ECE/CS 498SM: Principles of Safe Autonomy

Dynamics, Control, and Stability Lectures 16 April 1

Sayan Mitra

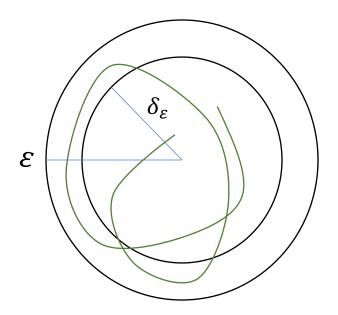
Outline

- Lyapunov stability and asymptotic stability
- Lyapunov functions
- Hybrid systems (gentle introduction)
 - Surprises with hybrid executions
- Stability of hybrid and switched systems
 - Common Lyapunov Functions
 - Multiple Lyapunov Function
 - Dwell-time Criteria

Lyapunov stability

Lyapunov stability: The system (1) is said to be *Lyapunov stable* (at the origin) if for every $\varepsilon > 0$ there exists $\delta_{\varepsilon} > 0$ such that for every if $|\xi(0)| \leq \delta_{\varepsilon}$ then for all $t \geq 0$, $|\xi(t)| \leq \varepsilon$.

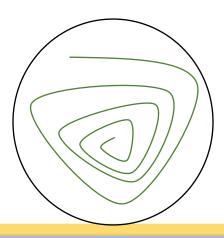
How is this related to invariants and reachable states ?



Asymptotically stability

The system (1) is said to be *Asymptotically stable (at the origin)* if it is Lyapunov stable and there exists $\delta_2 > 0$ such that for every if $|\xi(0)| \leq \delta_2$ then $t \to \infty$, $|\xi(t)| \to 0$.

If the property holds for any δ_2 then Globally Asymptotically Stable



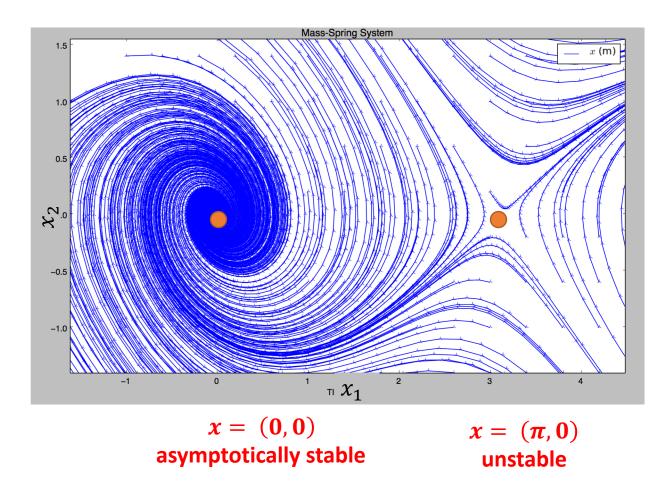
Example: Pendulum

Pendulum equation

 $x_1 = \theta \ x_2 = \dot{\theta}$ $x_2 = \dot{x}_1$

$$\dot{x}_2 = -\frac{g}{l}\sin(x_1) - \frac{k}{m}x_2$$
$$\begin{bmatrix} \dot{x}_2\\ \dot{x}_1 \end{bmatrix} = \begin{bmatrix} -\frac{g}{l}\sin(x_1) - \frac{k}{m}x_2\\ x_2 \end{bmatrix}$$

Two equilibrium points: $(0,0), (\pi, 0)$

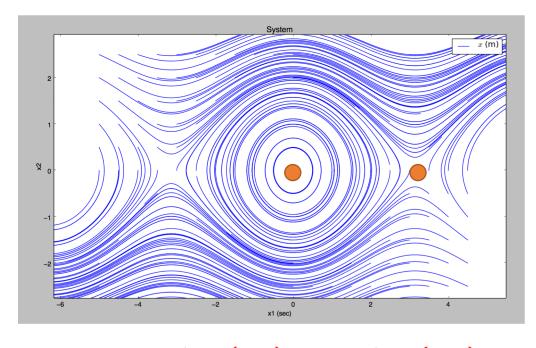


Example: Pendulum

Pendulum equation

 $x_1 = \theta \ x_2 = \dot{\theta}$ $x_2 = \dot{x}_1$ $\dot{x}_2 = -\frac{g}{l}\sin(x_1) - \frac{k}{m}x_2$ $\begin{bmatrix} \dot{x_2} \\ \dot{x_1} \end{bmatrix} = \begin{bmatrix} -\frac{g}{l}\sin(x_1) - \frac{k}{m}x_2 \\ x_2 \end{bmatrix}$

