
Motion Planning
ECE/CS498

Katie DC



Sensors Perception
Tactical decision 

making
Trajectory planning Low level controller Simulation and 

validation

vehicle / environment, 
human models

Compute platform: 
GPUs, power, memory

Low-level control

Trajectory planning

Tactical decision making

Perception: lane 
tracking, detection

Sensors: Camera, LIDAR, 
RADAR,V2V…

Simulation, verification, 
testing







Motion Planning
Given initial state 𝑥𝑖𝑛𝑖𝑡 and a goal 𝑋𝐺, what is the path or sequence of
control inputs that will lead us from start to goal?

Possible Issues:

• Obstacle avoidance

• Nonholonomic systems

• Computationally intensive
• Nonconvex optimization

• Large number of samples required in real-time

Two approaches: optimization-based & sampling-based techniques 



Open-Loop Optimal Control

min
𝑥,𝑢

෍

𝑡=0

𝐻

𝐶𝑡 𝑥𝑡 , 𝑢𝑡

subject to 𝑥0 = 𝑥𝑖𝑛𝑖𝑡, 𝑥𝐻 ∈ 𝑋𝐺, 𝑥𝑡 ∈ 𝒳𝑇, 𝑢𝑡 ∈ 𝒰𝑇

𝑥𝑡+1 = 𝑓 𝑥𝑡 , 𝑢𝑡 , 𝑡 = 0,… , 𝐻 − 1

This gives the trajectory and sequence of inputs to follow.

In general, this is a nonconvex optimization problem, so it must be 
solved with a nonconvex solver or with sequential convex programming

What if there is noise or uncertainty?



Model Predictive Control

Given 𝑥𝑖𝑛𝑖𝑡
For k = 0,…,T

Solve: 

min
𝑥,𝑢

෍

𝑡=𝑘

𝑘+𝐻

𝐶𝑡 𝑥𝑡 , 𝑢𝑡

subject to 𝑥𝑘 = ҧ𝑥𝑘, 𝑥𝐻 ∈ 𝑋𝐺, 𝑥𝑡 ∈ 𝒳𝑇, 𝑢𝑡 ∈ 𝒰𝑇

𝑥𝑡+1 = 𝑓 𝑥𝑡 , 𝑢𝑡 , 𝑡 = 0,… , 𝐻 − 1

execute 𝑢𝑡
observe ҧ𝑥𝑘



Collocation versus Shooting

Collocation

• Optimize over the trajectory x and the input u

Shooting

• Optimize directly over u
• The next state and cost is a computed directly as function of u, following the dynamics 

• Why is this nice?
• We directly improve the control sequence, which is what we put into the system

• Less likely to converge to a local optima that infeasible 

• Why is this difficult?
• We often need to compute a derivative with respect to u, which is often numerically 

unstable to compute (especially in case of unstable dynamical systems) 

• Not intuitive to initialize



Sampling-based Motion Planners

Instead of optimizing the entire 
trajectory and solving a difficult 
optimization problem, let’s try a 
random sampling approach!

• Probabilistic Road Maps 

• Rapidly exploring Random Trees

Image Credit: S. Lavalle



Probabilistic Roadmaps (PRM)

Image Credit: P. Abbeel



Probabilistic Roadmaps (PRM)

Image Credit: P. Abbeel



Probabilistic Roadmaps (PRM)

Image Credit: P. Abbeel



Probabilistic Roadmaps (PRM)

Image Credit: P. Abbeel



Probabilistic Roadmaps (PRM)

Image Credit: P. Abbeel



Probabilistic Roadmaps (PRM)

Image Credit: P. Abbeel



Probabilistic Roadmaps (PRM)

Image Credit: P. Abbeel



Probabilistic Roadmaps (PRM)

Image Credit: P. Abbeel



Probabilistic Roadmaps (PRM)

• Initialize starting point and goal point (set)

• Randomly sample points in the space

• Connect nearby points if they are reachable

• Find a path from start to goal, often with A*

• Generally control inputs are required for execution

• System cannot always execute an arbitrary path

Image Credit: Aisha Walcott, Nathan Ickes, Stanislav Funiak



Rapidly exploring Random Tree (RRT)
Build tree by generating next states through the dynamics by 
randomly selecting inputs



