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Outline

• Why should you care about verification?
• Discrete models
• CTL and CTL model checking

• Timed and hybrid models (cyber-physical systems)
• Model checking timed and hybrid models 
• Simulation-driven verification
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Building safe autonomous 
systems  is going to be much 

harder than what we had 
imagined … 

“Challenge is not so much 
building … but providing an 

assurance that these systems 
are safe” --- Dr. Sandeep 
Neema, DARPA program

manager

Testing and verification will be 
central to this enterprise



How many miles must an autonomous car drive 
before we call it safe? 

10 disengagements per 200 million miles?

0.07 fatalities per billion passenger miles 
(commercial flight)

Probability of fatal failure per hour of driving 10−9

“30 billion miles of test driving is needed to 
achieve acceptable levels of assurance!” 

[Koopman, CMU] [Shashua, CTO Mobileye]



Dev.Assuranc
e Level (DAL)

Hazard 
Classification

Objectives

A Catastrophic 71

B Hazardous 69

C Major 62

D Minor 26

E No Effect 0
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Regulations and Audits

DO178C

Primary document by which FAA 
& EASA approves software-based 
aerospace systems.

DAL establishes the rigor 
necessary to demonstrate 
compliance

Statement Coverage: Every 
statement of the source code 
must be covered by a test case

Condition Coverage: Every condition 
within a branch  statement must be 
covered by a test case

What fraction of the cost of 
developing a new aircraft is in 
SW?

“Special credits”: For using formal 
methods based tools recently 
introduced 



Crime records + Surveillance -> Predictions
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2008: LAPD starts explorations on forecasting crime using data
2013: Better prediction of crime hotspots in Santa Cruz  evaluation
2016: Used in 50+ police department

Zach Friend. "Predictive Policing: Using Technology to 
Reduce Crime". Federal Bureau of Investigation. Dec. 
2013.



Is the algorithm
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safe ?secure ?private?fair?

Futureproof research area



Formal verification can provide:
standards, processes, tools, and trained 
individuals to ensure that cyber-physical systems 
meet the standards
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An earlier instance: microprocessor industry 

Electronic design automation industry
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Defects become more expensive with 
time
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How to Cut Software-Related Medical Device Failures and Recalls, Lisa Weeks
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Audit algorithms with Algorithms and find 
problems early 
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certificate

algorithm / 
system model bug trace verification 

algorithm/tool
requirements

Relevant courses: Theory of computation, Program Verification, Formal System Development,
Automated Deduction, Control theory, Embedded System Verification



Example requirements

Safety: “For all nominal behaviors of the car, the 
separation between the cars must be always > 1 m” 

Efficiency: “For all nominal driver inputs, the air-fuel ratio 
must be in the range [1,4]” 

Privacy: “Using GPS does not compromise user’s location”  

Fairness: “Similar people are treated similarly” 
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Example modeling frameworks

Discrete transition 
systems, automata

Dynamical systems
Differential inclusions

Hybrid systems

Lecture Slides by Sayan Mitra mitras@illinois.edu

Markov chains

Probabilistic automata, 
Markov decision processes 
(MDP)

Continuous time, 
continuous state MDPs

Stochastic Hybrid systems



Example verification approaches

• Theorem Proving (PVS, Isabelle, CoQ)
• Automatic or Interactive 
• First Order vs Higher Order Logic 
• Decidable logics
• Satisfiability Modulo Theory (SMT) solvers

• Model Checking
• Explicit state or symbolic model checking
• Abstraction Refinement
• Symbolic executions
• Probabilistic and statistical model checking
• Data-driven verification

• Abstract Interpretation
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Discrete Systems
Modeling Computation
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Outline

• An Example: Token Ring
• Specification language (syntax)
• Automata (semantics)
• Invariants
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An example: Informal description

A token-based mutual exclusion algorithm on a ring 
network

Collection of processes send and receive bits over a ring 
network so that only one of them has a “token”

Discrete
Each process has variables that take only discrete values 
Time elapses in discrete steps (This is a modeling choice)
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Token ring: Informal problem specification
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1. There is always at least one token
2. Legal configuration = exactly one “token” in the ring
3. Single token circulates in the ring
4. Even if multiple tokens somehow arise, e.g. with failures, if the algorithm 

continues to work correctly, then eventually there is a single token

Legal Illegal



Properties can be stated as Invariants

• Invariant (informal def.): A property of the system that 
always* holds
• Examples:
• “Always at least one process has a token”
• “Always exactly one process has the token”
• “Always all processes have values at most  k-1”
• “Even if there are multiple tokens, eventually there is 

exactly one token” (not strictly an invariant)
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Dijkstra’s Algorithm [Dijkstra 1982]
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n processes with indices 0, 1, …, n-1
state of process j is x[j] Î {0, 1, 2, k-1}, where k > n

p0 if x[0] = x[N-1] then x[0] := x[0] + 1 mod k

pj j > 0, if x[j] ≠ x[j -1] then x[j] := x[j-1] 

(pi has TOKEN if and only if the conditional is true)



A Specification Language
auto DijkstraTR (n:natural,k:natural)
type indices: [0,…,n-1]
type values: [0,…,k-1]
actions 

internal step(i:indices)
variables

!:[indices->values] initially ∀# ∈ indices, ! % = 0
transitions

internal step(i:indices)
pre i = 0 /\ x[i] = x[n-1]
eff x[i] := x[i] + 1 mod k;

internal step(i:indices)
pre i ≠ 0 /\ x[i] ≠x[i-1]
eff x[i] := x[i-1];

trajectories
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Discrete Transition System or Automaton

