Modeling and Control
 12 Feb

DARPA Robotics Challenge

- 4 points task
- Robot drives the vehicle through the course (1)
- Robot gets out of the vehicle and travels dismounted out of the end zone (2)
- Bonus point (1)

(π)

Control?

The process of causing a system variable to conform to some desired value

Example: Cruise Control

What do we want to control?
-> Car position and orientation

What can we use?
-> Steering wheel and pedal(s)

GEM system

Dynamical system models

A Nonlinear dynamics
Generally, nonlinear ODEs do not have closed form solutions!

Dubin's car model	
$\dot{v}=a$	Speed
$\frac{d s_{x}}{d t}=v \cos (\psi)$	Horizontal position
$\frac{d s_{y}}{d t}=v \sin (\psi)$	Vertical position
$\frac{d \delta}{d t}=v_{\delta}$	Steering angle
$\frac{d \psi}{d t}=\frac{v}{l} \tan (\delta)$	Heading angle

Physical plant
$\frac{d x}{d t}=f(x, u)$
$x[t+1]=f(x[t], u[t])$
$x=\left[v, s_{x}, s_{y}, \delta, \psi\right]$
$u=\left[a, v_{\delta}\right]$$\quad$ State variablem dynamics \quad Control inputs

Nonlinear hybrid dynamics

Physical plant
$\frac{d x}{d t}=f(x, u)$
$x[t+1]=f(x[t], u[t])$
$x=\left[v, s_{x}, s_{y}, \delta, \psi\right]$
$u=\left[a, v_{\delta}\right]$

A Nonlinear hybrid dynamics
Interaction between computation and physics can lead to unexpected behaviors

Simplified view of a plant and a controller

$$
\begin{aligned}
& \frac{d x}{d t}=f(x, g(x), t) \\
& \dot{x}=f(x, g(x), t)
\end{aligned}
$$

Model?

A set of mathematical relationships among the system variables

Dynamical Systems Model

Describe behavior in terms of instantaneous laws

$$
\frac{d x(t)}{d t}=f(x(t), u(t), t)
$$

$t \in \mathbb{R}, x(t) \in \mathbb{R}^{n}, u(t) \in \mathbb{R}^{m}$
$f: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R} \rightarrow \mathbb{R}^{n}$ dynamic function

Example: Pendulum

Pendulum equation

$x_{1}=\theta \quad x_{2}=\dot{\theta}$
$x_{2}=\dot{x}_{1}$
$\dot{x}_{2}=-\frac{g}{l} \sin \left(x_{1}\right)-\frac{k}{m} x_{2}$
$\left[\begin{array}{l}\dot{x_{2}} \\ \dot{x_{1}}\end{array}\right]=\left[\begin{array}{c}-\frac{g}{l} \sin \left(x_{1}\right)-\frac{k}{m} x_{2} \\ x_{2}\end{array}\right]$
k : friction coefficient
What is described?
-> Center of mass movement relative to the origin

Coordinate system

- Configuration (pose) of robot can be described by position and orientation.

$$
\text { Car pose }=\left[\begin{array}{l}
x \\
y \\
\theta
\end{array}\right]
$$

Translation along the X -Axis and Y -Axis

$$
\begin{aligned}
& \overline{\mathrm{P}}^{\mathrm{XY}}=\left[\begin{array}{l}
\mathrm{P}_{\mathrm{X}} \\
\mathrm{P}_{\mathrm{Y}}
\end{array}\right] \\
& \overline{\mathrm{V}}^{\mathrm{NO}}=\left[\begin{array}{l}
\mathrm{V}^{\mathrm{N}} \\
\mathrm{~V}^{\mathrm{O}}
\end{array}\right] \\
& \overline{\mathrm{V}}^{\mathrm{XY}}=\overline{\mathrm{P}}^{\mathrm{XY}}+\overline{\mathrm{V}}^{\mathrm{NO}}=\left[\begin{array}{l}
\mathrm{P}_{\mathrm{X}}+\mathrm{V}^{\mathrm{N}} \\
\mathrm{P}_{\mathrm{Y}}+\mathrm{V}^{\mathrm{O}}
\end{array}\right]
\end{aligned}
$$

Rotation (Z-Axis)

$\theta=$ Angle of rotation between the XY and NO coordinate axis

$$
\overline{\mathrm{V}}^{\mathrm{XY}}=\left[\begin{array}{c}
\mathrm{V}^{\mathrm{X}} \\
\mathrm{~V}^{\mathrm{Y}}
\end{array}\right] \quad \overline{\mathrm{V}}^{\mathrm{NO}}=\left[\begin{array}{l}
\mathrm{V}^{\mathrm{N}} \\
\mathrm{~V}^{\mathrm{O}}
\end{array}\right]
$$

$$
\overline{\mathrm{V}}^{\mathrm{XY}}=\left[\begin{array}{c}
\mathrm{V}^{\mathrm{X}} \\
\mathrm{~V}^{\mathrm{Y}}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{c}
\mathrm{V}^{\mathrm{N}} \\
\mathrm{~V}^{\mathrm{O}}
\end{array}\right]
$$

- Rotation matrix

$$
R(\theta)=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

- An orthogonal (orthonormal) matrix
- Each column is a unit length vector
- Each column is orthogonal to all other columns
- The inverse is the same as the transpose

$$
R(\theta)^{-1}=R(\theta)^{T}
$$

- The determinant is 1
- Special Orthogonal group of dimension 2 $R(\theta) \in S O\{2\}$

Transformation

TurtleSim

- Turtle simulator
- simple way to learn the basics of ROS
- a ROS package, part of the ROS installation
- Explore the nodes, topics, messages, and services (roscore, rosnode, and rostopic commands)
\square मि Depausd Dube R R

