
University of Illinois
at Urbana-Champaign

Lecture 19-21

Sayan Mitra
University of Illinois at Urbana-Champaign

mitras@Illinois.edu

Safety and Verification

mailto:mitras@Illinois.edu

Outline

• Why should you care about verification?
• Discrete models
• CTL and CTL model checking

• Timed and hybrid models (cyber-physical systems)
• Model checking timed and hybrid models
• Simulation-driven verification

Lecture Slides by Sayan Mitra mitras@illinois.edu

Building safe autonomous
systems is going to be much

harder than what we had
imagined …

“Challenge is not so much
building … but providing an

assurance that these systems
are safe” --- Dr. Sandeep
Neema, DARPA program

manager

Testing and verification will be
central to this enterprise

How many miles must an autonomous car drive
before we call it safe?

10 disengagements per 200 million miles?

0.07 fatalities per billion passenger miles
(commercial flight)

Probability of fatal failure per hour of driving 10−9

“30 billion miles of test driving is needed to
achieve acceptable levels of assurance!”

[Koopman, CMU] [Shashua, CTO Mobileye]

Dev.Assuranc
e Level (DAL)

Hazard
Classification

Objectives

A Catastrophic 71

B Hazardous 69

C Major 62

D Minor 26

E No Effect 0

Lecture Slides by Sayan Mitra mitras@illinois.edu

Regulations and Audits

DO178C

Primary document by which FAA
& EASA approves software-based
aerospace systems.

DAL establishes the rigor
necessary to demonstrate
compliance

Statement Coverage: Every
statement of the source code
must be covered by a test case

Condition Coverage: Every condition
within a branch statement must be
covered by a test case

What fraction of the cost of
developing a new aircraft is in
SW?

“Special credits”: For using formal
methods based tools recently
introduced

Crime records + Surveillance -> Predictions

Lecture Slides by Sayan Mitra mitras@illinois.edu

2008: LAPD starts explorations on forecasting crime using data
2013: Better prediction of crime hotspots in Santa Cruz evaluation
2016: Used in 50+ police department

Zach Friend. "Predictive Policing: Using Technology to
Reduce Crime". Federal Bureau of Investigation. Dec.
2013.

Is the algorithm

Lecture Slides by Sayan Mitra mitras@illinois.edu

safe ?secure ?private?fair?

Futureproof research area

Formal verification can provide:
standards, processes, tools, and trained
individuals to ensure that cyber-physical systems
meet the standards

Lecture Slides by Sayan Mitra mitras@illinois.edu

An earlier instance: microprocessor industry

Electronic design automation industry

Lecture Slides by Sayan Mitra mitras@illinois.edu

500B
8.5B

Defects become more expensive with
time

Lecture Slides by Sayan Mitra mitras@illinois.edu

time

co
st

 o
f b

ug

How to Cut Software-Related Medical Device Failures and Recalls, Lisa Weeks

Lecture Slides by Sayan Mitra mitras@illinois.edu

Tu
rin

g
Aw

ar
d

w
in

ne
rs

Audit algorithms with Algorithms and find
problems early

Lecture Slides by Sayan Mitra mitras@illinois.edu

certificate

algorithm /
system model bug trace verification

algorithm/tool
requirements

Relevant courses: Theory of computation, Program Verification, Formal System Development,
Automated Deduction, Control theory, Embedded System Verification

Example requirements

Safety: “For all nominal behaviors of the car, the
separation between the cars must be always > 1 m”

Efficiency: “For all nominal driver inputs, the air-fuel ratio
must be in the range [1,4]”

Privacy: “Using GPS does not compromise user’s location”

Fairness: “Similar people are treated similarly”

Lecture Slides by Sayan Mitra mitras@illinois.edu

Example modeling frameworks

Discrete transition
systems, automata

Dynamical systems
Differential inclusions

Hybrid systems

Lecture Slides by Sayan Mitra mitras@illinois.edu

Markov chains

Probabilistic automata,
Markov decision processes
(MDP)

Continuous time,
continuous state MDPs

Stochastic Hybrid systems

Example verification approaches

• Theorem Proving (PVS, Isabelle, CoQ)
• Automatic or Interactive
• First Order vs Higher Order Logic
• Decidable logics
• Satisfiability Modulo Theory (SMT) solvers

• Model Checking
• Explicit state or symbolic model checking
• Abstraction Refinement
• Symbolic executions
• Probabilistic and statistical model checking
• Data-driven verification

• Abstract Interpretation

Lecture Slides by Sayan Mitra mitras@illinois.edu

University of Illinois
at Urbana-Champaign

Discrete Systems
Modeling Computation

Lecture Slides by Sayan Mitra mitras@illinois.edu

Outline

• An Example: Token Ring
• Specification language (syntax)
• Automata (semantics)
• Invariants

Lecture Slides by Sayan Mitra mitras@illinois.edu

An example: Informal description

A token-based mutual exclusion algorithm on a ring
network

Collection of processes send and receive bits over a ring
network so that only one of them has a “token”

Discrete
Each process has variables that take only discrete values
Time elapses in discrete steps (This is a modeling choice)

Lecture Slides by Sayan Mitra mitras@illinois.edu

Token ring: Informal problem specification

Lecture Slides by Sayan Mitra mitras@illinois.edu

1. There is always at least one token
2. Legal configuration = exactly one “token” in the ring
3. Single token circulates in the ring
4. Even if multiple tokens somehow arise, e.g. with failures, if the algorithm

continues to work correctly, then eventually there is a single token

Legal Illegal

Properties can be stated as Invariants

• Invariant (informal def.): A property of the system that
always* holds
• Examples:
• “Always at least one process has a token”
• “Always exactly one process has the token”
• “Always all processes have values at most k-1”
• “Even if there are multiple tokens, eventually there is

exactly one token” (not strictly an invariant)

Lecture Slides by Sayan Mitra mitras@illinois.edu

Dijkstra’s Algorithm [Dijkstra 1982]

Lecture Slides by Sayan Mitra mitras@illinois.edu

n processes with indices 0, 1, …, n-1
state of process j is x[j] Î {0, 1, 2, k-1}, where k > n

p0 if x[0] = x[N-1] then x[0] := x[0] + 1 mod k

pj j > 0, if x[j] ≠ x[j -1] then x[j] := x[j-1]

(pi has TOKEN if and only if the conditional is true)

