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Outline

• Lyapunov stability and asymptotic stability
• Lyapunov functions
• Hybrid systems (gentle introduction)
• Surprises with hybrid executions

• Stability of hybrid and switched systems
• Common Lyapunov Functions
• Multiple Lyapunov Function
• Dwell-time Criteria



Lyapunov stability

Lyapunov stability: The system (1) is said to be Lyapunov stable (at the 
origin) if for every ! > 0 there exists $% > 0 such that for every if 
& 0 ≤ $% then for all t ≥ 0, & + ≤ !.

How is this related to 
invariants and 
reachable states ?

$%
!



Asymptotically stability
The system (1) is said to be Asymptotically stable (at the origin) if it is 
Lyapunov stable and there exists !" > 0 such that for every if 
% 0 ≤ !" then t → ∞, % + → ,.

If the property holds for any !" then Globally Asymptotically Stable



Example: Pendulum

Pendulum equation

!" = $ !% = $̇
!% = !̇"

!̇% = −() sin !" − -
. !%

̇!%
̇!" = −

/
0 sin !" − 1

2 !%!%

Two equilibrium 
points: 0,0 , (6, 0) 8 = 9, 9

asymptotically stable
8 = :, 9

unstable

!"
! %



Example: Pendulum

Pendulum equation

!" = $ !% = $̇

!% = !̇"

!̇% = −() sin !" − -
. !%

̇!%
̇!" = −

/
0 sin !" − 1

2 !%!%

- = 0 no friction 4∗ = 6, 6
stable but not 

asymptotically stable

4∗ = 8, 6
unstable



Van der pol oscillator

Van der pol oscillator
!"#
!$# − & 1 − "# !"

!$ + " = 0

"+ = "; "# = "̇+;
coupling coefficient & = 2 0.1
̇"#
̇"+ = & 1 − "+# "# − "+

"#

stable ? 



Stability of solutions* (instead of points)

• For any ! ∈ PC ℝ&', ℝ) define the s-norm ! * = sup
/∈ℝ

| ! 1 |

• A dynamical system can be seen as an operator that maps initial states to signals  2:ℝ) →
56 ℝ&', ℝ)

• Lyapunov stability required that this operator is continuous

• The solution !∗ is Lyapunov stable if 2 is continuous as !∗(0) . i. e. , for every > > 0 there 
exists @A > 0 such that for every B' ∈ ℝ) if !∗ 0 − B' ≤ @A then E

E
F

F
2 !∗ 1 −

2 B' *
≤ >.

*Not discussed in class



Verifying Stability for Linear Systems

Consider the linear system "̇ = $"

Theorem. 

1. It is asymptotically stable iff all the eigenvalues of A have strictly negative 
real parts (Hurwitz).

2. It is Lyapunov stable iff all the eigen values of A have real parts that are 
either zero or negative and the Jordan blocks corresponding to the 
eigenvalues with zero real parts are of size 1.



Example 1: Simple linear model of an economy
• !: national income ": rate of consumer spending
• $: rate of government expenditure
• !̇ = ! − ("
• "̇ = ) ! − " − $
• $ = $* + ,! (, ), , are positive constants
• What is the equilibrium? 
• !∗ = /01

123241 "
∗ = /01

123241
• Dynamics:

• !̇
"̇ = 1 −(

)(1 − ,) −)
!
"



Example: Simple linear model of an economy

• ! = 3, % = 1, ' = 0

• )*, )*∗ = (−.25 ± 2 1.714)

• Negative real parts, therefore, 
asymptotically stable and the national 
income and consumer spending rate 
converge to 6 = 1.764 8 = 5.294



Lyapunov’s method: Stability of nonlinear systems

• For any positive definite function of state !:ℝ$ → ℝ
• ! & ≥ 0 and ! & = 0 iff & = 0

• Sub level sets of *+ = {& ∈ ℝ$ |	! & ≤ 1}
• !(4 5 )
V differentiable with continuous first derivative

• !̇ = 8 9 : ;
<; = ?