k = 0 no friction



 $x^* = (0, 0)$ $x^* = (\pi, 0)$ stable but not asymptotically stable

unstable

Van der pol oscillator

Van der pol oscillator

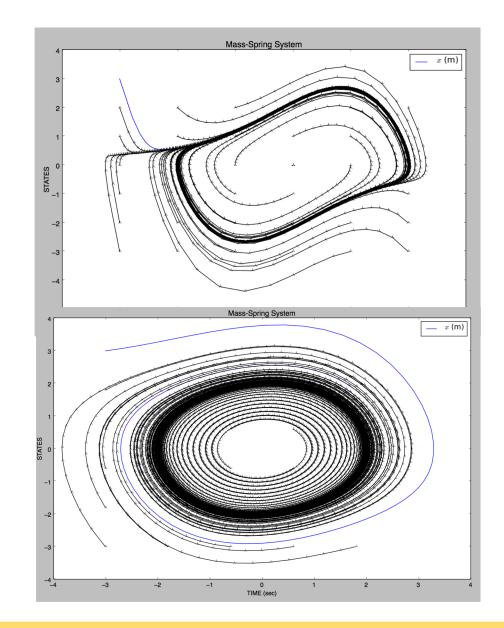
$$\frac{dx^2}{dt^2} - \mu(1 - x^2)\frac{dx}{dt} + x = 0$$

$$x_1 = x; x_2 = \dot{x}_1;$$

coupling coefficient $\mu = 2$ 0.1

$$\begin{bmatrix} \dot{x_2} \\ \dot{x_1} \end{bmatrix} = \begin{bmatrix} \mu(1 - x_1^2)x_2 - x_1 \\ x_2 \end{bmatrix}$$

stable ?



Stability of solutions* (instead of points)

- For any $\xi \in PC(\mathbb{R}^{\geq 0}, \mathbb{R}^n)$ define the s-norm $||\xi||_s = \sup_{t \in \mathbb{R}} ||\xi(t)||$
- A dynamical system can be seen as an operator that maps initial states to signals $T: \mathbb{R}^n \to PC(\mathbb{R}^{\geq 0}, \mathbb{R}^n)$
- Lyapunov stability required that this operator is continuous
- The solution ξ^* is *Lyapunov stable* if T is continuous as $\xi^*(0)$. i.e., for every $\varepsilon > 0$ there exists $\delta_{\varepsilon} > 0$ such that for every $x_0 \in \mathbb{R}^n$ if $|\xi^*(0) x_0| \le \delta_{\varepsilon}$ then $||T(\xi^*(t)) T(x_0)||_s \le \varepsilon$.

Verifying Stability for Linear Systems

Consider the linear system $\dot{x} = Ax$

Theorem.

1. It is asymptotically stable iff all the eigenvalues of A have **strictly** negative real parts (*Hurwitz*).

2. It is Lyapunov stable iff all the eigen values of *A* have real parts that are either zero or negative and the Jordan blocks corresponding to the eigenvalues with zero real parts are of size 1.

Example 1: Simple linear model of an economy

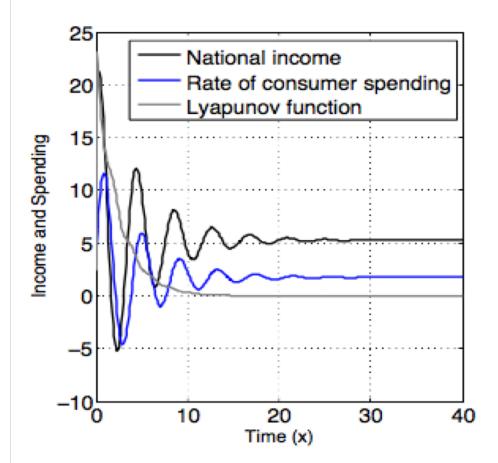
- x: national income y: rate of consumer spending
- g: rate of government expenditure
- $\dot{x} = x \alpha y$
- $\dot{y} = \beta(x y g)$
- $g = g_0 + kx$ α, β, k are positive constants
- What is the equilibrium?

•
$$x^* = \frac{g_0 \alpha}{\alpha - 1 - k\alpha} y^* = \frac{g_0 \alpha}{\alpha - 1 - k\alpha}$$

• Dynamics:

Example: Simple linear model of an economy

- $\alpha = 3, \beta = 1, k = 0$
- $\lambda_1, \lambda_1^* = (-.25 \pm i \ 1.714)$
- Negative real parts, therefore, asymptotically stable and the national income and consumer spending rate converge to $x = 1.764 \ y = 5.294$



Lyapunov's method: Stability of nonlinear systems

- For any **positive definite** function of state $V: \mathbb{R}^n \to \mathbb{R}$
 - $V(x) \ge 0$ and V(x) = 0 iff x = 0
- Sub level sets of $L_p = \{x \in \mathbb{R}^n \mid V(x) \le p\}$
- $V(\xi(t))$

V differentiable with continuous first derivative

•
$$\dot{V} = d \frac{V(\xi(t))}{dt} = ?$$

• $\frac{\partial V}{\partial x} \cdot \frac{d}{dt} (\xi(t)) = \frac{\partial V}{\partial x} \cdot f(x)$ is also continuous