A Specification Language
auto DijkstraTR (n:natural,k:natural)
type indices: [0,…,n-1]
type values: [0,…,k-1]
actions

internal step(i:indices)
variables

!:[indices->values] initially ∀# ∈ indices, ! % = 0
transitions

internal step(i:indices)
pre i = 0 /\ x[i] = x[n-1]
eff x[i] := x[i] + 1 mod k;

internal step(i:indices)
pre i ≠ 0 /\ x[i] ≠x[i-1]
eff x[i] := x[i-1];

trajectories

Lecture Slides by Sayan Mitra mitras@illinois.edu

Discrete Transition System or Automaton

An automaton is a tuple ! = 〈$, Θ, ', (〉 where
1. $ is a set of names of variables; each variable , ∈ $ is associated with a

type, ./01(,)
• A valuation for $ maps each variable in X to its type
• Set of all valuations:456 $ = 7 this is sometimes identified as the state space of the

automaton
2. Θ ⊆ 456($) is the set of initial or start states
3. ' is a set of names of actions or labels
4. (⊆ 456 $ ×'×456 $ is the set of transitions
• a transition is a triple (=, 5, =’)
• We write =, 5, =’ ∈ (in short as =→@ =′

Lecture Slides by Sayan Mitra mitras@illinois.edu

HIOA Specs to Automata: variables
variables s, v: Reals; a: Bools
! = {$, &, '}
Example valuations also called states:
•)* = $ ↦ 0, & ↦ 5.5, ' ↦ 0
•)/ = $ ↦ 10, & ↦ −2.5, ' ↦ 1
&'3 ! = { $ ↦ 4*, & ↦ 4/, ' ↦ 45 | 4*, 4/ ∈ 8, 45 ∈ {0,1}}

type indices: [0,…,n-1]
variables x: [indices->values]

• Fix n = 6, k = 8
• x: [{0,…,5} -> {0,…,7}]

• Example valuations:
•) = 〈; ↦ 0 ↦ 0, 1 ↦ 0, 2 ↦ 0, 3 ↦ 0, 4 ↦ 0, 5 ↦ 0 〉
• & = 〈; ↦ 0 ↦ 7, 1 ↦ 0, 2 ↦ 0, 3 ↦ 0, 4 ↦ 0, 5 ↦ 0 〉
• Notation: @. ;, @. ;[4] =0

&'3(;) = ; ↦ C ↦ 4D DEF…H 4D ∈ {0, … , 7}}

Lecture Slides by Sayan Mitra mitras@illinois.edu

States and predicates
A predicate over a set of variables X is a formula involving the variables
in X. For example:

• !": x 1 = 0

• !': ∀* ∈ *,-*./0, 2 * = 0

A valuation u satisfies predicate 3 if substituting the values of the
variables in u in ! makes it evaluate to True. We write u⊨ 3

• 5 ⊨ !", 5 ⊨ !', 6 ⊨ 37 and 6 ⊭ 39

3 = : ∈ ;<= 2 : ⊨ !}. Examples

• !" = 2 ↦ 1 ↦ 0, * ↦ .A ABC,',…,E .A ∈ {0, … , 7}}

• !' = {〈2 ↦ 0 ↦ 0, 1 ↦ 0, 2 ↦ 0, 3 ↦ 0, 4 ↦ 0, 5 ↦ 0 〉}

Lecture Slides by Sayan Mitra mitras@illinois.edu

Initial state and invariant assertions

• Θ ⊆ #$%(') initial states
• Often specified by a predicate
•)* = (Initially ∀- ∈ indices, ' / = 0)
• Θ = 12 = 〈' ↦ / ↦ 0 562,…,9〉

• Invariant properties
• “At least one process has the token”.

• ;< = ' 0 = ' 5 ∨ ∃ / ∈ 1, …5 : ' / ≠ ' / − 1
• DE = 0,… , 0 , 1,0, … , 0 , … , 〈F − 1,… , F − 1〉 = #$% ' (?)
• “Exactly one process has the token”

• ;H = ' 0 = ' 5 ⊕ ' 1 ≠ ' 0 ⊕ ' 2 ≠ ' 1 …

Lecture Slides by Sayan Mitra mitras@illinois.edu

Actions

• actions defines the set of Actions
• Examples
• internal step(i:indices)
• ! = {$%&' 0 , … , $%&' 5 }
• internal brakeOn, brakeOff
• ! = {-./0&12, -./0&133}

Lecture Slides by Sayan Mitra mitras@illinois.edu

Transitions

! ⊆ #$% & ×(×#$% & is the set of transitions

internal step(i:indices)
pre i = 0 /\ x[i] = x[n-1]
eff x[i] := x[i] + 1 mod k;

internal step(i:indices)
pre i ≠ 0 /\ x[i] ≠x[i-1]
eff x[i] := x[i-1];

Lecture Slides by Sayan Mitra mitras@illinois.edu

*, $, *, ∈ ! iff * ⊨ /012 and *, *, ∈ 3442

*, 5617 8 , *, ∈ !iff

(a) (8 = 0 ∧ *. @ 0 = *. @ 5

∧ *,. @ 0 = *. @[0] + 1 FGH 6) ∨
(b)(8 ≠ 0 ∧ *. @ 8 ≠ *. @ 8 − 1

∧ *,. @ 8 = *. @[8 − 1])

Nondeterminism

• For an action ! ∈ #, Pre(a) is the formula defining its
precondition, and Eff(a) is the relation defining the
effect.

• States satisfying precondition are said to enable the
action

• In general Eff(a) could be a relation, but for this example
it is a function

•Nondeterminism
• Multiple actions may be enabled from the same state
• There may be multiple post-states from the same action

Lecture Slides by Sayan Mitra mitras@illinois.edu

Executions, Reachability, & Invariants

An execution of ! is an alternating (possibly infinite) sequence of states
and actions

" = $%&'$'&($) …such that:
• $% ∈ Θ
• ∀ . in the sequence, $/

0123 $/4'

A state $ is reachable if there exists an execution that ends at $. The set
of reachable states is denoted by 56&7ℎ9.

Lecture Slides by Sayan Mitra mitras@illinois.edu

Invariants (Formal)

What does it mean for ! to hold “always” for "?
• ! holds at all states along any execution #$%&#&%'#(
• ! holds in all reachable states of "
•)*+,-. ⊆ [1]

Invariants capture most properties that you will encounter in
practice
• safety: “aircraft always maintain separation”
• bounded reaction time: “within 15 seconds of press, light must turn

to walk”

How to verify if ! is an invariant?
• Does there exist reachable state # such that # ⊭ ! ?

Lecture Slides by Sayan Mitra mitras@illinois.edu

Reachability Problem

•Given a directed graph ! = ($, &), and two sets of
vertices (,) ⊆ $,) is reachable from (if there is a
path from (to).

•Reachability Problem (!, (,)) ∶ decide if) is
reachable from (in !.