• >9>? .
<
<; 4 5 = >9

>? . A(&) is also continuous

• ! is radially unbounded if & → ∞ ⇒ ! & → ∞



Verifying Stability

Theorem. (Lyapunov) Consider the system (1) with state space ! " ∈
ℝ% and suppose there exists a positive definite, continuously 
differentiable function &:ℝ% → ℝ. The system is: 

1. Lyapunov stable if &̇ ! " = +,
+- . / ≤ 0

2. Asymptotically stable if &̇ ! " < 0
3. It is globally AS if V is also radially unbounded. 



Proof sketch: Lyapunov stable if "̇ ≤ 0

• Assume "̇ ≤ 0
• Consider a ball  B& around the origin of 

radius ' > 0.
• Pick a positive number * < min

/ 0&
" 1 .

• Let 2 be a radius of ball around origin 
which is inside B3 = 1 " 1 ≤ *}
• Since along all trajectories V is non-

increasing, starting from 63 each 
solution satisfies " 7 8 ≤ * and 
therefore remains in B&

B&
9: 63



Proof sketch: Asymptotically stable if "̇ # $ < 0
• Assume "̇ < 0
• Take arbitrary initial state # 0 ≤ (, where this (

comes from some * for Lyapunov stability

• Since " # . > 0 and decreasing along # it has a limit 
- ≥ 0 at $ → ∞

• It suffices to show that this limit is actually 0
• Suppose not, c > 0 then the solution evolves in the 

compact set 1 = 3 4 ≤ 3 ≤ *} for some sufficiently 
small 4

• Let 6 = max:∈< "̇(3) [slowest rate]

• This number is well-defined and negative

• "̇ # $ ≤ 6 for all t

• " $ ≤ " 0 + 6$
• But then eventually " $ < -

BA

4



Example 2
• "̇# = −"# + ' "( ; "̇( = −"( + ℎ "#

• ' + ≤ -
( , ℎ + ≤ -

(

• Use / = #
( "#( + "(( ≥ 0

• /̇ = "# "̇# + "( "̇(
=−"#( −"(( +"#' "( + "(ℎ "#
≤ −"#( −"(( + #

( |"#"(| + |"("#|

≤ − #
( ("#

( + "(() = −/
We conclude global asymptotic stability (in fact global exponential 
stability) without knowing solutions

"# − "( ( ≥ 0
"#( + "(( ≥ 2 "#"(

"#"( ≤ 1
2 ("#

( + "(()



Proposition. Every sublevel set of V is an invariant

Proof. ! " # =
= ! " 0 + ∫(

) !̇ " + ,+
≤ !("(0))



An aside: Checking inductive invariants

• ! = #,%&, '
• #: set of variables

• %& ⊆ *+, #
• ' ⊆ *+, # ×*+, # written as a program .′ ⊆ '(.)

• How do we check that 2 ⊆ *+,(#) is an inductive invariant?
• %& ⇒ 2(#)
• 2 # ⇒ 2(' # )

• Implies that 45+6ℎ! %& ⊆ 2 without computing the executions or reachable states of A

• The key is to find such 2



Finding Lyapunov Functions
• The key to using Lyapunov theory is to find a Lyapunov function 

and verify that it has the properties
• In general for nonlinear systems this is hard
• There are several approaches

• Linear quadratic Lyapunov functions for linear systems
• Decide the form/template of the function (e.g., quadratic), 

parameterized by some parameters
• Try to find values of the parameters so that the conditions hold
• NNs for learning Lyapunov functions from data [Billard`14]

Learning control Lyapunov function to ensure stability of dynamical system-based robot reaching motions, 
Khansari-Zadeh, Billard - Robotics and Autonomous Systems, 2014 - Elsevier



Linear autonomous systems
• "̇ = $", $ ∈ ℝ(×(

• The Lyapunov equation: $*+ + +$ + - = 0
where +, - ∈ ℝ(×( are symmetric

• Interpretation: / " = "*+" then 

/̇ " = $" *+" + "*+($")

[using 23
456
27 = 23

27 +8 +
26
27 +

*9]
= "* $*+ + +$ " = −"*-"

• If "*+" is the generalized energy then −"*-" is the associated dissipation



Quadratic Lyapunov Functions

• If ! > 0 (positive definite)
• $ % = %'!% = 0 ⇔ % = 0
• The sub-level sets are ellipsoids
• If ) > 0 then the system is globally asymptotically stable 

A positive definite matrix is 
a symmetric matrix with 
all positive eigenvalues.