An automaton is a tuple ! = 〈$, Θ, ', (〉 where
1. $ is a set of names of variables; each variable , ∈ $ is associated with a 

type, ./01(,)
• A valuation for $ maps each variable in X to its type
• Set of all valuations:456 $ = 7 this is sometimes identified as the state space of the 

automaton
2. Θ ⊆ 456($) is the set of initial or start states
3. ' is a set of names of actions or labels
4. ( ⊆ 456 $ ×'×456 $ is the set of transitions
• a transition is a triple (=, 5, =’)
• We write =, 5, =’ ∈ ( in short as =→@ =′
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HIOA Specs to Automata: variables
variables s, v: Reals; a: Bools
! = {$, &, '}
Example valuations also called states:
• )* = $ ↦ 0, & ↦ 5.5, ' ↦ 0
• )/ = $ ↦ 10, & ↦ −2.5, ' ↦ 1
&'3 ! = { $ ↦ 4*, & ↦ 4/, ' ↦ 45 | 4*, 4/ ∈ 8, 45 ∈ {0,1}}

type indices: [0,…,n-1]
variables x: [indices->values]

• Fix n = 6, k = 8
• x: [{0,…,5} -> {0,…,7}]

• Example valuations:
• ) = 〈; ↦ 0 ↦ 0, 1 ↦ 0, 2 ↦ 0, 3 ↦ 0, 4 ↦ 0, 5 ↦ 0 〉
• & = 〈; ↦ 0 ↦ 7, 1 ↦ 0, 2 ↦ 0, 3 ↦ 0, 4 ↦ 0, 5 ↦ 0 〉
• Notation: @. ;, @. ;[4] =0

&'3(;) = ; ↦ C ↦ 4D DEF…H 4D ∈ {0, … , 7}}
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States and predicates
A predicate over a set of variables X is a formula involving the variables 
in X. For example: 

• !": x 1 = 0

• !': ∀* ∈ *,-*./0, 2 * = 0

A valuation u satisfies  predicate 3 if substituting the values of the 
variables in u in ! makes it evaluate to True. We write u⊨ 3

• 5 ⊨ !", 5 ⊨ !', 6 ⊨ 37 and 6 ⊭ 39

3 = : ∈ ;<= 2 : ⊨ !}. Examples

• !" = 2 ↦ 1 ↦ 0, * ↦ .A ABC,',…,E .A ∈ {0, … , 7}}

• !' = {〈2 ↦ 0 ↦ 0, 1 ↦ 0, 2 ↦ 0, 3 ↦ 0, 4 ↦ 0, 5 ↦ 0 〉}
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Initial state and invariant assertions

• Θ ⊆ #$%(') initial states
• Often specified by a predicate
• )* = (Initially ∀- ∈ indices, ' / = 0)
• Θ = 12 = 〈' ↦ / ↦ 0 562,…,9〉

• Invariant properties
• “At least one process has the token”.

• ;< = ' 0 = ' 5 ∨ ∃ / ∈ 1, …5 : ' / ≠ ' / − 1
• DE = 0,… , 0 , 1,0, … , 0 , … , 〈F − 1,… , F − 1〉 = #$% ' (?)
• “Exactly one process has the token”

• ;H = ' 0 = ' 5 ⊕ ' 1 ≠ ' 0 ⊕ ' 2 ≠ ' 1 …
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Actions

• actions defines the set of Actions
• Examples
• internal step(i:indices)
• ! = {$%&' 0 , … , $%&' 5 }
• internal brakeOn, brakeOff
• ! = {-./0&12, -./0&133}
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Transitions

! ⊆ #$% & ×(×#$% & is the set of transitions

internal step(i:indices)
pre i = 0 /\ x[i] = x[n-1]
eff x[i] := x[i] + 1 mod k;

internal step(i:indices)
pre i ≠ 0 /\ x[i] ≠x[i-1]
eff x[i] := x[i-1];
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*, $, *, ∈ ! iff * ⊨ /012 and *, *, ∈ 3442

*, 5617 8 , *, ∈ !iff

(a) (8 = 0 ∧ *. @ 0 = *. @ 5

∧ *,. @ 0 = *. @[0] + 1 FGH 6) ∨
(b)(8 ≠ 0 ∧ *. @ 8 ≠ *. @ 8 − 1

∧ *,. @ 8 = *. @[8 − 1])



Nondeterminism

• For an action ! ∈ #, Pre(a) is the formula defining its 
precondition, and Eff(a) is the relation defining the 
effect.

• States satisfying precondition are said to enable the 
action

• In general Eff(a) could be a relation, but for this example 
it is a function

•Nondeterminism
• Multiple actions may be enabled from the same state
• There may be multiple post-states from the same action

Lecture Slides by Sayan Mitra mitras@illinois.edu



Executions, Reachability, & Invariants 

An execution of ! is an alternating (possibly infinite) sequence of states 
and actions 

" = $%&'$'&($) …such that:
• $% ∈ Θ
• ∀ . in the sequence, $/

0123 $/4'

A state $ is reachable if there exists an execution that ends at $. The set 
of reachable states is denoted by 56&7ℎ9.
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Invariants (Formal)

What does it mean for ! to hold “always” for "?
• ! holds at all states along any execution #$%&#&%'#(
• ! holds in all reachable states of "
• )*+,-. ⊆ [ 1 ]

Invariants capture most properties that you will encounter in 
practice
• safety: “aircraft always maintain separation”
• bounded reaction time: “within 15 seconds of press, light must turn 

to walk”

How to verify if ! is an invariant? 
• Does there exist reachable state # such that # ⊭ ! ? 
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Reachability Problem

•Given a directed graph ! = ($, &), and two sets of 
vertices (, ) ⊆ $, ) is reachable from ( if there is a 
path from ( to ). 

•Reachability Problem (!, (, )) ∶ decide if ) is 
reachable from ( in !. 
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Algorithm for deciding Reachability G,S, T

Set Marked := {}
Queue Q := S
Marked := Marked ∪ S 
while Q is not empty

t ← Q.dequeue()
if t ∈ # return “yes”
for each (t,u) ∈ E

if u ∉ Marked then
Marked := Marked ∪ {u}
Q := enqueue(Q, u)

return “no”
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Verifying Invariants by solving Reachability

Given ! = 〈$, Θ, ', (〉 and a candidate invariant *, how to check 
that * is indeed an invariant of !?