Inbox：｜robotics worldwide］［jobs］Post－Doc and Research Associate positions at NTU，Singapore－The Robotics Research Centre at Nanyang Technological University（NTU，Singspore：prot．Dino Accoto．

 Inbox．Irobotics worldwide］［jobs］junior／senior software engineer for dextrous manipulation－in robotics？Are you driven to do more in robotics then one－oft demo videos？Dextrous Robot cs is a startu．．． nbox｜robotics－worldwide］［jobs］Multiple Research Fellow and Research Associate Positions in Autonomous Robotics at Nanyang Technological University－Ianked bth worldvide in the QS V／urld Univ－ nbox［robotics worldwide］［jobs］Computer Vision Engineer＠Saga Robotics－＊Gaga Robotics are currently looking tor a new full－time coworker with experience in computer vision systems and robot nbox｜robotics－worldwide］［jobs］Software Engineer＠Saga Robotics－Norway Saya Rojolics are currently louking for a new full－lirte cuworker wilt experience in soflware inleg aliun lo fulfil Inbox Irobotics worldwide］［jobs］Postdoctoral fellow \＆research engineer positions－Lngineering，Robotics，or reiated areas－Strong hands on experience Preference will be given to those with prior proj． nbox［robotics－worldwide］［jobs］Postdoc，Phd and engineering positions in a H2020 Seaclear project－syslens，rubotius and machintelearniny．The team has atcesss to several aerial and marine rotol．． Inbox Irobotics worldwide］［meetings］Lest Call for Registration：Mastering ROS Robot Manipulators Course－：Mastering ROS Robot Manipulators Course［LDRUARY 24 － 28 ， 2020 IN DARCLLONA，GRAI．． inbox［robotics－worldwide］［meetings］ICRA 2020 Workshop＂Transforming Specifications into Robot Programs：A Survey of Formal Methods Tools for Non－Experts＂－applicaliuns in iobulics．Huwever， Inbox．［robotics－worldwidel ljobs］Aeclus Rooot cs：Robotics Sottware［ngineer－Aeolus Robotics Inc．is a start－up robotics company．We are looking tor a driven Robotics Scttware［ngineers who are hen．． Inbox［robotics－worldwide］［jobs］Post Doctoral position on Socially Assistive Robotics in Clinical Geriatrics at Sorbonne University，Paris，France－Sucially Assistive Rubulics in Clinical Gerialrics＊onder． Inbox Irobotics－worldwide］［jobs］Research Associate in Computer Vision and Machine Learning for Robotics at UoL－Learning tor Robotics．＊Troject．＊The candidate will join an exciting project on auto． nbox｜robotics－worldwide］［jobs］Marine Robotics autonomy，path－planning，and multi－vehicle operation，PhD／Master＇s student opening，University of Rhode Island（Mingxi Zhou）－experience in rotoli－． nbox［robotics worldwide］［news］RoboCup 2020 Virtual Robot Competition－Second Call for Participation－Al／robatics research，tor exemple，behav or strategy（eg．multi－g gent planning，rea time／anyti．
 Inbox Irobotics worldwide］［news］RoboCup 2020 Virtual Robot Competition－Second Call for Participation－Al／robotics research，tor example，behavior strategy（eg，multi－egent planning，rea time／anyti． Inbox［robotics－worldwide］［meetings］Last Call for Early－Bird：Mastering Ros Robot Manipulators Course－Masleniny RoS RoLot Maniplators Cuurse＊＊Dale．＊February 24 －Fejuruary 28 ， 2020 ＊Lucali． Inbox Irobotics worldwide］［jobs］Robotics，Intelligent，and Autonomous Systems positions in Perth，Australia－Robotics［ngineer Intelligent and Autonomous Systems Oroup，Woodside［nergy，Perth，A．lan 23

Locomotion of Wheeled System

Differential Drive Model

Instantaneous Center of Curvature
$=[x-R \sin \theta, y+R \cos \theta]=\left[I C C_{x}, I C C_{y}\right]$

$$
\begin{aligned}
& \omega(R+l / 2)=v_{r} \\
& \omega(R-l / 2)=v_{l} \\
& R=\frac{l}{2} \frac{\left(v_{r}+v_{l}\right)}{\left(v_{r}-v_{l}\right)} \\
& \omega=\frac{v_{r}-v_{l}}{l}
\end{aligned}
$$

Rear Wheel Model (Dubin's model)

$$
\text { Car length }=l
$$

$$
\text { Car (real wheel) pose }=\left[\begin{array}{l}
x \\
y \\
\theta
\end{array}\right]
$$

$$
\text { Car speed }=v
$$

$$
\text { Car (front wheel) steering angle }=\delta
$$

$$
\begin{aligned}
\dot{x} & =v \cos \theta \\
\dot{y} & =v \sin \theta \\
\dot{\theta} & =\frac{v}{l} \tan \delta
\end{aligned}
$$

Rear Wheel Model (Dubin's model)

Car length $=l$

Car speed $=v$

Car (real wheel) pose $=\left[\begin{array}{l}x \\ y \\ \theta\end{array}\right]$
Car (front wheel) steering angle $=\delta$

$$
\begin{array}{lc}
\dot{x}=v \cos \theta \\
\dot{y}=v \sin \theta & \quad R \frac{d \theta}{d t}=\frac{d p_{r}}{d t}=v \\
\dot{\theta}=\frac{v}{l} \tan \delta & \longleftrightarrow \tan \delta=\frac{l}{R} \quad \Longrightarrow R=\frac{l}{\tan \delta}
\end{array}
$$

