Motion Planning

ECE/CS498
Katie DC

Sensors: Camera, LIDAR,
RADAR,V2V...

L .

Perception: lane
tracking, detection

Simulation, verification,
testing

- Compute platform:

vehicle / environment, ' GPUs, power, memory
human models

—

CSL Prof. LaValle central to
Oculus’' $2 billion success

8 Apr 17, 2014 fYy G- @in0

& Rick Kubetz, Enginesring Communications Office

On March 25, both the business and technology news pages excitedly announced

Facebook’s $2 billion acquisition of Oculus VR, the maker of a virtual reality gaming

headset called Oculus Rift.

PLANNING
ALGORITHMS

Steven M. LaValle

PLANNING
ALGORITHMS

Motion Planning

Given initial state x;,,;; and a goal X, what is the path or sequence of
control inputs that will lead us from start to goal?

Possible Issues:
 Obstacle avoidance
* Nonholonomic systems

* Computationally intensive
* Nonconvex optimization
e Large number of samples required in real-time

Two approaches: optimization-based & sampling-based techniques

Open-Loop Optimal Control

H
min 2 Ce(xg,uy)
X, U
t=0

subjectto xg = Xjnit, Xy € X, X € X, Uy € Up
Xty1 = f(xt,ut),t — O, ,H —1

This gives the trajectory and sequence of inputs to follow.

In general, this is a nonconvex optimization problem, so it must be
solved with a nonconvex solver or with sequential convex programming

What if there is noise or uncertainty?

Model Predictive Control

Given Xt
Fork=0,...T
Solve:
k+H
min z Cr (e, uy)
X, U
t=k

subjectto x, = Xy, Xy € X, X € X7, uy € Up
Xt+1 = f(xt,ut),t — O, ,H —1
execute u;
observe X,

Collocation versus Shooting

Collocation
e Optimize over the trajectory x and the input u

Shooting

* Optimize directly over u
* The next state and cost is a computed directly as function of u, following the dynamics

* Why is this nice?
* We directly improve the control sequence, which is what we put into the system
* Less likely to converge to a local optima that infeasible

* Why is this difficult?

* We often need to compute a derivative with respect to u, which is often numerically
unstable to compute (especially in case of unstable dynamical systems)

 Not intuitive to initialize

Sampling-based Motion Planners

Instead of optimizing the entire

trajectory and solving a difficult p
optimization problem, let’s try a .
random sampling approach!

* Probabilistic Road Maps
* Rapidly exploring Random Trees

Image Credit: S. Lavalle

Probabilistic Roadmaps (PRM)

Space A" forbidden space Free/feasible space
AN

/

Image Credit: P. Abbeel

Probabilistic Roadmaps (PRM)

Configurations are sampled by picking coordinates at random

Image Credit: P. Abbeel

Probabilistic Roadmaps (PRM)

Sampled configurations are tested for collision

Image Credit: P. Abbeel

Probabilistic Roadmaps (PRM)

The collision-free configurations are retained as milestones

Image Credit: P. Abbeel

Probabilistic Roadmaps (PRM)

Each milestone is linked by straight paths to its nearest neighbors

Image Credit: P. Abbeel

Probabilistic Roadmaps (PRM)

Each milestone is linked by straight paths to its nearest neighbors

Image Credit: P. Abbeel

Probabilistic Roadmaps (PRM)

The collision-free links are retained as local paths to form the PRM

Image Credit: P. Abbeel

Probabilistic Roadmaps (PRM)

The start and goal configurations are included as milestones

ST,

Image Credit: P. Abbeel

Probabilistic Roadmaps (PRM)

* Initialize starting point and goal point (set)

* Randomly sample points in the space

* Connect nearby points if they are reachable
* Find a path from start to goal, often with A*

* Generally control inputs are required for execution

e System cannot always execute an arbitrary path

Image Credit: Aisha Walcott, Nathan Ickes, Stanislav Funiak

Rapidly exploring Random Tree (RRT)

Build tree by generating next states through the dynamics by
randomly selecting inputs

Rapidly exploring Random Tree (RRT)

Build tree by generating next states through the dynamics by
randomly selecting inputs

Image Credit: Wikipedia, RRT

Rapidly exploring Random Tree (RRT)

Build tree by generating next states through the dynamics by
randomly selecting inputs

Generate_RRT(x;j,i¢, K, At)

T .init(x4¢)

fork=1toK

u € SELECT INPUT(X;gnd) Xnear)

Xnew € NEW_STATE(X e qr U, At)

T .add_vertex(x;,,qw)

J .add_edge(xnears Xnew, U)
Return I

Rapidly exploring Random Tree (RRT)

* Pick a random point ain X
* Find b, the node of the tree closest to a

* Find control inputs u to steer the robot
frombtoa

Image Credit: Aisha Walcott, Nathan Ickes, Stanislav Funiak

Rapidly exploring Random Tree (RRT)

* Pick a random point ain X
* Find b, the node of the tree closest to a

* Find control inputs u to steer the robot
frombtoa

* Apply control inputs u for time At, so robot
reaches ¢ c a

* If no collisions occur in getting from a to c,
add c to RRT and record u with new edge

Image Credit: Aisha Walcott, Nathan Ickes, Stanislav Funiak

RRT

Generate_RRT(x;j,i¢, K, At)
T.init(xmit)
Fork=1toK

u € SELECT INPUT(Xgnd) Xnear)

Xnew & NEW_STATE(X;,0qr, U, At)

T .add_vertex(x,ey)

T .add_edge(Xpeqr Xnew, U)
Return I

Image Credit: Aisha Walcott, Nathan Ickes, Stanislav Funiak

RRT

Once stopping condition is met, traverse back through the graph to
uncover your trajectory and input sequence.

Start state and timg

(Ssta re’ tsta rt)

AN
N

Image Credit: Aisha Walcott, Nathan Ickes, Stanislav Funiak

Bidirectional Planning

e Volume of unidirectional RRT

e Volume of bidirectional RRT

Bidirectional Planning

e Volume of unidirectional RRT

O O

e Volume of bidirectional RRT

O O

Image Credit: Aisha Walcott, Nathan Ickes, Stanislav Funiak

Asympototic Guarantees with RR

Swap new point in as parent for nearby vertices w

K

Nno can be reached

along shorter path through new point than through their original
(current) parent. Can be shown to be asymptotically optimal.

RRT RRT*

AN S S ‘

YO R A A

A

i, B2t
T

L
¥ i
.ui_z:,

%

2%
4
: 'i‘m&‘

" "” b

L R T

b 49
? % “‘ Q,

mma‘

>

g
~ﬁ’j\'. .&‘:g

|

N
v

|
<z) ’
i

".[.J L

\
¥

F y

1

AT

=
5 3‘)"
. ‘?‘{'
i

Source: Karaman and Frazzoli

A note on smoothing

 Sampling-based motion planners
often give funky results

* Typically jagged, indirect

* In practice, perform smoothing
prior to execution via shortcutting
or running a quick optimization

—
®o—

Quick Recap

* Motion planning gives use tools for finding the trajectory and
sequence of inputs that will take to a goal position

e Optimization-based techniques give nice results, but are
computationally difficult

e Sampling-based techniques work well in practice, but are slow and
have implementation quirks

* There are many existing implementations and solvers available for
you to try!