Same example

Lyapunov equations are solved as a set of ! !"#
$

equations in % % + 1 /2 variables. Cost O(%*)

Choose , = 1 0
0 1 solving Lyapunov equations we 

get / = 2.59 −2.29
−2.29 4.92 and we get the quadratic 

Lyapunov function 5 − 5∗ / 5 − 5∗ 7 an a 

sequence of invariants



Converse Lyapunov

Converse Lyapunov theorems show that conditions of the previous 
theorem are also necessary. For example, if the system is asymptotically 
stable then there exists a positive definite, continuously differentiable 
function V, that satisfies the inequalities. 

For example if the LTI system "̇ = $" is globally asymptotically stable 
then there is a quadratic Lyapunov function that proves it. 



Plant and controller

Plant
!"
!# = % &, (, )

Controller

( = * +, )

,&
,) = % &, (()), ) ; 0 ) = ℎ & ) ;

+ ) = 0 ) − 0!())

( ) = *(+ ) , ))

0 ) = ℎ(& ) )
output

0! )



PID control
• 90% (or more) of control loops in industry are PID 
• Simple control design model → simple controller
• The standard form of a PID controller:

! " = $%& " + $( )
*

+
& , -, + $.

-&
-"

• where the error term e " = 0 " − 0. "
• 0. " : desired output or setpoint value
• $%, $(, $.: constant gains
• Many techniques for tuning these parameters: Ziegler-Nichols, relay 

method, Cohen-Coon method, etc. 
• Analysis in frequency domain



P control
• Consider a simple integrator plant model
• "̇ # = % # + '
• %(#) = −+,(" # − "-(#))
• "̇ # = −+, " # − "- # + '
• "̇ # = −+," # + +,"- # + '
Steady state

• 0 = −+, " # − "- # + '
• "// = "- − '/+, steady state error
Transient

" # = " 0 12
3
4 + "// 1 − 12

3
4 , 7 = 1/8,



Choosing proportional gain !" in PID 

Response of y(t) to step change of #$(&) vs 
time, for three values of Kp (Ki and Kd held 
constant) Fig. from wikipedia



Summary (you should know)

• Definitions of solutions, stability, invariance, reach set
• Properties of solutions of linear systems
• Discrete abstractions
• Lyapunov’s theorems and method for proving stability
• PID controller form, basic properties



Hybrid system: Combining logic with dynamics

state machine

merge left

get close

gain threshold

overtake

merge right

abort



Gentle intro to hybrid systems

• Hybrid automaton: ! = ⟨$, &, ', Τ⟩
• $ = * ∪ {ℓ}
• *:		continuous variables, e.g., temperature, position, 

orientation, speed

• ℓ:	mode, e.g., {on, off}, {cruising, braking, merging}

• Execution 1 = 23452546 …
• Unexpected things can happen in hybrid 

executions

mode 1
8 9 = :5(9)

mode 2
8 9 = :6(9)

Pre =56 Eff 9 ≔ ?56(9)



Zeno’s Paradox

Achilles runs 10 times faster than than the tortoise, but the turtle gets to start 1 second 
earlier. Can Achilles ever catch Turtle? 

Lesson: Mixing discrete time with continuous motion can be tricky!

Achilles, the fastest 
athlete,  greatest warrior

Zeno, Greek 
philosopher 

You couldn’t 
even beat a 

turtle

After 1/10th of a second, Achilles 
reaches where the Turtle (T) started, 
and T has a head start of 1/10th

second.
After another 1/100th of a second, A 
catches up to where T was at t=1/10 
sec, but T has a head start of 1/100th

… 
T is always ahead … 

whatever!



Recall Stability

• Time invariant autonomous systems (closed systems, systems without 
inputs) 

• "̇ # = % " # , "' ∈ ℝ*, #' = 0 –(1)
• 0 # is the solution
• |0 # | norm
• "∗ ∈ ℝ* is an equilibrium point if % "∗ = 0.
• For analysis we will assume 0 to be an equilibrium point of (1) with out 

loss of generality



Gentle intro to hybrid systems

• Hybrid automaton: ! = ⟨$, &, ', Τ⟩
• $ = * ∪ {ℓ}
• *:		continuous variables, e.g., temperature, position, orientation, speed
• ℓ:	mode, e.g., {on, off}, {cruising, braking, merging}

• Execution 1 = 23452546 …

• Notation 1(9): denotes the valuation ;. =>949? where ; is the longest prefix 
with ;. ltime = 9

• |1 9 |: norm of the continuous state *

• A is Lyapunov stable (at the origin) if for every F > 0 there exists IJ >
0 such that for every if 1 0 ≤ IJ then for all t ≥ 0, 1 9 ≤ F.