Define a graph G = 〈-, .〉 where 
- = /01 $

. = 2, 23 ∃ 0 ∈ ', 2→7 23}

Claim. * 9
is not reachable from Θ in : iff * is an invariant of 

!.
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Summary so far

• Well-formed specifications define automata

• Invariants: Properties that hold at all reachable states. !"#$%& ⊆ [ ) ]

• BFS to verify invariants automatically for (finite) automata
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at Urbana-Champaign

Temporal Logic and Model Checking



Verification thus far

Given an automaton ! = 〈$, Θ, ', (〉 and a set of unsafe states * ⊆
,-.($) we can check whether 12-3ℎ! Θ ∩ * = ∅?
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Thus, far we looked at verification of invariant properties through 
reachability analysis

What about more general types of properties, e.g., 

• “Eventually the light turns red and prior to that the orange light 
blinks”

• “After failures, eventually there is just one token in the system”

How to express and verify such properties?
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Introduction to temporal logics

Temporal logics give a formal language for 
representing, and reasoning about, propositions 
qualified in terms of time, or their validity in a 
sequence

Amir Pnueli received the ACM Turing Award 
(1996) for seminal work introducing temporal 
logic into computer science and for outstanding 
contributions to program and systems 
verification.

Large follow-up literature, e.g., different 
temporal logics MTL, MITL, PCTL, ACTL, STL
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Setup

We have a set of atomic propositions (AP)

These are the properties that hold in each state, e.g., “light is green”, 
“has 2 tokens”

We have a labeling function that assigns to each state, a set of 
propositions that hold at that state

!: # → 2&'
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Notations (this lecture)

! = #,#%, &, ' , & ⊆ #×#, ': # → 2-.

Executions / = 0% 01 …03 = /. 567879

/[;] = 0=
>?9@! set of all executions

AB = 8, C, @

' 0% = {8, C}
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0%
{8, C}

01
{C, @}

0F
{@}



Computational tree logic (CTL)

Unfolding the automaton

We get a tree

A CTL formula allows us to specify 
subsets of paths in this tree 
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!"
{$, &}

!(
{&, )}

!*
{)}

{$, &}

{&, )} {)}

{$, &} {)} {)}

{&, )} {)} {)} {)}



CTL quantifiers

Path quantifiers
E: Exists some path
A: All paths

Temporal operators
X: Next state
U: Until
F: Eventually
G: Globally (Always)
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CTL syntax
CTL syntax
!"#"$ %&'()*# !% ∷= "')$ - ¬/0 /0 ∧ /2 3 4 | 6 4
7#"ℎ %&'()*# 7% ∷= 9/0 /0: /2 ;/0| % /0

where - ∈ 67, /0, /2 ∈ !%, 4 ∈ 7%

Depth of formula: number of production rules used

Examples (depth)
E9 #; AXE9 #; AXE9# U b; AG AF green; AF AG single token
Depth 3, 5, …

Non-examples
AX9 #; path and state operators must alternate in CTL
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CTL semantics
Given automaton ! = #,Q&, ', ( , ) ∈ # and a CTL formula +, ) ⊨ +
denotes that ) satisfies +; . ⊨ + denotes that path (execution) . satisfies +.
The relation ⊨ is defined inductively as:
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!, ) ⊨ 0 ⇔ 0 ∈ (()) for 0 ∈ 45

!, ) ⊨ ¬78
⇔!, ) ⊨ 78

!, ) ⊨ 78 ∧ 7:
⇔!, ) ⊨ 78 ∧!, ) ⊨ 7:

!, ) ⊨ ;+ ⇔ ∃ ., .. 7=>?>@ = ),!, . ⊨ +

!, ) ⊨ 4+ ⇔ ∀ ., .. 7=>?>@ = ),!, . ⊨ +

!, . ⊨ B7 ⇔!, . 1 ⊨ 7

!, . ⊨ 78 D 7: ⇔ ∃E ≥ 0,!, . E ⊨ 7: ?HI ∀J < E . J ⊨ 78

!, . ⊨ L 78 ⇔ ∃E ≥ 0,!, . E ⊨ 78

!, . ⊨ M 78 ⇔ ∀E ≥ 0,!, . E ⊨ 78

Automaton satisfies property: ! ⊨ 7 iff ∀) ∈ #&,!, ) ⊨ 7



Back to CTL: Universal CTL operators

!,#, $ can be used to derive other operators

%&'( # ) ≡ + )

$) ≡ ¬+(¬))

All ten combinations can be expressed using /!, /#, /$
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0!) 0$) 0+) 0#) 01)
¬/!(¬)) ¬/+(¬)) ¬/$(¬))

/! /$ /+ /# /1
/! /$ /(%&'( # )) /#



Visualizing semantics
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! !

! !

! ⊨ #$ %&'

! ⊨ ($ %&'

! ⊨ #) %&'

! ⊨ () %&'



Exercise

• How are CTL properties related to Lyapunov stability? 
• Asymptotic stability?
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Algorithm for deciding ! ⊨ #

Algorithm works by structural induction on the depth of the formula

Explicit state model checking

Compute the subset $% ⊆ $ such that ∀( ∈ $% *+ ℎ-.+ !, q ⊨ #

If $1⊆ $% $′ ⊆ $1then we can conclude ! ⊨ #
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Induction on depth of formula

Algorithm computes a function !"#$!: & → ()*(,-)
that labels each state with a CTL formula

• Initially, !"#$! / = *(/) for each / ∈ Q

•At 345 iteration !"#$!(/) contains all sub-formulas of 
6 of depth (3 − 1) that / satisfies

At termination 6 ∈ !"#$! / ⇔ :, / ⊨ 6
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Structural induction on formula
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! = #, for some # ∈ &', ∀), *+,-* ) ≔ *+,-* ) ∪ !
! = ¬!1 if !1 ∉ *+,-*()) then *+,-* ) ≔ *+,-* ) ∪ !
! = !1 ∧ !6 if !1, !6 ∈ *+,-*()) then *+,-* ) ≔ *+,-* ) ∪ !
! = 78!1 if ∃): ∈ Q such that ), ): ∈ < and !1 ∈ *+,-* ):

then *+,-* ) ≔ *+,-* ) ∪ !
! = 7 !1=!6 >ℎ-@A7=(!1, !6, B, <, C) [next slide]
! = 7D!1 >ℎ-@A7D(!1, B, <, C) [next slide]

Six cases to consider based on structure of !



