut-1 ut ut+1

xt-1 xt xt+1
Shaded known:
map (m), control inputs (u),
measurements(z). White nodes
to be determined (x)

maps (m) are described in
global coordinates. Localization
= establish coord transf.
between m and robot’s local
coordinates

Transformation used for objects
of interest (obstacles,
pedestrians) for decision,
planning and control

Localization taxonomy
Global vs Local
• Local: assumes initial pose is known, has to only account for the uncertainty

coming from robot motion (position tracking problem)
• Global: initial pose unknown; harder and subsumes position tracking
• Kidnapped robot problem: during operation the robot can get teleported to

a new unknown location (models failures)
Static vs Dynamic Environments
Single vs Multi-robot localization
Passive vs Active Approaches
• Passive: localization module only observes and is controlled by other means;

motion not designed to help localization (Filtering problem)
• Active: controls robot to improve localization

Ambiguity in global localization arising from
locally symmetric environment

Discrete Bayes Filter Algorithm

• System evolution: 𝑥"#$ = 𝑓 𝑥", 𝑢"
• 𝑥": state of the system at time t
• 𝑢": control input at time t

• Measurement: 𝑧" = 𝑔(𝑥",𝑚)
• 𝑧":measurement of state 𝑥" at time 𝑡
• 𝑚: unknown underlying map

Setup, notations

• Discrete time model
• 𝑥"5:"6 = 𝑥"5, 𝑥"5#$, 𝑥"5#7, … , 𝑥"6 sequence of robot states 𝑡$to 𝑡7
• Robot takes one measurement at a time
• 𝑧"5:"6 = 𝑧"5, … , 𝑧"6 sequence of all measurements from 𝑡$to 𝑡7

• Control also exercised at discrete steps
• 𝑢"5:"6 = 𝑢"5, 𝑢"5#$, 𝑢"5#7, … , 𝑢"6 sequence control inputs

State evolution and measurement models

Evolution of state and measurements governed by probabilistic laws
𝑝 𝑥" 𝑥::";$, 𝑧$:";$, 𝑢$:") describes motion/state evolution model
• If state is complete, sufficient summary of the history then
• 𝑝 𝑥" 𝑥::";$, 𝑧::";$, 𝑢::";$) = 𝑝 𝑥" 𝑥";$, 𝑢") state transition prob.
• 𝑝 𝑥′ 𝑥, 𝑢) if transition probabilities are time invariant

zt-1
zt

zt+

1

ut-1 ut
ut+

1

xt-1 xt
xt+

1

Measurement model

Measurement process 𝑝 𝑧" 𝑥::", 𝑧$:";$, 𝑢::";$)
• Again, if state is complete
• 𝑝 𝑧" 𝑥::", 𝑧$:";$, 𝑢$:") = 𝑝 𝑧" 𝑥")
• 𝑝 𝑧" 𝑥"): measurement probability
• 𝑝 𝑧 𝑥): time invariant measurement probability

zt-1
zt

zt+

1

ut-1 ut
ut+

1

xt-1 xt
xt+

1

Beliefs

Belief: Robot’s knowledge about the state of the environment
True state is unknowable / measurable typically, so, robot must infer state from data
and we have to distinguish this inferred/estimated state from the actual state 𝑥"

𝑏𝑒𝑙(𝑥") = 𝑝(𝑥"|𝑧$:", 𝑢$:")

Posterior distribution over state at time t given all past measurements and control

Prediction: 𝑏𝑒𝑙(𝑥") = 𝑝(𝑥"|𝑧$:";$, 𝑢$:")

Calculating 𝑏𝑒𝑙(𝑥") from 𝑏𝑒𝑙(𝑥") is called correction or measurement update

Recursive Bayes Filter

Algorithm Bayes_filter(𝑏𝑒𝑙 𝑥";$, 𝑢", 𝑧")
for all 𝑥" do:

𝑏𝑒𝑙 𝑥" = ∫ 𝑝(𝑥"|𝑢",𝑥";$)𝑏𝑒𝑙(𝑥";$)𝑑𝑥";$
𝑏𝑒𝑙 𝑥" = 𝜂 𝑝 𝑧" 𝑥" 𝑏𝑒𝑙(𝑥")

end for
return 𝑏𝑒𝑙(𝑥")

𝑏𝑒𝑙 𝑥";$

𝑥"
𝑝′

1
𝑝$

2
𝑝7

3
𝑝D

𝑝 𝑥"|𝑢", 1

𝑝 𝑥"|𝑢", 2

𝑝 𝑥"|𝑢", 3

𝑏𝑒𝑙 𝑥";$

𝑏𝑒𝑙(𝑥")

𝑝 𝑧" 𝑥"