Lecture Slides by Sayan Mitra mitras@illinois.edu

Algorithm for deciding Reachability G,S, T

Set Marked := {}
Queue Q := S
Marked := Marked ∪ S
while Q is not empty

t ← Q.dequeue()
if t ∈ # return “yes”
for each (t,u) ∈ E

if u ∉ Marked then
Marked := Marked ∪ {u}
Q := enqueue(Q, u)

return “no”

Lecture Slides by Sayan Mitra mitras@illinois.edu

Verifying Invariants by solving Reachability

Given ! = 〈$, Θ, ', (〉 and a candidate invariant *, how to check
that * is indeed an invariant of !?

Define a graph G = 〈-, .〉 where
- = /01 $

. = 2, 23 ∃ 0 ∈ ', 2→7 23}

Claim. * 9
is not reachable from Θ in : iff * is an invariant of

!.

Lecture Slides by Sayan Mitra mitras@illinois.edu

Summary so far

• Well-formed specifications define automata

• Invariants: Properties that hold at all reachable states. !"#$%& ⊆ [)]

• BFS to verify invariants automatically for (finite) automata

Lecture Slides by Sayan Mitra mitras@illinois.edu

University of Illinois
at Urbana-Champaign

Temporal Logic and Model Checking

Verification thus far

Given an automaton ! = 〈$, Θ, ', (〉 and a set of unsafe states * ⊆
,-.($) we can check whether 12-3ℎ! Θ ∩ * = ∅?

Lecture Slides by Sayan Mitra mitras@illinois.edu

Thus, far we looked at verification of invariant properties through
reachability analysis

What about more general types of properties, e.g.,

• “Eventually the light turns red and prior to that the orange light
blinks”

• “After failures, eventually there is just one token in the system”

How to express and verify such properties?

Lecture Slides by Sayan Mitra mitras@illinois.edu

Introduction to temporal logics

Temporal logics give a formal language for
representing, and reasoning about, propositions
qualified in terms of time, or their validity in a
sequence

Amir Pnueli received the ACM Turing Award
(1996) for seminal work introducing temporal
logic into computer science and for outstanding
contributions to program and systems
verification.

Large follow-up literature, e.g., different
temporal logics MTL, MITL, PCTL, ACTL, STL

Lecture Slides by Sayan Mitra mitras@illinois.edu

Setup

We have a set of atomic propositions (AP)

These are the properties that hold in each state, e.g., “light is green”,
“has 2 tokens”

We have a labeling function that assigns to each state, a set of
propositions that hold at that state

!: # → 2&'

Lecture Slides by Sayan Mitra mitras@illinois.edu

Notations (this lecture)

! = #,#%, &, ' , & ⊆ #×#, ': # → 2-.

Executions / = 0% 01 …03 = /. 567879

/[;] = 0=
>?9@! set of all executions

AB = 8, C, @

' 0% = {8, C}

Lecture Slides by Sayan Mitra mitras@illinois.edu

0%
{8, C}

01
{C, @}

0F
{@}

Computational tree logic (CTL)

Unfolding the automaton

We get a tree

A CTL formula allows us to specify
subsets of paths in this tree

Lecture Slides by Sayan Mitra mitras@illinois.edu

!"
{$, &}

!(
{&,)}

!*
{)}

{$, &}

{&,)} {)}

{$, &} {)} {)}

{&,)} {)} {)} {)}

CTL quantifiers

Path quantifiers
E: Exists some path
A: All paths

Temporal operators
X: Next state
U: Until
F: Eventually
G: Globally (Always)

Lecture Slides by Sayan Mitra mitras@illinois.edu

CTL syntax
CTL syntax
!"#"$ %&'()*# !% ∷= "')$ - ¬/0 /0 ∧ /2 3 4 | 6 4
7#"ℎ %&'()*# 7% ∷= 9/0 /0: /2 ;/0| % /0

where - ∈ 67, /0, /2 ∈ !%, 4 ∈ 7%

Depth of formula: number of production rules used

Examples (depth)
E9 #; AXE9 #; AXE9# U b; AG AF green; AF AG single token
Depth 3, 5, …

Non-examples
AX9 #; path and state operators must alternate in CTL

Lecture Slides by Sayan Mitra mitras@illinois.edu

CTL semantics
Given automaton ! = #,Q&, ', (,) ∈ # and a CTL formula +,) ⊨ +
denotes that) satisfies +; . ⊨ + denotes that path (execution) . satisfies +.
The relation ⊨ is defined inductively as:

Lecture Slides by Sayan Mitra mitras@illinois.edu

!,) ⊨ 0 ⇔ 0 ∈ (()) for 0 ∈ 45

!,) ⊨ ¬78
⇔!,) ⊨ 78

!,) ⊨ 78 ∧ 7:
⇔!,) ⊨ 78 ∧!,) ⊨ 7:

!,) ⊨ ;+ ⇔ ∃ ., .. 7=>?>@ =),!, . ⊨ +

!,) ⊨ 4+ ⇔ ∀ ., .. 7=>?>@ =),!, . ⊨ +

!, . ⊨ B7 ⇔!, . 1 ⊨ 7

!, . ⊨ 78 D 7: ⇔ ∃E ≥ 0,!, . E ⊨ 7: ?HI ∀J < E . J ⊨ 78

!, . ⊨ L 78 ⇔ ∃E ≥ 0,!, . E ⊨ 78

!, . ⊨ M 78 ⇔ ∀E ≥ 0,!, . E ⊨ 78

Automaton satisfies property: ! ⊨ 7 iff ∀) ∈ #&,!,) ⊨ 7

Back to CTL: Universal CTL operators

!,#, $ can be used to derive other operators

%&'(#) ≡ +)

$) ≡ ¬+(¬))

All ten combinations can be expressed using /!, /#, /$

Lecture Slides by Sayan Mitra mitras@illinois.edu

0!) 0$) 0+) 0#) 01)
¬/!(¬)) ¬/+(¬)) ¬/$(¬))

/! /$ /+ /# /1
/! /$ /(%&'(#)) /#

Visualizing semantics

Lecture Slides by Sayan Mitra mitras@illinois.edu

! !

! !

! ⊨ #$ %&'

! ⊨ ($ %&'

! ⊨ #) %&'

! ⊨ () %&'

Exercise

• How are CTL properties related to Lyapunov stability?
• Asymptotic stability?