!ℎ#$%&'()*, ),, -, ., /)

Let 1 = 3 ∈ - ), ∈ 567#5(3)}
for each 3 ∈ 1
567#5 3 ≔ 567#5 3 ∪ {&[)*'),]}

while 1 ≠ ∅
for each 3′ ∈ 1
1 ≔ 1 ∖ 3B
for each 3 ∈ .C*(3B)

if )* ∈ 567#5(3) then 
567#5 3 ≔ 567#5 3 ∪ {&[)*'),]}
1 ≔ 1 ∪ {3}

Proposition. For any state 567#5 3 ∋ &[)*'),] iff 3 ⊨ &[)*'),].

Proposition. Finite - therefore terminates and in F - + . steps.
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!ℎ#$%&'()*, ,, -, .)

From 0 we construct a new automaton 01 = ⟨,1, -1, .1⟩ such that

,1 = 5 ∈ , )* ∈ 789#7 5 }

-1 = 5*, 5; ∈ - 5* ∈ ,
1} = - | ,1 // T restricted to Q’ 

.1: ,1 → 2@A ∀ 51 ∈ ,1, .1 51 : = . 51 // L restricted to Q’

Claim. 0,q ⊨ &')* iff in 0′
(1) 5 ∈ ,1

(2) ∃H ∈ &I#$J01 with H. )JL8L# = 5 and H. 7JL8L# is in a nontrivial 
strongly connected component (SCC) ! of the graph ⟨,1, -1⟩
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Claim. !,q ⊨ %&'( iff
(1) , ∈ ./ and
(2) ∃2 ∈ %3456!/ with 2. '68984 = , and 2. ;68984 is in a nontrivial SCC 

< of the graph ./, =/

Proof. Suppose !,q ⊨ %&'(
Consider any execution 2 with 2. '68984 = ,. Obviously, , ⊨ '( and so, 
, ∈ ./.
Since . is finite 2 can be written as 2 = 2>2( where 2> is finite and every 
state in 2( repeats infinitely many times. 
Let < be the states in 2(. < ∈ ./.
Consider any two ,( and ,? states in <, we observe that ,( ⇄ ,?, and 
therefore < is a SCC. 

Consider (1) and (2). We will construct a path 2 = 2>2( such that 
2>. '68984 = , and 2> ∈ ./and 2(visits some states infinitely often. 
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!ℎ#$%&'()*, ,, -, .)
Let ,′ = 2 ∈ , )* ∈ 456#4(2)}
Let ℂ be the set of nontrivial SCCs of ⟨,:, -:⟩
< = ∪> ∈ ℂ 2 2 ∈ !}
for each 2 ∈ <
456#4 2 ≔ 456#4 2 ∪ {&')*}

while < ≠ ∅
for each 2′ ∈ <
< ≔ < ∖ 2:

for each 2′ ∈ ,: such that 2:, 2 ∈ -′
if E')* ∉ 456#4(2′) then 
456#4 2′ ≔ 456#4 2: ∪ {&')*}
< ≔ < ∪ {2}

Proposition. For any state 456#4 2 ∋ &')* iff 2 ⊨ &')*.

. 
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Proposition. Finite ,
therefore terminates 
and in H , + -
steps.



Putting it all together
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! = #, for some # ∈ &', ∀), *+,-* ) ≔ *+,-* ) ∪ {#}

! = ¬!3 if !3 ∉ *+,-*()) then *+,-* ) ≔ *+,-* ) ∪ !

! = !3 ∧ !8 if !3, !8 ∈ *+,-*()) then *+,-* ) ≔ *+,-* ) ∪ !

! = 9:!3 if ∃)< ∈ Q such that ), )< ∈ > and !3 ∈ *+,-* )<
then *+,-* ) ≔ *+,-* ) ∪ !

! = 9 !3?!8 @ℎ-BC9?(!3, !8, D, >, E)

! = 9F!3 @ℎ-BC9F(!3, D, >, E)

Explicit model checking algorithm inputG ⊨ !?
Structural induction over CTL formula

Proposition. Overall complexity of CTL model checkign 
J( ! D + > ) steps.



1
!Start
!Close
!Heat 
!Error

2
Start

!Close
!Heat 
Error

3
! Start
Close
!Heat 
!Error

4
!Start
Close
Heat 
!Error

6
Start
Close
!Heat 
!Error

5
Start
Close
!Heat 
Error

7
Start
Close
Heat 
!Error

Start oven Open door

Close doorOpen door

Start oven

Warmup

Start cooking
Reset

Open door

Close door



1
!Start
!Close
!Heat 
!Error

2
Start

!Close
!Heat 
Error

3
! Start
Close
!Heat 
!Error

4
!Start
Close
Heat 
!Error

6
Start
Close
!Heat 
!Error

5
Start
Close
!Heat 
Error

7
Start
Close
Heat 
!Error

Start oven Open door

Close doorOpen door

Start oven

Warmup

Start cooking
Reset

Open door

Close door

AG (Start -> AF Heat)



1
!Start
!Close
!Heat 
!Error

2
Start

!Close
!Heat 
Error

3
! Start
Close
!Heat 
!Error

4
!Start
Close
Heat 
!Error

6
Start
Close
!Heat 
!Error

5
Start
Close
!Heat 
Error

7
Start
Close
Heat 
!Error

Start oven Open door

Close doorOpen door

Start oven

Warmup

Start cooking
Reset

Open door

Close door

! EF (Start ∧ EG ! Heat)

! [True EU (Start ∧ EG ! Heat)]



