RRT MP

ECE/CS498 Pulkit Katdare 8th April, 2019

Outline

- Introduction
- Rapidly-Exploring Random Tree
- Controller Design
- Putting it all together

What is Planning?

Google Maps

Signature Grill to Coordinated Science Laboratory

Walk 0.5 mile, 11 min

Motion Planning

Given initial state x_{init} and a goal X_G , what is the path or sequence of control inputs that will lead us from start to goal?

Possible Issues:

- Obstacle avoidance
- Nonholonomic systems
- Computationally intensive
 - Nonconvex optimization
 - Large number of samples required in real-time

Two approaches: optimization-based & sampling-based techniques

Rapidly exploring Random Tree (RRT)

Build tree by generating next states through the dynamics by randomly selecting inputs

Rapidly exploring Random Tree (RRT)

Build tree by generating next states through the dynamics by randomly selecting inputs

Generate_RRT($x_{init}, K, \Delta t$)

```
\mathcal{T}.init(x_{init})
```

for k = 1 to K

 $\begin{aligned} x_{rand} \leftarrow \mathsf{RANDOM_STATE}() \\ x_{near} \leftarrow \mathsf{NEAREST_NEIGHBOR}(x_{rand}, \mathcal{T}) \\ u \leftarrow \mathsf{SELECT_INPUT}(x_{rand}, x_{near}) \\ x_{new} \leftarrow \mathsf{NEW_STATE}(x_{near}, u, \Delta t) \\ \mathcal{T}.\mathsf{add_vertex}(x_{new}) \\ \mathcal{T}.\mathsf{add_edge}(x_{near}, x_{new}, u) \end{aligned}$ Return \mathcal{T}

Rapidly exploring Random Tree (RRT)

Build tree by generating next states through the dynamics by randomly selecting inputs

Generate_RRT($x_{init}, K, \Delta t$)

 $\mathcal{T}.init(x_{init})$

for k = 1 to K

 $\begin{aligned} x_{rand} \leftarrow \mathsf{RANDOM_STATE}() \\ x_{near} \leftarrow \mathsf{NEAREST_NEIGHBOR}(x_{rand}, \mathcal{T}) \\ u \leftarrow \mathsf{SELECT_INPUT}(x_{rand}, x_{near}) \\ w^{2} \\ x_{new} \leftarrow \mathsf{NEW_STATE}(x_{near}, u, \Delta t) \\ \mathcal{T}.\mathsf{add_vertex}(x_{new}) \\ \mathcal{T}.\mathsf{add_vertex}(x_{new}, u) \end{aligned}$ Return \mathcal{T}

Controller Design?

- How to move a robot from point **A** to point **B**
- We need a model first

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} V_R \cos(\theta) \\ V_R \sin(\theta) \\ \delta \end{bmatrix}$$

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} V_R \cos(\theta) \\ V_R \sin(\theta) \\ \delta \end{bmatrix}$$

- V_R : speed of the car
- $\boldsymbol{\delta}$: steering of the car

How to figure out this V_{R} and $\pmb{\delta}?$

This MP