Rapidly exploring Random Tree (RRT)
Build tree by generating next states through the dynamics by 
randomly selecting inputs

Image Credit: Wikipedia, RRT



Rapidly exploring Random Tree (RRT)
Build tree by generating next states through the dynamics by 
randomly selecting inputs
Generate_RRT(𝑥𝑖𝑛𝑖𝑡, 𝐾, Δ𝑡)

𝒯.init(𝑥𝑖𝑛𝑖𝑡)

for k = 1 to K

𝑥𝑟𝑎𝑛𝑑 RANDOM_STATE()

𝑥𝑛𝑒𝑎𝑟 NEAREST_NEIGHBOR(𝑥𝑟𝑎𝑛𝑑, 𝒯)

𝑢 SELECT_INPUT(𝑥𝑟𝑎𝑛𝑑, 𝑥𝑛𝑒𝑎𝑟)

𝑥𝑛𝑒𝑤 NEW_STATE(𝑥𝑛𝑒𝑎𝑟 , 𝑢, Δ𝑡)

𝒯.add_vertex(𝑥𝑛𝑒𝑤)

𝒯.add_edge(𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤, 𝑢)

Return 𝒯



Rapidly exploring Random Tree (RRT)

• Pick a random point a in X

• Find b, the node of the tree closest to a

• Find control inputs u to steer the robot 
from b to a

a

b

u

Image Credit: Aisha Walcott, Nathan Ickes, Stanislav Funiak



Rapidly exploring Random Tree (RRT)

• Pick a random point a in X

• Find b, the node of the tree closest to a

• Find control inputs u to steer the robot 
from b to a

• Apply control inputs u for time Δ𝑡, so robot 
reaches c

• If no collisions occur in getting from a to c, 
add c to RRT and record u with new edge

a

b

u

c

Image Credit: Aisha Walcott, Nathan Ickes, Stanislav Funiak



Image Credit: Aisha Walcott, Nathan Ickes, Stanislav Funiak

Generate_RRT(𝑥𝑖𝑛𝑖𝑡, 𝐾, Δ𝑡)
𝒯.init(𝑥𝑖𝑛𝑖𝑡)
For k = 1 to K

𝑥𝑟𝑎𝑛𝑑 RANDOM_STATE()
𝑥𝑛𝑒𝑎𝑟 NEAREST_NEIGHBOR(𝑥𝑟𝑎𝑛𝑑, 𝒯)
𝑢 SELECT_INPUT(𝑥𝑟𝑎𝑛𝑑, 𝑥𝑛𝑒𝑎𝑟)
𝑥𝑛𝑒𝑤 NEW_STATE(𝑥𝑛𝑒𝑎𝑟 , 𝑢, Δ𝑡)
𝒯.add_vertex(𝑥𝑛𝑒𝑤)
𝒯.add_edge(𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤, 𝑢)

Return 𝒯

RRT



RRT

Start state and time
(sstart, tstart)

Goal state and time
(sgoal, tgoal)

Once stopping condition is met, traverse back through the graph to
uncover your trajectory and input sequence.

Image Credit: Aisha Walcott, Nathan Ickes, Stanislav Funiak



Bidirectional Planning

• Volume of unidirectional RRT

• Volume of bidirectional RRT



Bidirectional Planning

• Volume of unidirectional RRT

• Volume of bidirectional RRT

Image Credit: Aisha Walcott, Nathan Ickes, Stanislav Funiak



Asympototic Guarantees with RRT*
Swap new point in as parent for nearby vertices who can be reached
along shorter path through new point than through their original
(current) parent. Can be shown to be asymptotically optimal.



A note on smoothing

• Sampling-based motion planners
often give funky results
• Typically jagged, indirect

• In practice, perform smoothing
prior to execution via shortcutting
or running a quick optimization



Quick Recap

• Motion planning gives use tools for finding the trajectory and 
sequence of inputs that will take to a goal position

• Optimization-based techniques give nice results, but are 
computationally difficult

• Sampling-based techniques work well in practice, but are slow and 
have implementation quirks

• There are many existing implementations and solvers available for 
you to try!