1
!Start
!Close
!Heat 
!Error

2
Start

!Close
!Heat 
Error

3
! Start
Close
!Heat 
!Error

4
!Start
Close
Heat 
!Error

6
Start
Close
!Heat 
!Error

5
Start
Close
!Heat 
Error

7
Start
Close
Heat 
!Error

Start oven Open door

Close doorOpen door

Start oven

Warmup

Start cooking
Reset

Open door

Close door

! EF (Start ∧ EG ! Heat)

! [True EU (Start ∧ EG ! Heat)]



1
!Start
!Close
!Heat 
!Error

2
Start

!Close
!Heat 
Error

3
! Start
Close
!Heat 
!Error

4
!Start
Close
Heat 
!Error

6
Start
Close
!Heat 
!Error

5
Start
Close
!Heat 
Error

7
Start
Close
Heat 
!Error

Start oven Open door

Close doorOpen door

Start oven

Warmup

Start cooking
Reset

Open door

Close door

! EF (Start ∧ EG ! Heat)
Start, ! Heat
EG ! Heat

Nontrivial SCC of ! Heat



1
!Start
!Close
!Heat 
!Error

2
Start

!Close
!Heat 
Error

3
! Start
Close
!Heat 
!Error

4
!Start
Close
Heat 
!Error

6
Start
Close
!Heat 
!Error

5
Start
Close
!Heat 
Error

7
Start
Close
Heat 
!Error

Start oven Open door

Close doorOpen door

Start oven

Warmup

Start cooking
Reset

Open door

Close door

! EF (Start ∧ EG ! Heat)
Start, ! Heat
EG ! Heat

Set of states that can reach n
nontrivial SCC of ! Heat

EG ! Heat

EG ! Heat

EG ! Heat

EG ! Heat

Start ∧ EG ! Heat



1
!Start
!Close
!Heat 
!Error

2
Start

!Close
!Heat 
Error

3
! Start
Close
!Heat 
!Error

4
!Start
Close
Heat 
!Error

6
Start
Close
!Heat 
!Error

5
Start
Close
!Heat 
Error

7
Start
Close
Heat 
!Error

Start oven Open door

Close doorOpen door

Start oven

Warmup

Start cooking
Reset

Open door

Close door

! EF (Start ∧ EG ! Heat)
Start, ! Heat
EG ! Heat

EG ! Heat

EG ! Heat

EG ! Heat

EG ! Heat

Start ∧ EG ! Heat

Start ∧ EG ! Heat

Start ∧ EG ! Heat



1
!Start
!Close
!Heat 
!Error

2
Start

!Close
!Heat 
Error

3
! Start
Close
!Heat 
!Error

4
!Start
Close
Heat 
!Error

6
Start
Close
!Heat 
!Error

5
Start
Close
!Heat 
Error

7
Start
Close
Heat 
!Error

Start oven Open door

Close doorOpen door

Start oven

Warmup

Start cooking
Reset

Open door

Close door

! EF (Start ∧ EG ! Heat)
Start, ! Heat
EG ! Heat

EG ! Heat

EG ! Heat

EG ! Heat

EG ! Heat

Start ∧ EG ! Heat

Start ∧ EG ! Heat

Start ∧ EG ! Heat

EF (Start ∧ EG ! Heat)



1
!Start
!Close
!Heat 
!Error

2
Start

!Close
!Heat 
Error

3
! Start
Close
!Heat 
!Error

4
!Start
Close
Heat 
!Error

6
Start
Close
!Heat 
!Error

5
Start
Close
!Heat 
Error

7
Start
Close
Heat 
!Error

Start oven Open door

Close doorOpen door

Start oven

Warmup

Start cooking
Reset

Open door

Close door

! EF (Start ∧ EG ! Heat)
Start, ! Heat
EG ! Heat

EG ! Heat

EG ! Heat

EG ! Heat

EG ! Heat

Start ∧ EG ! Heat

Start ∧ EG ! Heat

Start ∧ EG ! Heat

EF (Start ∧ EG ! Heat)



1
!Start
!Close
!Heat 
!Error

2
Start

!Close
!Heat 
Error

3
! Start
Close
!Heat 
!Error

4
!Start
Close
Heat 
!Error

6
Start
Close
!Heat 
!Error

5
Start
Close
!Heat 
Error

7
Start
Close
Heat 
!Error

Start oven Open door

Close doorOpen door

Start oven

Warmup

Start cooking
Reset

Open door

Close door

! EF (Start ∧ EG ! Heat)
Start, ! Heat
EG ! Heat

EG ! Heat

EG ! Heat

EG ! Heat

EG ! Heat

Start ∧ EG ! Heat

Start ∧ EG ! Heat

Start ∧ EG ! Heat

EF (Start ∧ EG ! Heat)

EF (Start ∧ EG ! Heat)

EF (Start ∧ EG ! Heat)

EF (Start ∧ EG ! Heat)

EF (Start ∧ EG ! Heat)
EF (Start ∧ EG ! Heat)

EF (Start ∧ EG ! Heat)EF (Start ∧ EG ! Heat)

Set of states that can reach 
Start ∧ EG ! Heat



1
!Start
!Close
!Heat 
!Error

2
Start

!Close
!Heat 
Error

3
! Start
Close
!Heat 
!Error

4
!Start
Close
Heat 
!Error

6
Start
Close
!Heat 
!Error

5
Start
Close
!Heat 
Error

7
Start
Close
Heat 
!Error

Start oven Open door

Close doorOpen door

Start oven

Warmup

Start cooking
Reset

Open door

Close door

! EF (Start ∧ EG ! Heat)
Start, ! Heat
EG ! Heat

EG ! Heat

EG ! Heat

EG ! Heat

EG ! Heat

Start ∧ EG ! Heat

Start ∧ EG ! Heat

Start ∧ EG ! Heat

EF (Start ∧ EG ! Heat)

EF (Start ∧ EG ! Heat)

EF (Start ∧ EG ! Heat)