Lecture Slides by Sayan Mitra mitras@illinois.edu

Algorithm for deciding ! ⊨ #

Algorithm works by structural induction on the depth of the formula

Explicit state model checking

Compute the subset $% ⊆ $ such that ∀(∈ $% *+ ℎ-.+ !, q ⊨ #

If $1⊆ $% $′ ⊆ $1then we can conclude ! ⊨ #

Lecture Slides by Sayan Mitra mitras@illinois.edu

Induction on depth of formula

Algorithm computes a function !"#$!: & → ()*(,-)
that labels each state with a CTL formula

• Initially, !"#$! / = *(/) for each / ∈ Q

•At 345 iteration !"#$!(/) contains all sub-formulas of
6 of depth (3 − 1) that / satisfies

At termination 6 ∈ !"#$! / ⇔ :, / ⊨ 6

Lecture Slides by Sayan Mitra mitras@illinois.edu

Structural induction on formula

Lecture Slides by Sayan Mitra mitras@illinois.edu

! = #, for some # ∈ &', ∀), *+,-*) ≔ *+,-*) ∪ !
! = ¬!1 if !1 ∉ *+,-*()) then *+,-*) ≔ *+,-*) ∪ !
! = !1 ∧ !6 if !1, !6 ∈ *+,-*()) then *+,-*) ≔ *+,-*) ∪ !
! = 78!1 if ∃): ∈ Q such that),): ∈ < and !1 ∈ *+,-*):

then *+,-*) ≔ *+,-*) ∪ !
! = 7 !1=!6 >ℎ-@A7=(!1, !6, B, <, C) [next slide]
! = 7D!1 >ℎ-@A7D(!1, B, <, C) [next slide]

Six cases to consider based on structure of !

!ℎ#$%&'()*,),, -, ., /)

Let 1 = 3 ∈ -), ∈ 567#5(3)}
for each 3 ∈ 1
567#5 3 ≔ 567#5 3 ∪ {&[)*'),]}

while 1 ≠ ∅
for each 3′ ∈ 1
1 ≔ 1 ∖ 3B
for each 3 ∈ .C*(3B)

if)* ∈ 567#5(3) then
567#5 3 ≔ 567#5 3 ∪ {&[)*'),]}
1 ≔ 1 ∪ {3}

Proposition. For any state 567#5 3 ∋ &[)*'),] iff 3 ⊨ &[)*'),].

Proposition. Finite - therefore terminates and in F - + . steps.

Lecture Slides by Sayan Mitra mitras@illinois.edu

!ℎ#$%&'()*, ,, -, .)

From 0 we construct a new automaton 01 = ⟨,1, -1, .1⟩ such that

,1 = 5 ∈ ,)* ∈ 789#7 5 }

-1 = 5*, 5; ∈ - 5* ∈ ,
1} = - | ,1 // T restricted to Q’

.1: ,1 → 2@A ∀ 51 ∈ ,1, .1 51 : = . 51 // L restricted to Q’

Claim. 0,q ⊨ &')* iff in 0′
(1) 5 ∈ ,1

(2) ∃H ∈ &I#$J01 with H.)JL8L# = 5 and H. 7JL8L# is in a nontrivial
strongly connected component (SCC) ! of the graph ⟨,1, -1⟩

Lecture Slides by Sayan Mitra mitras@illinois.edu

Claim. !,q ⊨ %&'(iff
(1) , ∈ ./ and
(2) ∃2 ∈ %3456!/ with 2. '68984 = , and 2. ;68984 is in a nontrivial SCC

< of the graph ./, =/

Proof. Suppose !,q ⊨ %&'(
Consider any execution 2 with 2. '68984 = ,. Obviously, , ⊨ '(and so,
, ∈ ./.
Since . is finite 2 can be written as 2 = 2>2(where 2> is finite and every
state in 2(repeats infinitely many times.
Let < be the states in 2(. < ∈ ./.
Consider any two ,(and ,? states in <, we observe that ,(⇄ ,?, and
therefore < is a SCC.

Consider (1) and (2). We will construct a path 2 = 2>2(such that
2>. '68984 = , and 2> ∈ ./and 2(visits some states infinitely often.

Lecture Slides by Sayan Mitra mitras@illinois.edu

!ℎ#$%&'()*, ,, -, .)
Let ,′ = 2 ∈ ,)* ∈ 456#4(2)}
Let ℂ be the set of nontrivial SCCs of ⟨,:, -:⟩
< = ∪> ∈ ℂ 2 2 ∈ !}
for each 2 ∈ <
456#4 2 ≔ 456#4 2 ∪ {&')*}

while < ≠ ∅
for each 2′ ∈ <
< ≔ < ∖ 2:

for each 2′ ∈ ,: such that 2:, 2 ∈ -′
if E')* ∉ 456#4(2′) then
456#4 2′ ≔ 456#4 2: ∪ {&')*}
< ≔ < ∪ {2}

Proposition. For any state 456#4 2 ∋ &')* iff 2 ⊨ &')*.

.
Lecture Slides by Sayan Mitra mitras@illinois.edu

Proposition. Finite ,
therefore terminates
and in H , + -
steps.

Putting it all together

Lecture Slides by Sayan Mitra mitras@illinois.edu

! = #, for some # ∈ &', ∀), *+,-*) ≔ *+,-*) ∪ {#}

! = ¬!3 if !3 ∉ *+,-*()) then *+,-*) ≔ *+,-*) ∪ !

! = !3 ∧ !8 if !3, !8 ∈ *+,-*()) then *+,-*) ≔ *+,-*) ∪ !

! = 9:!3 if ∃)< ∈ Q such that),)< ∈ > and !3 ∈ *+,-*)<
then *+,-*) ≔ *+,-*) ∪ !

! = 9 !3?!8 @ℎ-BC9?(!3, !8, D, >, E)

! = 9F!3 @ℎ-BC9F(!3, D, >, E)

Explicit model checking algorithm inputG ⊨ !?
Structural induction over CTL formula

Proposition. Overall complexity of CTL model checkign
J(! D + >) steps.