• Asymptotically stable if it is Lyapunov stable and there exists I6 > 0 such 
that for every if 1 0 ≤ I6 then t → ∞, 1 9 → O.

mode 1
P Q = R5(Q)

mode 2
P Q = R6(Q)

Pre S56 Eff Q ≔ U56(Q)



Run

Walk

Each of the modes of a walking robot are asymptotically stableJ
Is it possible to switch between them to make the system unstableL ?



Run

Walk

Yes! By switching between 
them the system becomes 
unstable



Common Lyapunov Function

• If there exists positive definite continuously differentiable function !:ℝ$ →
ℝ and a positive definite function W: ℝ$ → ℝ such that for each mode &,
()
(* +, - < −0(-) for all - ≠ 0 then V is called a common Lyapunov
function for A. 

• ! is called a common Lyapunov function

• Theorem. A is globally asymptotically stable if there exists a common 
Lyapunov function. 



Multiple Lyapunov Functions

• In the absence of a common lyapunov function the stability verification has to rely 
of the discrete transitions. 

• The following theorem gives such a stability in terms of multiple Lyapunov function. 

• Theorem [Branicky] If there exists a family of positive definite continuously 
differentiable Lyapunov functions !": ℝ% → ℝ and a positive definite function 
W(:ℝ% → ℝ such that for any execution ) and for any time *+ *, ) *+ . ℓ =
) *, . ℓ = 0 and for all time * ∈ *+, *, , ) * . ℓ ≠ 0
• !" ) *, . 4 − !" ) *+ . 4 ≤ −7" ) *+ . 4

Then the system is globally asymptotically stable.



time

)(tVi

V2 £ ! V1

• Average Dwell Time (ADT) characterizes rate of mode switches
• Definition: H has ADT T if there exists a constant N0 such that for every execution α, 

N(α) £ N0 + duration(α)/T. 
N(α): number of mode switches in α

• Theorem [HM`99] H is asymptotically stable if its modes have a set of Lyapunov functions 
(!, "#) and ADT(H) > log !/"# .

Stability Under Slow Switching [Hespanha and Morse`99]

mode 1 mode 2 mode 2mode 1

Proof Techniques: Stability

$%&
$' ≤ −2"#%&(')



Remarks about ADT theorem assumptions

1. If !" is globally asymptotically stable, then there exists a Lyapunov
function #" that satisfies $%&$' ≤ −2+"#" , for appropriately chosen 
+" > 0

2. If the set of modes is finite, choose +/ independent of 0
3. The other assumption restricts the maximum increase in the value of 

the current Lyapunov functions over any mode switch, by a factor of μ. 
4. We will also assume that there exist strictly increasing functions 12and 

13 such that 12(|,|) ≤ #" , ≤ 13(|,|) 



Proof sketch
Suppose ! is any execution of A. 

Let " = !. %&'() and &*, … , &- . be instants of mode switches in !.

We will find an upper-bound on the value of /. 0 .1 ! " . 2

Define 3 & = )4567/. 7 .1(! & . 2)

3 is non-increasing between mode switches :;<
:=

≤ −2AB/C 2

That is, 3 &CD*
E ≤ 3 &C

3 &CD* ≤ F3 &CD*
E ≤ F3 &C

Iterating this G ! times: 3 " ≤ F-(.)3 0

)4560/. 0 .1 ! " . 2 ≤ F- . /. B .1(! 0 . 2)

/. 0 .1 ! " . 2 ≤ F- . )E4560/. B .1(! 0 . 2) = )E4560D- . IJK L/. B .1(! 0 . 2)

If ! has ADT MN then, recall, G ! ≤ GB + "/MN and /. 0 .1 ! " . 2 ≤
)E4560D(-6D0/QR) IJK L/. B .1(! 0 . 2) ≤ S )0(E456DIJK L /QR)

If MN > log F /2AB then second term converges to 0 as " → ∞ then from assumption 4 it follows 
that ! converges to 0.



Summary and references

• Surprises with hybrid executions: Zeno, instability
• Common and Multiple Lyapunov Function Criteria
• Verification with Average Dwell Time