EF (Start ∧ EG ! Heat)

EF (Start ∧ EG ! Heat)
EF (Start ∧ EG ! Heat)

EF (Start ∧ EG ! Heat)EF (Start ∧ EG ! Heat)

None of the states are labeled with 
! EF (Start ∧ EG ! Heat)



University of Illinois
at Urbana-Champaign

Timed and hybrid models

University of Illinois
at Urbana-Champaign



Bouncing Ball

Automaton Bouncingball(c,h,g)
variables: analog x: Reals := h, v: Reals := 0

states: True
actions: external bounce
transitions:

bounce
pre x = 0 /\ v < 0

eff v := -cv
trajectories:

evolve d(x) = v; d(v) = -g
invariant ! ≥ #
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Loc 1
$ % = '
$ ' = −)
! ≥ #

TIOA Specification Language 
(close to PHAVer & UPPAAL’s language)

Graphical Representation used in 
many articles

bounce
x = 0 /\ v < 0

v’ := -cv

x:= h



Semantics: Executions and Traces

• An execution fragment of ! is an 
(possibly infinite) alternating (A, X)-
sequence " = $% &' $'&($( … where 
• ∀	i $-. /01&12 &-3'⟶ $-3'. 501&12

• If $%.fstate ∈	Θ then its an execution

• Execs= set of all executions

• The trace of an execution: external 
part of the execution. Alternating 
sequence of external actions and 
trajectories of the empty set of 
variables
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Special kinds of executions

• Infinite: Infinite sequence of transitions and trajectories
• Closed: Finite with final trajectory with closed domain 
• Admissable: Infinite duration
• May or may not be infinite

• Zeno: Infinite but not admissable
• Infinite number of transitions in finite time
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Another Example: Periodically Sending 
Process

Automaton PeriodicSend(u)
variables: analog 

clock: Reals := 0, z:Reals, failed:Boolean := F 
actions: external send(m:Reals), fail
transitions:

send(m)
pre clock = u /\ m = z /\ ~failed
eff clock := 0
fail
pre true
eff failed := T

trajectories:
evolve d(clock) = 1, d(z) = f(z)
stop when ~failed /\ clock=u
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Loc 1
! "#$"% = 1
! ( = )(()
~failed⇒
-./-0 ≤ 2

send(m)
clock = u /\ m = z /\ ~failed

clock := 0

clock:= 0

fail
true

failed := T



Special Classes of Hybrid Automata

• Timed Automata ß

• Rectangular Initialized HA

• Rectangular HA

• Linear HA 

• Nonlinear HA
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Clocks and Clock Constraints 
[Alur and Dill 1991] 

• A clock variable ! is a continuous (analog) variable of type real such that along 
any trajectory " of x, for all t ∈ ". %&', " ) ⌈! = ). 

• That is, !̇ = 1

• For a set X of clock variables, the set Φ(X) of integral clock constraints are 
expressions defined by the syntax:

g ::= x ≤ 0 ! ≥ 0 ¬ 3 | 35 ∧ 37
where ! ∈ 8 9:% 0 ∈ ℤ

• Examples: x = 10; x ∈ [2, 5); true are valid clock constraints

• Semantics of clock constraints [3]
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Integral Timed Automata [Alur and Dill 1991] 

Definition. A integral timed automaton is a HIOA ! = 〈#, %, Θ, ', (, )〉 where 
V = X ∪ , , where - is a set of n clocks and , is a discrete state variable of finite type 
Ł

A is a finite set of actions

( is a set of transitions such that 
The guards are described by clock constraings Φ(-)
1, , − 3 → 15, ,5 implies either 15 = 1 or 1 = 0

) set of clock trajectories for the clock variables in X
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Example: Light switch
automaton Switch

variables
internal x, y:Real := 0, loc: {on,off} := off

transitions
internal push

pre x ≥ 2
eff if loc = off then y := 0 fi; x := 0; loc := on

internal pop
pre y = 15 /\ loc = off
eff x := 0

trajectories
invariant loc = on \/ loc = off
stop when y = 15 /\ loc = off
evolve d(x) = 1; d(y) = 1
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Description
Switch can be turned on whenever at least 2 time 
units have elapsed since the last turn off. Switches 
off automatically 15 time units after the last on.



Control State (Location) Reachability Problem

• Given an ITA, check if a particular location is reachable from the initial 
states

• Is this problem easier or harder than general reachability? 

• Is this problem is decidable? 

• Key idea: 

• Construct a Finite State Machine that is a time-abstract bisimilar to the ITA

• Check reachability of FSM 
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Key idea: put states that behave identically in 
the same equivalence class

When two states x1 and x2 in Q behave identically?

• x1. "#$ = x2."#$ and 

• x1 and x2 satisfy the same set of clock constraints

• For each clock & int(x1.&) = int(x2.&) or int(x1.&) ≥ $)* and int(x2.&) ≥ $)*. 

($)* is the maxium clock guard of &)

• For each clock & with x1.& ≤ $)*, frac(x1.&) = 0 iff frac(x2.&) = 0
• For any two clocks & and = with x1.& ≤ $)* and x1.= ≤ $)>, frac(x1.&) ≤ frac(x1.=) 

iff frac(x2.&) ≤ frac(x2.=)

Lemma. This is a equivalence relation on Q

The partition of Q induced by this relation is are called clock regions 
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What do the clock regions look like?