1
!Start
!Close
!Heat
!Error

2
Start

!Close
!Heat
Error

3
! Start
Close
!Heat
!Error

4
!Start
Close
Heat
!Error

6
Start
Close
!Heat
!Error

5
Start
Close
!Heat
Error

7
Start
Close
Heat
!Error

Start oven Open door

Close doorOpen door

Start oven

Warmup

Start cooking
Reset

Open door

Close door

1
!Start
!Close
!Heat
!Error

2
Start

!Close
!Heat
Error

3
! Start
Close
!Heat
!Error

4
!Start
Close
Heat
!Error

6
Start
Close
!Heat
!Error

5
Start
Close
!Heat
Error

7
Start
Close
Heat
!Error

Start oven Open door

Close doorOpen door

Start oven

Warmup

Start cooking
Reset

Open door

Close door

AG (Start -> AF Heat)

1
!Start
!Close
!Heat
!Error

2
Start

!Close
!Heat
Error

3
! Start
Close
!Heat
!Error

4
!Start
Close
Heat
!Error

6
Start
Close
!Heat
!Error

5
Start
Close
!Heat
Error

7
Start
Close
Heat
!Error

Start oven Open door

Close doorOpen door

Start oven

Warmup

Start cooking
Reset

Open door

Close door

! EF (Start ∧ EG ! Heat)

! [True EU (Start ∧ EG ! Heat)]

1
!Start
!Close
!Heat
!Error

2
Start

!Close
!Heat
Error

3
! Start
Close
!Heat
!Error

4
!Start
Close
Heat
!Error

6
Start
Close
!Heat
!Error

5
Start
Close
!Heat
Error

7
Start
Close
Heat
!Error

Start oven Open door

Close doorOpen door

Start oven

Warmup

Start cooking
Reset

Open door

Close door

! EF (Start ∧ EG ! Heat)

! [True EU (Start ∧ EG ! Heat)]

1
!Start
!Close
!Heat
!Error

2
Start

!Close
!Heat
Error

3
! Start
Close
!Heat
!Error

4
!Start
Close
Heat
!Error

6
Start
Close
!Heat
!Error

5
Start
Close
!Heat
Error

7
Start
Close
Heat
!Error

Start oven Open door

Close doorOpen door

Start oven

Warmup

Start cooking
Reset

Open door

Close door

! EF (Start ∧ EG ! Heat)
Start, ! Heat
EG ! Heat

Nontrivial SCC of ! Heat

1
!Start
!Close
!Heat
!Error

2
Start

!Close
!Heat
Error

3
! Start
Close
!Heat
!Error

4
!Start
Close
Heat
!Error

6
Start
Close
!Heat
!Error

5
Start
Close
!Heat
Error

7
Start
Close
Heat
!Error

Start oven Open door

Close doorOpen door

Start oven

Warmup

Start cooking
Reset

Open door

Close door

! EF (Start ∧ EG ! Heat)
Start, ! Heat
EG ! Heat

Set of states that can reach n
nontrivial SCC of ! Heat

EG ! Heat

EG ! Heat

EG ! Heat

EG ! Heat

Start ∧ EG ! Heat

1
!Start
!Close
!Heat
!Error

2
Start

!Close
!Heat
Error

3
! Start
Close
!Heat
!Error

4
!Start
Close
Heat
!Error

6
Start
Close
!Heat
!Error

5
Start
Close
!Heat
Error

7
Start
Close
Heat
!Error

Start oven Open door

Close doorOpen door

Start oven

Warmup

Start cooking
Reset

Open door

Close door

! EF (Start ∧ EG ! Heat)
Start, ! Heat
EG ! Heat

EG ! Heat

EG ! Heat

EG ! Heat

EG ! Heat

Start ∧ EG ! Heat

Start ∧ EG ! Heat

Start ∧ EG ! Heat

1
!Start
!Close
!Heat
!Error

2
Start

!Close
!Heat
Error

3
! Start
Close
!Heat
!Error

4
!Start
Close
Heat
!Error

6
Start
Close
!Heat
!Error

5
Start
Close
!Heat
Error

7
Start
Close
Heat
!Error

Start oven Open door

Close doorOpen door

Start oven

Warmup

Start cooking
Reset

Open door

Close door

! EF (Start ∧ EG ! Heat)
Start, ! Heat
EG ! Heat

EG ! Heat

EG ! Heat

EG ! Heat

EG ! Heat

Start ∧ EG ! Heat

Start ∧ EG ! Heat

Start ∧ EG ! Heat

EF (Start ∧ EG ! Heat)

1
!Start
!Close
!Heat
!Error

2
Start

!Close
!Heat
Error

3
! Start
Close
!Heat
!Error

4
!Start
Close
Heat
!Error

6
Start
Close
!Heat
!Error

5
Start
Close
!Heat
Error

7
Start
Close
Heat
!Error

Start oven Open door

Close doorOpen door

Start oven

Warmup

Start cooking
Reset

Open door

Close door

! EF (Start ∧ EG ! Heat)
Start, ! Heat
EG ! Heat

EG ! Heat

EG ! Heat

EG ! Heat

EG ! Heat

Start ∧ EG ! Heat

Start ∧ EG ! Heat

Start ∧ EG ! Heat

EF (Start ∧ EG ! Heat)

1
!Start
!Close
!Heat
!Error

2
Start

!Close
!Heat
Error

3
! Start
Close
!Heat
!Error

4
!Start
Close
Heat
!Error

6
Start
Close
!Heat
!Error

5
Start
Close
!Heat
Error

7
Start
Close
Heat
!Error

Start oven Open door

Close doorOpen door

Start oven

Warmup

Start cooking
Reset

Open door

Close door

! EF (Start ∧ EG ! Heat)
Start, ! Heat
EG ! Heat

EG ! Heat

EG ! Heat

EG ! Heat

EG ! Heat

Start ∧ EG ! Heat

Start ∧ EG ! Heat

Start ∧ EG ! Heat

EF (Start ∧ EG ! Heat)

EF (Start ∧ EG ! Heat)

EF (Start ∧ EG ! Heat)

EF (Start ∧ EG ! Heat)

EF (Start ∧ EG ! Heat)
EF (Start ∧ EG ! Heat)

EF (Start ∧ EG ! Heat)EF (Start ∧ EG ! Heat)

Set of states that can reach
Start ∧ EG ! Heat

1
!Start
!Close
!Heat
!Error

2
Start

!Close
!Heat
Error

3
! Start
Close
!Heat
!Error

4
!Start
Close
Heat
!Error

6
Start
Close
!Heat
!Error

5
Start
Close
!Heat
Error

7
Start
Close
Heat
!Error

Start oven Open door

Close doorOpen door

Start oven

Warmup

Start cooking
Reset

Open door

Close door

! EF (Start ∧ EG ! Heat)
Start, ! Heat
EG ! Heat

EG ! Heat

EG ! Heat

EG ! Heat

EG ! Heat

Start ∧ EG ! Heat

Start ∧ EG ! Heat

Start ∧ EG ! Heat

EF (Start ∧ EG ! Heat)

EF (Start ∧ EG ! Heat)

EF (Start ∧ EG ! Heat)

EF (Start ∧ EG ! Heat)

EF (Start ∧ EG ! Heat)
EF (Start ∧ EG ! Heat)

EF (Start ∧ EG ! Heat)EF (Start ∧ EG ! Heat)