Histogram Filter or Discrete Bayes Filter

Finitely many states 𝑥E, 𝑥F, 𝑒𝑡𝑐. Random state vector 𝑋"
𝑝F,": belief at time t for state 𝑥F; discrete probability distribution

Algorithm Discrete_Bayes_filter(𝑝F,";$, 𝑢", 𝑧"):
for all 𝑘 do:

�̅�F," = ∑E 𝑝(𝑋" = 𝑥F|𝑢",𝑋";$ = 𝑥E)𝑝E,";$
𝑝F," = 𝜂 𝑝 𝑧" 𝑋" = 𝑥F)�̅�F,"

end for
return {𝑝F,"}

𝑏𝑒𝑙 𝑥";$

𝑥F
𝑝′

1
𝑝$,";$

2
𝑝7,";$

3
𝑝D,";$

𝑝 𝑥F|𝑢", 1

𝑝 𝑥"|𝑢", 2

𝑝 𝑥"|𝑢", 3

𝑏𝑒𝑙 𝑥";$

𝑏𝑒𝑙(𝑥")

𝑝 𝑧" 𝑥"

Grid Localization

• Solves global localization in some cases kidnapped robot problem
• Can process raw sensor data
• No need for feature extraction

• Non-parametric
• In particular, not bound to unimodal distributions (unlike Extended Kalman

Filter)

Grid localization

Algorithm Grid_localization (𝑝F,";$, 𝑢", 𝑧",𝑚)
for all 𝑘 do:

�̅�F," = ∑E 𝑝E,";$𝒎𝒐𝒕𝒊𝒐𝒏_𝒎𝒐𝒅𝒆𝒍(𝑚𝑒𝑎𝑛 𝑥F , 𝑢",𝑚𝑒𝑎𝑛 𝑥E)
𝑝F," = 𝜂 �̅�F,"𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕_𝒎𝒐𝒅𝒆𝒍(𝑧",𝑚𝑒𝑎𝑛 𝑥F ,𝑚)

end for
return 𝑏𝑒𝑙(𝑥")

20

Piecewise Constant Representation

),,(>=< qyxxBel t
Fixing an input ut we
can compute the new
belief

Start

Motion Model without measurements

𝑚𝑒𝑎𝑛 𝑥F

Proximity Sensor Model

Laser sensor Sonar sensor

𝑥F

𝑝 𝑧" 𝑋" = 𝑥F)

𝑚

23

Grid localization,
𝑏𝑒𝑙 𝑥" represented by a
histogram over grid 𝑝(𝑧|𝑥)

𝑝(𝑧|𝑥)

Summary

• Key variable: Grid resolution
• Two approaches

• Topological: break-up pose space into regions of significance (landmarks)
• Metric: fine-grained uniform partitioning; more accurate at the expense of higher

computation costs
• Important to compensate for coarseness of resolution

• Evaluating measurement/motion based on the center of the region may not be
enough. If motion is updated every 1s, robot moves at 10 cm/s, and the grid resolution
is 1m, then naïve implementation will not have any state transition!

• Computation
• Motion model update for a 3D grid required a 6D operation, measurement update 3D
• With fine-grained models, the algorithm cannot be run in real-time
• Some calculations can be cached (ray-casting results)

25

Grid-based Localization

29

Sonars and
Occupancy Grid Map

Monte Carlo Localization

• Represents beliefs by particles

• Represent belief by finite number of parameters (just like histogram filter)

• But, they differ in how the parameters (particles) are generated and populate
the state space

• Key idea: represent belief 𝑏𝑒𝑙 𝑥" by a random set of state samples

• Advantages

• The representation is approximate and nonparametric and therefore can
represent a broader set of distributions than e.g., Gaussian

• Can handle nonlinear tranformations

• Related ideas: Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap
filter, Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96], Dynamic Bayesian
Networks: [Kanazawa et al., 95]d

Particle Filters

Particle filtering algorithm
𝑋" = 𝑥"

[$], 𝑥"
[7], … 𝑥"

[^] particles

Algorithm Particle_filter(𝑋";$, 𝑢", 𝑧"):_𝑋";$ = 𝑋" = ∅
for all 𝑚 in [M] do:

sample 𝑥"
[a]~𝑝 𝑥" 𝑢", 𝑥";$

[a])

𝑤"
[a] = 𝑝 𝑧" 𝑥"

a

_𝑋" = _𝑋" + ⟨ 𝑥"
a , 𝑤"

[a]⟩
end for
for all 𝑚 in [M] do:

draw 𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝ 𝑤"
[E]

add 𝑥"
[E] 𝑡𝑜 𝑋"

end for

return 𝑋"

ideally, 𝑥"
[a] is selected with probability prop. to

𝑝 𝑥" 𝑧$:", 𝑢$:")
_𝑋";$ is the temporary particle set

// sampling from state transition dist.