Lecture Slides by Sayan Mitra mitras@illinois.edu

Example of 
Two Clocks 

X = {y,z}
!"# = 2
!"$ = 3



Complexity

• Lemma. The number of clock regions is bounded by |X|! 
2|X|∏"∈$(2'(" + 2).
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Region Automaton

• ITA (clock constants) defines the clock regions

• Now we add the “appropriate transitions” between the regions to 
create a finite automaton which gives a time abstract bisimulation of 
the ITA with respect to control state reachability
• Time successors: Consider two clock regions ! and !%, we say that !% is a time 

successor of ! if there exits a trajectory of ITA starting from ! that ends in !’
• Discrete transitions: Same as the ITA

Lecture Slides by Sayan Mitra mitras@illinois.edu



Time Successors

The clock regions in blue are 
time successors of the clock 
region in red. 
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Example 1: Region Automata

ITA

Corresponding FA
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Example 2

ITA
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Clock 
Regions



|X|! 2|X|∏"∈$(2'(" + 2)

Corresponding FA
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Drastically increasing with the 
number of clocks



Clocks and Rational Clock Constraints

• A clock variable x is a continuous (analog) variable of type real such 
that along any trajectory ! of x, for all t ∈ !. $%&, ! ↓ ) * = *. 
• For a set X of clock variables, the set Φ(X) of integral clock constraints 

are expressions defined by the syntax:
g ::= x ≤ . ) ≥ . ¬ 1 | 13 ∧ 15
where ) ∈ 6 78$ . ∈ ℚ

• Examples: x = 10.125; x ∈ [2.99, 5); true are valid rational clock 
constraints

• Semantics of clock constraints [1]
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Step 1. Rational Timed Automata

• Definition. A rational timed automaton is a HA ! = 〈#, %, Θ, ', (, )〉
where 
• V = X ∪ ,-. , where / is a set of n clocks and , is a discrete state variable of 

finite type Ł
• A is a finite set 
• ( is a set of transitions such that 

• The guards are described by rational clock constraings Φ(/)
• 3, , − 5 → 37, ,7 implies either 37 = 3 or 3 = 0

• ) set of clock trajectories for the clock variables in X
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Example: Rational Light switch
Switch can be turned on whenever at least 2.25 time units have elapsed since the last turn off or on. 
Switches off automatically 15.5 time units after the last on.

automaton Switch
internal push; pop

variables
internal x, y:Real := 0, loc:{on,off} := off

transitions
push

pre x >=2.25
eff if loc = on then y := 0 fi; x := 0; loc := off

pop
pre y = 15.5 ∧ loc = off
eff x := 0

trajectories
invariant loc = on ∨ loc = off
stop when y = 15.5 ∧ loc = off
evolve d(x) = 1; d(y) = 1
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Control State (Location) Reachability Problem

• Given an RTA, check if a particular location is reachable from the initial 
states
• Is problem decidable? 
• Yes
• Key idea: 
• Construct a ITA that is time-abstract bisimilar to the given RTA
• Check CSR for ITA

Lecture Slides by Sayan Mitra mitras@illinois.edu



Construction of ITA from RTA

• Multiply all rational constants by a 
factor q that make them integral
• Make d(x) = q for all the clocks

• RTA Switch is bisimilar to ITA Iswitch

• Simulation relation R is given by 
• (u,s) ∈ " iff u.x = 4 s.x and u.y = 4 s.y

automaton ISwitch
internal push; pop
variables

internal x, y:Real := 0, loc:{on,off} := off
transitions

push
pre x >=  9
eff if loc = on then y := 0 fi; x := 0; loc := off

pop
pre y = 62 ∧ loc = off
eff x := 0

trajectories
invariant loc = on ∨ loc = off
stop when y = 62 ∧ loc = off
evolve d(x) = 4; d(y) = 4
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Step 2. Multi-Rate Automaton

• Definition. A multirate automaton is ! = 〈#, %, Θ, ', (, )〉 where 
• V = X ∪ ,-. , where / is a set of n continuous variables and ,-. is a discrete 

state variable of finite type Ł

• A is a finite set of actions

• ( is a set of transitions such that 
• The guards are described by rational clock constraings Φ(/)
• 3, , − 5 → 37, ,7 implies either 37 = . -9 37 = 3

• ) set of trajectories such that 

for each variable 3 ∈ / ∃< =>.ℎ @ℎ5@ A ∈ ), @ ∈ A. C-D
A @ . 3 = A 0 . 3 + < @
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Control State (Location) Reachability Problem

• Given an MRA, check if a particular location is reachable from the 
initial states
• Is problem is decidable? Yes
• Key idea: 
• Construct a RTA that is bisimilar to the given MRA
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Example: Multi-rate to rational TA
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Step 3. Rectangular HA
Definition. An rectangular hybrid automaton (RHA) is a HA ! = ⟨$, &, ', (⟩
where 
• V = X ∪ +,- , where X is a set of n continuous variables and +,- is a discrete 

state variable of finite type Ł
• A is a finite set 
• ' =∪ℓ 'ℓ set of trajectories for X
• For each / ∈ 'ℓ, 1 ∈ 2 either (i) 3 1 = 4ℓ or (ii) 3 1 ∈ 4ℓ5 , 4ℓ6
• Equivalently, (i) / 7 ⌈1 = /(0)⌈1 + 4ℓ7

(ii) /(0)⌈1 + 4ℓ57 ≤ / 7 ⌈1 ≤ /(0)⌈1 + 4ℓ67
• ( is a set of transitions such that 
• Guards are described by rational clock constraings  
• 1, + →? 1@, +@ implies 1@ = 1 ,A1@ ∈ [-5, -6]
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CSR Decidable for RHA?

• Given an RHA, check if a particular location is reachable from the 
initial states?
• Is this problem decidable? No 
• [Henz95] Thomas Henzinger, Peter Kopke, Anuj Puri, and Pravin 

Varaiya. What's Decidable About Hybrid Automata?. Journal of 
Computer and System Sciences, pages 373–382. ACM Press, 1995. 
• CSR for RHA reduction to Halting problem for 2 counter machines
• Halting problem for 2CM known to be undecidable
• Reduction in next lecture
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Step 4. Initialized Rectangular HA
Definition. An initialized rectangular hybrid automaton (IRHA) is a RHA ! where 
• V = X ∪ #$% , where X is a set of n continuous variables and  #$% is a 

discrete state variable of finite type Ł
• A is a finite set
• & =∪ℓ &ℓ set of trajectories for X
• For each ) ∈ &ℓ, , ∈ - either (i) . , = /ℓ or (ii) . , ∈ /ℓ0 , /ℓ1
• Equivalently, (i) ) 2 ⌈, = )(0)⌈, + /ℓ2

(ii) )(0)⌈, + /ℓ02 ≤ ) 2 ⌈, ≤ )(0)⌈, + /ℓ12
• 9 is a set of transitions such that 
• Guards are described by rational clock constraings  
• ,, # →; ,<, #< implies if dynamics changes from ℓ to ℓ′ then ,< ∈
[%0, %1], otherwise ,< = ,
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Example: Rectangular Initialized HA
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1

! "# = k#
! "& = k&

2

! "# = k′#
! "& = k&

3

! "# ∈ [*, ,]
! "& = k.