None of the states are labeled with
! EF (Start ∧ EG ! Heat)

University of Illinois
at Urbana-Champaign

Timed and hybrid models

University of Illinois
at Urbana-Champaign

Bouncing Ball

Automaton Bouncingball(c,h,g)
variables: analog x: Reals := h, v: Reals := 0

states: True
actions: external bounce
transitions:

bounce
pre x = 0 /\ v < 0

eff v := -cv
trajectories:

evolve d(x) = v; d(v) = -g
invariant ! ≥ #

Lecture Slides by Sayan Mitra mitras@illinois.edu

Loc 1
$ % = '
$ ' = −)
! ≥ #

TIOA Specification Language
(close to PHAVer & UPPAAL’s language)

Graphical Representation used in
many articles

bounce
x = 0 /\ v < 0

v’ := -cv

x:= h

Semantics: Executions and Traces

• An execution fragment of ! is an
(possibly infinite) alternating (A, X)-
sequence " = $% &' $'&($(… where
• ∀	i $-. /01&12 &-3'⟶ $-3'. 501&12

• If $%.fstate ∈	Θ then its an execution

• Execs= set of all executions

• The trace of an execution: external
part of the execution. Alternating
sequence of external actions and
trajectories of the empty set of
variables

Lecture Slides by Sayan Mitra mitras@illinois.edu

Special kinds of executions

• Infinite: Infinite sequence of transitions and trajectories
• Closed: Finite with final trajectory with closed domain
• Admissable: Infinite duration
• May or may not be infinite

• Zeno: Infinite but not admissable
• Infinite number of transitions in finite time

Lecture Slides by Sayan Mitra mitras@illinois.edu

Another Example: Periodically Sending
Process

Automaton PeriodicSend(u)
variables: analog

clock: Reals := 0, z:Reals, failed:Boolean := F
actions: external send(m:Reals), fail
transitions:

send(m)
pre clock = u /\ m = z /\ ~failed
eff clock := 0
fail
pre true
eff failed := T

trajectories:
evolve d(clock) = 1, d(z) = f(z)
stop when ~failed /\ clock=u

Lecture Slides by Sayan Mitra mitras@illinois.edu

Loc 1
! "#$"% = 1
! (=)(()
~failed⇒
-./-0 ≤ 2

send(m)
clock = u /\ m = z /\ ~failed

clock := 0

clock:= 0

fail
true

failed := T

Special Classes of Hybrid Automata

• Timed Automata ß

• Rectangular Initialized HA

• Rectangular HA

• Linear HA

• Nonlinear HA

Lecture Slides by Sayan Mitra mitras@illinois.edu

Clocks and Clock Constraints
[Alur and Dill 1991]

• A clock variable ! is a continuous (analog) variable of type real such that along
any trajectory " of x, for all t ∈ ". %&', ") ⌈! =).

• That is, !̇ = 1

• For a set X of clock variables, the set Φ(X) of integral clock constraints are
expressions defined by the syntax:

g ::= x ≤ 0 ! ≥ 0 ¬ 3 | 35 ∧ 37
where ! ∈ 8 9:% 0 ∈ ℤ

• Examples: x = 10; x ∈ [2, 5); true are valid clock constraints

• Semantics of clock constraints [3]

Lecture Slides by Sayan Mitra mitras@illinois.edu

Integral Timed Automata [Alur and Dill 1991]

Definition. A integral timed automaton is a HIOA ! = 〈#, %, Θ, ', (,)〉 where
V = X ∪ , , where - is a set of n clocks and , is a discrete state variable of finite type
Ł

A is a finite set of actions

(is a set of transitions such that
The guards are described by clock constraings Φ(-)
1, , − 3 → 15, ,5 implies either 15 = 1 or 1 = 0

) set of clock trajectories for the clock variables in X

Lecture Slides by Sayan Mitra mitras@illinois.edu

Example: Light switch
automaton Switch

variables
internal x, y:Real := 0, loc: {on,off} := off

transitions
internal push

pre x ≥ 2
eff if loc = off then y := 0 fi; x := 0; loc := on

internal pop
pre y = 15 /\ loc = off
eff x := 0

trajectories
invariant loc = on \/ loc = off
stop when y = 15 /\ loc = off
evolve d(x) = 1; d(y) = 1

Lecture Slides by Sayan Mitra mitras@illinois.edu

Description
Switch can be turned on whenever at least 2 time
units have elapsed since the last turn off. Switches
off automatically 15 time units after the last on.

Control State (Location) Reachability Problem

• Given an ITA, check if a particular location is reachable from the initial
states

• Is this problem easier or harder than general reachability?

• Is this problem is decidable?

• Key idea:

• Construct a Finite State Machine that is a time-abstract bisimilar to the ITA

• Check reachability of FSM

Lecture Slides by Sayan Mitra mitras@illinois.edu

Key idea: put states that behave identically in
the same equivalence class

When two states x1 and x2 in Q behave identically?

• x1. "#$ = x2."#$ and

• x1 and x2 satisfy the same set of clock constraints

• For each clock & int(x1.&) = int(x2.&) or int(x1.&) ≥ $)* and int(x2.&) ≥ $)*.

($)* is the maxium clock guard of &)

• For each clock & with x1.& ≤ $)*, frac(x1.&) = 0 iff frac(x2.&) = 0
• For any two clocks & and = with x1.& ≤ $)* and x1.= ≤ $)>, frac(x1.&) ≤ frac(x1.=)

iff frac(x2.&) ≤ frac(x2.=)

Lemma. This is a equivalence relation on Q

The partition of Q induced by this relation is are called clock regions

Lecture Slides by Sayan Mitra mitras@illinois.edu

What do the clock regions look like?

Lecture Slides by Sayan Mitra mitras@illinois.edu

Example of
Two Clocks

X = {y,z}
!"# = 2
!"$ = 3

Complexity

• Lemma. The number of clock regions is bounded by |X|!
2|X|∏"∈$(2'(" + 2).

Lecture Slides by Sayan Mitra mitras@illinois.edu

Region Automaton

• ITA (clock constants) defines the clock regions

• Now we add the “appropriate transitions” between the regions to
create a finite automaton which gives a time abstract bisimulation of
the ITA with respect to control state reachability
• Time successors: Consider two clock regions ! and !%, we say that !% is a time

successor of ! if there exits a trajectory of ITA starting from ! that ends in !’
• Discrete transitions: Same as the ITA

Lecture Slides by Sayan Mitra mitras@illinois.edu

Time Successors

The clock regions in blue are
time successors of the clock
region in red.