// calculates importance factor 𝑤" or weight

// resampling or importance sampling; these are
distributed according to 𝜂 𝑝 𝑧" 𝑥"

[a] 𝑏𝑒𝑙 𝑥"
// survival of fittest: moves/adds particles to parts of
the state space with higher probability

Weight samples: w = f / g

Importance Sampling

suppose we want to compute 𝐸n 𝐼 𝑥 ∈ 𝐴 but
we can only sample from density 𝑔

𝐸n 𝐼 𝑥 ∈ 𝐴

= ∫ 𝑓 𝑥 𝐼 𝑥 ∈ 𝐴 𝑑𝑥

= ∫ n r
s r

𝑔 𝑥 𝐼 𝑥 ∈ 𝐴 𝑑𝑥, provided 𝑔 𝑥 > 0

= ∫ 𝑤 𝑥 𝑔 𝑥 𝐼 𝑥 ∈ 𝐴 𝑑𝑥
= 𝐸s 𝑤(𝑥)𝐼 𝑥 ∈ 𝐴

We need 𝑓 𝑥 > 0 ⇒ 𝑔 𝑥 > 0

Monte Carlo Localization (MCL)
𝑋" = 𝑥"

[$], 𝑥"
[7], … 𝑥"

[^] particles

Algorithm MCL(𝑋";$, 𝑢", 𝑧",m):
_𝑋";$ = 𝑋" = ∅
for all 𝑚 in [M] do:

𝑥"
[a] = 𝒔𝒂𝒎𝒑𝒍𝒆_𝒎𝒐𝒕𝒊𝒐𝒏_𝒎𝒐𝒅𝒆𝒍(𝑢" 𝑥";$

[a])

𝑤"
[a] = 𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕_𝒎𝒐𝒅𝒆𝒍(𝑧", 𝑥"

a ,a)
_𝑋" = _𝑋" + ⟨ 𝑥"

a , 𝑤"
[a]⟩

end for

for all 𝑚 in [M] do:

draw 𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝ 𝑤"
[E]

add 𝑥"
[E] 𝑡𝑜 𝑋"

end for

return 𝑋"

Plug in motion and measurement models
in the particle filter

Particle Filters

)|(
)(

)()|(
)()|()(

xzp
xBel

xBelxzpw

xBelxzpxBel

aa
a

=¬

¬

-

-

-

Sensor Information: Importance Sampling

The picture can't be displayed.
ò¬- 'd)'()'|()(, xxBelxuxpxBel

Robot Motion

)|(
)(

)()|(
)()|()(

xzp
xBel

xBelxzpw

xBelxzpxBel

aa
a

=¬

¬

-

-

-

Sensor Information: Importance Sampling

Robot Motion

ò¬- 'd)'()'|()(, xxBelxuxpxBel

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Sample-based Localization (sonar)

61

Initial Distribution

62

After Incorporating Ten Ultrasound
Scans

63

After Incorporating 65 Ultrasound Scans

64

Estimated Path

Using Ceiling Maps for Localization

Vision-based Localization

P(z|x)

h(x)
z

Under a Light
Measurement z: P(z|x):

Next to a Light
Measurement z: P(z|x):

Elsewhere
Measurement z: P(z|x):

Global Localization Using Vision

71

Limitations

• The approach described so far is able to
• track the pose of a mobile robot and to
• globally localize the robot.

• Can we deal with localization errors (i.e., the kidnapped robot
problem)?
• How to handle localization errors/failures?
• Particularly serious when the number of particles is small

72

Approaches
• Randomly insert samples

• Why?
• The robot can be teleported at any point in time

• How many particles to add? With what distribution?
• Add particles according to localization performance
• Monitor the probability of sensor measurements 𝑝(𝑧"|𝑧$:";$, 𝑢$:", 𝑚)

• For particle filters: 𝑝(𝑧"|𝑧$:";$, 𝑢$:", 𝑚) ≈
$
^
∑𝑤"

[a]

• Insert random samples proportional to the average likelihood of the
particles (the robot has been teleported with higher probability when the
likelihood of its observations drops).

73

Random Samples
Vision-Based Localization
936 Images, 4MB, .6secs/image
Trajectory of the robot:

74

Kidnapping the Robot

80

Summary
• Particle filters are an implementation of recursive

Bayesian filtering
• They represent the posterior by a set of weighted

samples.
• In the context of localization, the particles are

propagated according to the motion model.
• They are then weighted according to the likelihood of

the observations.
• In a re-sampling step, new particles are drawn with a

probability proportional to the likelihood of the
observation.

