Modeling and Control

17 Feb

Simplified view of a plant and a controller

$$\frac{dx}{dt} = f(x, u(t), t); \quad y(t) = h(x(t));$$
$$e(t) = y(t) - y_d(t)$$

$$u(t) = g(e(t), t)$$

The process of causing a system variable to conform to some desired value

$$\frac{dx}{dt} = f(x, u(t), t); \quad y(t) = h(x(t));$$
$$e(t) = y(t) - y_d(t)$$

$$u(t) = g(e(t), t)$$

Use action u to make error e = 0

Bang-Bang Controller

- Controller
 - $e(t) < 0 \Rightarrow u(t) = constant$
 - $e(t) > 0 \Rightarrow u(t) = -constant$
- To prevent chattering around e(t) = 0
 - $e(t) < -a \Rightarrow u(t) = constant$
 - $e(t) > a \Rightarrow u(t) = -constant$

• Most common residential thermostats are bang-bang controllers.

Bang-Bang controller

- Good for reaching the setpoint
- It cannot track the setpoint accurately.

Proportional Control

• Use action u to make error e = 0

• $u(t) = k_p e(t)$

- The controller gain k_p determines how quickly the system responds to error.
 - If k_p is small, error e(t) can be large.
 - If k_p is too large, the system may oscillate or become unstable.

Proportional Control

- Increasing gain approaches setpoint faster
- Can lead to overshoot, and even instability
- Steady-state offset

Proportional-Integral (PI) Control

• We can add an integral term to the Proportional controller.

$$u(t) = k_p e(t) + k_I \int_0^t e(\tau) d\tau$$

- Advantages of PI control
 - Eliminating steady-state offset

Proportional-Derivative (PD) control

- Damping friction is a force opposing motion, proportional to velocity
- We can add the rate of change of the error.

$$u(t) = k_p e(t) + k_d \frac{de}{dt}$$

- Advantages of PD control
 - Reducing the overshoot of a P controller response
 - Improving the system's tolerance to external disturbances
- Estimating a derivative from measurements is not easy, and it can amplify noise.

Derivative Control

• Reducing overshoot and oscillation

Effect of Derivative Control

• Different amount of damping

Derivatives Amplify Noise

• A problem if control output depends on slope with a high gain

PID control

- 90% (or more) of control loops in industry are PID
- Simple control design model \rightarrow simple controller
- The standard form of a PID controller:

$$u(t) = k_p e(t) + k_I \int_0^t e(\tau) d\tau + k_d \frac{de}{dt}$$

- where the error term $e(t) = y(t) y_d(t)$
- $y_d(t)$: desired output or setpoint value
- k_p , k_I , k_d : constant gains
- Advantages
 - Removal of steady-state error
 - Reducing overshoots
 - Transient response time

PID Control

...when it is tuned well

Choosing proportional gain k_p in PID

Response of y(t) to step change of $y_d(t)$ vs time, for three values of K_p (K_i and K_d held constant) Fig. from wikipedia

Ziegler-Nichols method of tuning PID

- 1. Set k_d and k_i to zero.
- 2. Increase k_p until the system start to oscillate at a frequency.
- 3. Set the oscillation period as T_u and $k_u = k_p$.

4.
$$u(t) = k_p e(t) + k_I \int_0^t e(\tau) d\tau + k_d \frac{de}{dt}$$

	k_p	k _I	k _d
Р	$0.5k_u$		
PI	$0.5k_u$	$1.2k_u/T_u$	
PD	$0.8k_u$		$k_u T_u/8$
PID	$0.5k_u$	$2k_u/T_u$	$k_u T_u/8$