Lecture Slides by Sayan Mitra mitras@illinois.edu

Example 1: Region Automata

ITA

Corresponding FA

Lecture Slides by Sayan Mitra mitras@illinois.edu

Example 2

ITA

Lecture Slides by Sayan Mitra mitras@illinois.edu

Clock
Regions

|X|! 2|X|∏"∈$(2'(" + 2)

Corresponding FA

Lecture Slides by Sayan Mitra mitras@illinois.edu

Drastically increasing with the
number of clocks

Clocks and Rational Clock Constraints

• A clock variable x is a continuous (analog) variable of type real such
that along any trajectory ! of x, for all t ∈ !. $%&, ! ↓) * = *.
• For a set X of clock variables, the set Φ(X) of integral clock constraints

are expressions defined by the syntax:
g ::= x ≤ .) ≥ . ¬ 1 | 13 ∧ 15
where) ∈ 6 78$. ∈ ℚ

• Examples: x = 10.125; x ∈ [2.99, 5); true are valid rational clock
constraints

• Semantics of clock constraints [1]

Lecture Slides by Sayan Mitra mitras@illinois.edu

Step 1. Rational Timed Automata

• Definition. A rational timed automaton is a HA ! = 〈#, %, Θ, ', (,)〉
where
• V = X ∪ ,-. , where / is a set of n clocks and , is a discrete state variable of

finite type Ł
• A is a finite set
• (is a set of transitions such that

• The guards are described by rational clock constraings Φ(/)
• 3, , − 5 → 37, ,7 implies either 37 = 3 or 3 = 0

•) set of clock trajectories for the clock variables in X

Lecture Slides by Sayan Mitra mitras@illinois.edu

Example: Rational Light switch
Switch can be turned on whenever at least 2.25 time units have elapsed since the last turn off or on.
Switches off automatically 15.5 time units after the last on.

automaton Switch
internal push; pop

variables
internal x, y:Real := 0, loc:{on,off} := off

transitions
push

pre x >=2.25
eff if loc = on then y := 0 fi; x := 0; loc := off

pop
pre y = 15.5 ∧ loc = off
eff x := 0

trajectories
invariant loc = on ∨ loc = off
stop when y = 15.5 ∧ loc = off
evolve d(x) = 1; d(y) = 1

Lecture Slides by Sayan Mitra mitras@illinois.edu

Control State (Location) Reachability Problem

• Given an RTA, check if a particular location is reachable from the initial
states
• Is problem decidable?
• Yes
• Key idea:
• Construct a ITA that is time-abstract bisimilar to the given RTA
• Check CSR for ITA

Lecture Slides by Sayan Mitra mitras@illinois.edu

Construction of ITA from RTA

• Multiply all rational constants by a
factor q that make them integral
• Make d(x) = q for all the clocks

• RTA Switch is bisimilar to ITA Iswitch

• Simulation relation R is given by
• (u,s) ∈ " iff u.x = 4 s.x and u.y = 4 s.y

automaton ISwitch
internal push; pop
variables

internal x, y:Real := 0, loc:{on,off} := off
transitions

push
pre x >= 9
eff if loc = on then y := 0 fi; x := 0; loc := off

pop
pre y = 62 ∧ loc = off
eff x := 0

trajectories
invariant loc = on ∨ loc = off
stop when y = 62 ∧ loc = off
evolve d(x) = 4; d(y) = 4

Lecture Slides by Sayan Mitra mitras@illinois.edu

Step 2. Multi-Rate Automaton

• Definition. A multirate automaton is ! = 〈#, %, Θ, ', (,)〉 where
• V = X ∪ ,-. , where / is a set of n continuous variables and ,-. is a discrete

state variable of finite type Ł

• A is a finite set of actions

• (is a set of transitions such that
• The guards are described by rational clock constraings Φ(/)
• 3, , − 5 → 37, ,7 implies either 37 = . -9 37 = 3

•) set of trajectories such that

for each variable 3 ∈ / ∃< =>.ℎ @ℎ5@ A ∈), @ ∈ A. C-D
A @ . 3 = A 0 . 3 + < @

Lecture Slides by Sayan Mitra mitras@illinois.edu

Control State (Location) Reachability Problem

• Given an MRA, check if a particular location is reachable from the
initial states
• Is problem is decidable? Yes
• Key idea:
• Construct a RTA that is bisimilar to the given MRA

Lecture Slides by Sayan Mitra mitras@illinois.edu

Example: Multi-rate to rational TA

Lecture Slides by Sayan Mitra mitras@illinois.edu

Step 3. Rectangular HA
Definition. An rectangular hybrid automaton (RHA) is a HA ! = ⟨$, &, ', (⟩
where
• V = X ∪ +,- , where X is a set of n continuous variables and +,- is a discrete

state variable of finite type Ł
• A is a finite set
• ' =∪ℓ 'ℓ set of trajectories for X
• For each / ∈ 'ℓ, 1 ∈ 2 either (i) 3 1 = 4ℓ or (ii) 3 1 ∈ 4ℓ5 , 4ℓ6
• Equivalently, (i) / 7 ⌈1 = /(0)⌈1 + 4ℓ7

(ii) /(0)⌈1 + 4ℓ57 ≤ / 7 ⌈1 ≤ /(0)⌈1 + 4ℓ67
• (is a set of transitions such that
• Guards are described by rational clock constraings
• 1, + →? 1@, +@ implies 1@ = 1 ,A1@ ∈ [-5, -6]

Lecture Slides by Sayan Mitra mitras@illinois.edu

CSR Decidable for RHA?

• Given an RHA, check if a particular location is reachable from the
initial states?
• Is this problem decidable? No
• [Henz95] Thomas Henzinger, Peter Kopke, Anuj Puri, and Pravin

Varaiya. What's Decidable About Hybrid Automata?. Journal of
Computer and System Sciences, pages 373–382. ACM Press, 1995.
• CSR for RHA reduction to Halting problem for 2 counter machines
• Halting problem for 2CM known to be undecidable
• Reduction in next lecture

Lecture Slides by Sayan Mitra mitras@illinois.edu

http://engr-courses.engr.illinois.edu/ece584/papers/henz_whats.pdf

Step 4. Initialized Rectangular HA
Definition. An initialized rectangular hybrid automaton (IRHA) is a RHA ! where
• V = X ∪ #$% , where X is a set of n continuous variables and #$% is a

discrete state variable of finite type Ł
• A is a finite set
• & =∪ℓ &ℓ set of trajectories for X
• For each) ∈ &ℓ, , ∈ - either (i) . , = /ℓ or (ii) . , ∈ /ℓ0 , /ℓ1
• Equivalently, (i)) 2 ⌈, =)(0)⌈, + /ℓ2

(ii))(0)⌈, + /ℓ02 ≤) 2 ⌈, ≤)(0)⌈, + /ℓ12
• 9 is a set of transitions such that
• Guards are described by rational clock constraings
• ,, # →; ,<, #< implies if dynamics changes from ℓ to ℓ′ then ,< ∈
[%0, %1], otherwise ,< = ,

Lecture Slides by Sayan Mitra mitras@illinois.edu

Example: Rectangular Initialized HA

Lecture Slides by Sayan Mitra mitras@illinois.edu

1

! "# = k#
! "& = k&

2

! "# = k′#
! "& = k&

3

! "# ∈ [*, ,]
! "& = k.