Pre "# ≥ 0 ∧ "& ≤ 0 Eff "# ≔ 0

Both Pre 
"#, "& have 
to be reset

Eff "#, "& ∈ [5, !]



CSR Decidable for IRHA?

• Given an IRHA, check if a particular location is reachable from the 
initial states
• Is this problem decidable? Yes
• Key idea: 
• Construct a 2n-dimensional initialized multi-rate automaton that is bisimilar to 

the given IRHA
• Construct a ITA that is bisimilar to the Singular TA
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Split every variable into two variables---
tracking the upper and lower bounds
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IRHA MRA

! !ℓ ; !#
Evolve: $(!) ∈ [)*, ,*] Evolve: $ !ℓ = )*; $ !# = ,*

Eff: !/ ∈ [)*, ,*] Eff: !ℓ= )*; !# = ,*
!/ = 1 !ℓ= !# = 1

Guard: ! ≥ 5 !4 ≥ 5
!4 < 5 ∧ !# ≥ 5 Eff !4 = 5



Example IRHA
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v1
$̇ ∈ 1,3

(̇ ∈ [−3,−2]

v2
$̇ ∈ −4,−2
(̇ ∈ [−3,−2]

$ ≔ 0; ( ≔ 1

$ ≤ 5 ∧ ( ≤ −3
$ ≔ 4

v3
$̇ ∈ −4,−2
(̇ ∈ [1,2]

( ≤ −5
( ≔ −4

v4
$̇ ∈ 1,3
(̇ ∈ [1,2]

$ ≥ −3 ∧ ( ≤ −2
$ ∈ [−1,−2]

$ ≥ 0 ∧ ( ≤2
( ≔ 1



Initialized Singular HA
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v1
̇$% = 1
̇$' = 3
̇)% = −3
̇)' = −2

v2
̇̇$% = −4

̇$' = −2
̇)% = −3
̇)' = −2

$%, $' ≔ 0; )%, )' ≔ 1

v3
̇̇$% = −4

̇$' = −2
̇)% = 1
̇)' = 2

v4
̇̇$% = 1

̇$' = 3
̇)% = 1
̇)' = 2



Transitions
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5

v1
̇$% = 1
̇$' = 3
̇)% = −3
̇)' = −2

$% ≤ 5
$%, $' ≔ 4

-3

$%
$'

)'
)%

)' ≤ −3 no	reset
)' > −3 ∧ )% ≤ −3 )' ≔-3



Initialized Singular HA
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v1
̇$% = 1
̇$' = 3
̇)% = −3
̇)' = −2

v2
̇̇$% = −4

̇$' = −2
̇)% = −3
̇)' = −2

$%, $' ≔ 0; )%, )' ≔ 1

$% ≤ 5 ∧ )' ≤ −3
$%, $' ≔ 4

$% ≤ 5 ∧ )% ≤ −3 ∧ )' > −3
$%, $' ≔ 4 )' ≔ −3

v3
̇̇$% = −4

̇$' = −2
̇)% = 1
̇)' = 2

)% ≤ −5
)%)' ≔ −4

v4
̇̇$% = 1

̇$' = 3
̇)% = 1
̇)' = 2

$' ≥ −3 ∧ )' ≤ −2
$% ≔ −2$' ≔ −1

$' ≥ −3 ∧ )% ≤ −2 ∧ )' > −2
$% ≔ −2$' ≔ −1 )' − 2

$% ≥ 0 ∧ )% ≤2
)%, )' ≔ 1

$% < 0 ∧ $' ≥ 0 ∧ )% ≤2
$% ≔ 0)%, )' ≔ 1



Can this be further generalized ? 

• For initialized Rectangular HA, control state reachability is decidable
• Can we drop the initialization restriction?

• No, problem becomes undecidable

• Can we drop the rectangular restriction?
• No, problem becomes undecidable

• Tune in in a week
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Data structures for representing sets

• Hyperrectangles
• g"; g$ = & ∈ () x − g" ,

≤ g$ − g" ,
} = Π0[2"0, 2$0]

• Polyhedra
• Zonotopes
• Ellipsoids
• Support functions
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Verification in tools
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Reachability Computation with polyhedra

• A set of states is represented by 
disjunction of linear inequalities
• !"# = !% ∧ '%( ≤ *% ∨
!"# = !, ∧ ',( ≤ *, ∨ ⋯

• Post(,) computation performed 
symbolically using quantifier 
elimination
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Portion of Navigation benchmark
(. = / → 1"23 4%, 4, = ∃3 4% + /3, 4, + /3 = [4%,∞]

the state is reachable if there exists a time when we reach it.



Summary

• ITA: (very) Restricted class of hybrid automata
• Clocks, integer constraints
• No clock comparison, linear

• Control state reachability with Alur-Dill’s algorithm (region automaton 
construction)
• Rational coefficients
• Multirate Automata
• Initialized Rectangular Hybrid Automata
• HyTech, PHAVer use polyhedral reachability computations
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Summary

• ITA: (very) Restricted class of hybrid automata
• Clocks, integer constraints
• No clock comparison, linear

• Control state reachability

• Alur-Dill’s algorithm 
• Construct finite bisimulation (region automaton)
• Idea is to lump together states that behave similarly and reduce the size of the 

model

• UPPAAL model checker based on similar model of timed automata
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