
Principles of Safe Autonomy
ECE 498 SMA

Lecture 4: ROS

Professors: Joohyung Kim and Sayan Mitra

Graduate Teaching Assistants: Tianqi (Ted) Liu and Yangge Li

Undergraduate Assistants: Qichao Gao and Hebron Taylor

Plan

► Background

► Brief Introduction on ROS

► ROS Node, Messaging

► Code

Let’s build a house cleaning robot

► 1. Camera to observe environment
► 2. 2 motors to power the wheels
► 3. Microcontroller (Arduino, RosberryPi)

 to control the robot
4. A vacuum cleaner

How Hard can it be?

Camera is easy to use, right?

► Need Software Development Kit (SDK) between
our application and camera to interpret the signal
from camera to RGB image and send command to
camera

► “The realization of intelligent solutions requires
additional software that is suitable to run with the
camera.”

--Mako Camera User Manual

Digital Camera

Camera SDK

Control
application

https://cdn.alliedvision.com/fileadmin/content/documents/products/cameras/Mako/QuickStart_Guide/Mako-G_QuickStart-Guide.pdf

Simple Roomba

Digital Camera

Camera SDK

Lane Detection
Module

2

1

3

4

Motor Controller
Module

Wheel Motor
SDK

Wheel Motor

5

6

7

Vacuum Motor

Vacuum Motor
SDK

Vacuum
Controller Module

10

9

8

1.Can we do multiple tasks at the same
time?

► Case 1. The motor controller module and vacuum controller module
have no dependence on each other. They should be able to run in
parallel.

► Case 2. The lane detection module needs image data from camera
module. So they should run in sequence.

2.What if things become a bit more
complicated?

► Imagine we have a lane detection module and a face recognition
module, both needs to read image data from camera. It would be a
tedious process if they individually communicate with camera
hardware. We want some centralized system to set up those
connections automatically through some carefully designed
messaging interfaces.

3.Can we reuse the modules?

► If we developed a lane detection module, we might want to use it on
both a self-driving car and a Roomba. The software needs to be
independent of hardware.

What do we want?

► 1. Asynchronous System. Unrelated code can run in parallel to
improve efficiency.

► 2. Encapsulation. Standardize the interface. So that we can build
complex systems

► 3. Abstraction. Separate different parts of applications. So we can
reuse code for different systems

ROS can give us all of them (plus more)

What is ROS?

► It is a open source framework with a set of tools, libraries and
interfaces that helps users to set up a robot quickly.

► Founded by Willow Garage(a robotics incubator) at Stanford
University in 2007

► ROS 1 and ROS 2 are different . We are using ROS 1 Kinetic in this
course because the GEM car uses it.

http://design.ros2.org/articles/changes.html

What is ROS?

► It is NOT an operating system
► It is a “meta-operating system” for

robots
► It is a middleware between operating

system and applications

Application

ROS

UNIX Operating System

Why ROS?

► Support modular and distributed design. (Pick whatever you want)
ROS separates different parts of your code into different nodes,
manages their builds and dependencies. So we can develop and
compile them separately, thus minimize compatibility issues. When
adding new modules developed by others, no matter the hardwares
or software, we can just “plug in” to the existing project

Why ROS?

► Enable communication between different systems (TCP and UDP
under the hood)

Why ROS?

➢ Support and documentation
(1) Multiple Languages: C++, Python and more
(2) Include existing tools: OpenCV, Point Cloud Library, OpenRAVE
(3) Huge Community (>3000 packages)

Restrictions on ROS

► ROS1 only works on Linux Systems(officially). MacOS and Windows
users can install Ubuntu Virtual Machines.

► ROS is based on UNIX platforms. Hence it will NOT work on a real
time operating system (RTOS) or real time applications. No guarantee
on how much time it will take to finish processes.

► Some autonomous driving companies modified ROS to RTOS

Let’s dive a bit deeper into the details….

ROS Node

► A node is an executable that can communicate with each other in
ROS

► Each node is a process. You can run multiple nodes in one machine.
► Your system (roomba, self driving car...) is a peer to peer network of

ROS nodes. No central server. Data is passed between nodes.
► Master:

1. register the node and find other nodes. Name service like DNS
server
2. contains parameter server, a shared, multi-variate dictionary that is
accessible via network APIs. Nodes use this server to store and
retrieve parameters at runtime.

http://wiki.ros.org/Nodes

ROS Topic

► A topic is a named bus through which nodes can exchange data.
► ROS topic is for unidirectional streaming
► The node that sends out data is called Publisher
► The node that receives data is called Subscriber
► One topic can have multiple publishers and multiple subscribers
► Use rostopic list to see all the topics that are alive

ROS Message

► ROS Nodes communicate through
messages

► A message is a data structure, with
typed fields

► The type of each field of the
message is strictly defined (double,
array of int32...)

ROS Messaging Procedure :

1. Publisher node register at Master node, saying it wants to publish
some data through the topic
2. Subscriber node register at Master node, saying it wants to
subscribe to the topic
4. Master send back information to publisher and subscriber. Let
them know the existence of each other
5. Publisher sends Message to all Subscribers
6. Subscribers receive Message, trigger some callback functions

ROS Messaging

Master

SubscriberPublisher Strong Typed Message

Register
Register

Topic

Remember what we want? We got them all.

Example(from MP1 studentVision.py):

Example:

ROS Bags

► .bag is a file type that stores message data. It can be recorded or
played by rosbag tool.

► Record: rosbag subscribe to one or multiple rostopics, store all data in
the topics into .bag file.

► Replay: rosbag play the .bag file, send out data through the topics(or
new topics), just like the original node.

How to debug ROS?

► Shut down one node, change code and recompile while the rest of
nodes are running

► Use rosbag to record data streams and replay them
► Use “Rostopic echo” to livestream the data in command terminal, or

use Rviz to visualize the data

A lot more to explore...

► We have only discussed ROS in computational graph level, you can
explore more on File system level and Community level.

► If you want to define the type of message by yourself, you need to
use Catkin workspace to create your own package. Then use
roslaunch to run it. We will see it in MP2.

http://wiki.ros.org/catkin/workspaces

What we just learned is only a tip of the iceberg. Please checkout
the ROS Wiki and go over the tutorial for beginner’s level.

http://wiki.ros.org/
http://wiki.ros.org/ROS/Tutorials#Beginner_Level