Pre "# ≥ 0 ∧ "& ≤ 0 Eff "# ≔ 0

Both Pre
"#, "& have
to be reset

Eff "#, "& ∈ [5, !]

CSR Decidable for IRHA?

• Given an IRHA, check if a particular location is reachable from the
initial states
• Is this problem decidable? Yes
• Key idea:
• Construct a 2n-dimensional initialized multi-rate automaton that is bisimilar to

the given IRHA
• Construct a ITA that is bisimilar to the Singular TA

Lecture Slides by Sayan Mitra mitras@illinois.edu

Split every variable into two variables---
tracking the upper and lower bounds

Lecture Slides by Sayan Mitra mitras@illinois.edu

IRHA MRA

! !ℓ ; !#
Evolve: $(!) ∈ [)*, ,*] Evolve: $!ℓ =)*; $!# = ,*

Eff: !/ ∈ [)*, ,*] Eff: !ℓ=)*; !# = ,*
!/ = 1 !ℓ= !# = 1

Guard: ! ≥ 5 !4 ≥ 5
!4 < 5 ∧ !# ≥ 5 Eff !4 = 5

Example IRHA

Lecture Slides by Sayan Mitra mitras@illinois.edu

v1
$̇ ∈ 1,3

(̇ ∈ [−3,−2]

v2
$̇ ∈ −4,−2
(̇ ∈ [−3,−2]

$ ≔ 0; (≔ 1

$ ≤ 5 ∧ (≤ −3
$ ≔ 4

v3
$̇ ∈ −4,−2
(̇ ∈ [1,2]

(≤ −5
(≔ −4

v4
$̇ ∈ 1,3
(̇ ∈ [1,2]

$ ≥ −3 ∧ (≤ −2
$ ∈ [−1,−2]

$ ≥ 0 ∧ (≤2
(≔ 1

Initialized Singular HA

Lecture Slides by Sayan Mitra mitras@illinois.edu

v1
̇$% = 1
̇$' = 3
̇)% = −3
̇)' = −2

v2
̇̇$% = −4

̇$' = −2
̇)% = −3
̇)' = −2

$%, $' ≔ 0;)%,)' ≔ 1

v3
̇̇$% = −4

̇$' = −2
̇)% = 1
̇)' = 2

v4
̇̇$% = 1

̇$' = 3
̇)% = 1
̇)' = 2

Transitions

Lecture Slides by Sayan Mitra mitras@illinois.edu

5

v1
̇$% = 1
̇$' = 3
̇)% = −3
̇)' = −2

$% ≤ 5
$%, $' ≔ 4

-3

$%
$'

)'
)%

)' ≤ −3 no	reset
)' > −3 ∧)% ≤ −3)' ≔-3

Initialized Singular HA

Lecture Slides by Sayan Mitra mitras@illinois.edu

v1
̇$% = 1
̇$' = 3
̇)% = −3
̇)' = −2

v2
̇̇$% = −4

̇$' = −2
̇)% = −3
̇)' = −2

$%, $' ≔ 0;)%,)' ≔ 1

$% ≤ 5 ∧)' ≤ −3
$%, $' ≔ 4

$% ≤ 5 ∧)% ≤ −3 ∧)' > −3
$%, $' ≔ 4)' ≔ −3

v3
̇̇$% = −4

̇$' = −2
̇)% = 1
̇)' = 2

)% ≤ −5
)%)' ≔ −4

v4
̇̇$% = 1

̇$' = 3
̇)% = 1
̇)' = 2

$' ≥ −3 ∧)' ≤ −2
$% ≔ −2$' ≔ −1

$' ≥ −3 ∧)% ≤ −2 ∧)' > −2
$% ≔ −2$' ≔ −1)' − 2

$% ≥ 0 ∧)% ≤2
)%,)' ≔ 1

$% < 0 ∧ $' ≥ 0 ∧)% ≤2
$% ≔ 0)%,)' ≔ 1

Can this be further generalized ?

• For initialized Rectangular HA, control state reachability is decidable
• Can we drop the initialization restriction?

• No, problem becomes undecidable

• Can we drop the rectangular restriction?
• No, problem becomes undecidable

• Tune in in a week

Lecture Slides by Sayan Mitra mitras@illinois.edu

Data structures for representing sets

• Hyperrectangles
• g"; g$ = & ∈ () x − g" ,

≤ g$ − g" ,
} = Π0[2"0, 2$0]

• Polyhedra
• Zonotopes
• Ellipsoids
• Support functions

Lecture Slides by Sayan Mitra mitras@illinois.edu

Verification in tools

Lecture Slides by Sayan Mitra mitras@illinois.edu

Reachability Computation with polyhedra

• A set of states is represented by
disjunction of linear inequalities
• !"# = !% ∧ '%(≤ *% ∨
!"# = !, ∧ ',(≤ *, ∨ ⋯

• Post(,) computation performed
symbolically using quantifier
elimination

Lecture Slides by Sayan Mitra mitras@illinois.edu

Portion of Navigation benchmark
(. = / → 1"23 4%, 4, = ∃3 4% + /3, 4, + /3 = [4%,∞]

the state is reachable if there exists a time when we reach it.

Summary

• ITA: (very) Restricted class of hybrid automata
• Clocks, integer constraints
• No clock comparison, linear

• Control state reachability with Alur-Dill’s algorithm (region automaton
construction)
• Rational coefficients
• Multirate Automata
• Initialized Rectangular Hybrid Automata
• HyTech, PHAVer use polyhedral reachability computations

Lecture Slides by Sayan Mitra mitras@illinois.edu

Summary

• ITA: (very) Restricted class of hybrid automata
• Clocks, integer constraints
• No clock comparison, linear

• Control state reachability

• Alur-Dill’s algorithm
• Construct finite bisimulation (region automaton)
• Idea is to lump together states that behave similarly and reduce the size of the

model

• UPPAAL model checker based on similar model of timed automata

Lecture Slides by Sayan Mitra mitras@illinois.edu