• V is radially unbounded if $||x|| \to \infty \Rightarrow V(x) \to \infty$

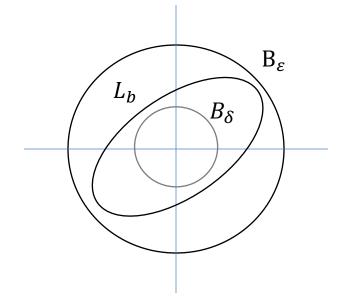
Verifying Stability

Theorem. (Lyapunov) Consider the system (1) with state space $\xi(t) \in \mathbb{R}^n$ and suppose there exists a positive definite, continuously differentiable function $V: \mathbb{R}^n \to \mathbb{R}$. The system is:

- 1. Lyapunov stable if $\dot{V}(\xi(t)) = \frac{\partial V}{\partial x}f(x) \le 0$
- 2. Asymptotically stable if $\dot{V}(\xi(t)) < 0$
- 3. It is globally AS if V is also radially unbounded.

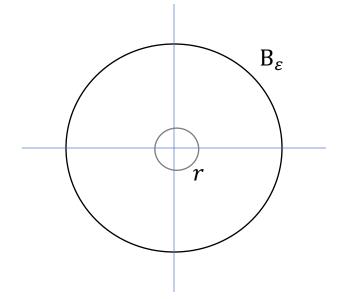
Proof sketch: Lyapunov stable if $\dot{V} \leq 0$

- Assume $\dot{V} \leq 0$
- Consider a ball B_{ε} around the origin of radius $\varepsilon > 0$.
- Pick a positive number $b < \min_{|x|=\varepsilon} V(x)$.
- Let δ be a radius of ball around origin which is inside $B_{\delta} = \{x | V(x) \le b\}$
- Since along all trajectories V is nonincreasing, starting from B_{δ} each solution satisfies $V(\xi(t)) \leq b$ and therefore remains in B_{ε}



Proof sketch: Asymptotically stable if $\dot{V}(\xi(t)) < 0$

- Assume $\dot{V} < 0$
- Take arbitrary initial state $|\xi(0)| \leq \delta$, where this δ comes from some ε for Lyapunov stability
- Since $V(\xi(.)) > 0$ and decreasing along ξ it has a limit $c \ge 0$ at $t \to \infty$
- It suffices to show that this limit is actually 0
- Suppose not, c > 0 then the solution evolves in the compact set $S = \{x \mid r \leq |x| \leq \varepsilon\}$ for some sufficiently small r
- Let $d = \max_{x \in S} \dot{V}(x)$ [slowest rate]
- This number is well-defined and negative
- $\dot{V}(\xi(t)) \leq d$ for all t
- $V(t) \leq V(0) + dt$
- But then eventually V(t) < c



Example 2

- $\dot{x}_1 = -x_1 + g(x_2); \dot{x}_2 = -x_2 + h(x_1)$
- $|g(u)| \le \frac{|u|}{2}$, $|h(u)| \le \frac{|u|}{2}$
- Use $V = \frac{1}{2}(x_1^2 + x_2^2) \ge 0$

•
$$\dot{V} = x_1 \dot{x}_1 + x_2 \dot{x}_2$$

 $= -x_1^2 - x_2^2 + x_1 g(x_2) + x_2 h(x_1)$
 $\leq -x_1^2 - x_2^2 + \frac{1}{2} (|x_1 x_2| + |x_2 x_1|)$
 $\leq -\frac{1}{2} (x_1^2 + x_2^2) = -V$

 $(|x_1| - |x_2|)^2 \ge 0$ $x_1^2 + x_2^2 \ge 2|x_1x_2|$ $|x_1x_2| \le \frac{1}{2}(x_1^2 + x_2^2)$

We conclude global asymptotic stability (in fact global exponential stability) <u>without</u> knowing solutions

Proposition. Every sublevel set of V is an invariant

Proof.
$$V(\xi(t)) =$$

= $V(\xi(0)) + \int_0^t \dot{V}(\xi(\tau)) d\tau$
 $\leq V(\xi(0))$

An aside: Checking inductive invariants

- $\boldsymbol{A} = \langle X, Q_0, T \rangle$
 - X: set of variables
 - $Q_0 \subseteq val(X)$
 - $T \subseteq val(X) \times val(X)$ written as a program $x' \subseteq T(x)$
- How do we check that $I \subseteq val(X)$ is an inductive invariant?
 - $Q_0 \Rightarrow I(X)$
 - $I(X) \Rightarrow I(T(X))$
- Implies that $Reach_A(Q_0) \subseteq I$ without computing the executions or reachable states of A
- The key is to find such *I*

Finding Lyapunov Functions

- The key to using Lyapunov theory is to *find* a Lyapunov function and verify that it has the properties
- In general for nonlinear systems this is hard
- There are several approaches
 - Linear quadratic Lyapunov functions for linear systems
 - Decide the form/template of the function (e.g., quadratic), parameterized by some parameters
 - Try to find values of the parameters so that the conditions hold
 - NNs for learning Lyapunov functions from data [Billard`14]

Learning control Lyapunov function to ensure stability of dynamical system-based robot reaching motions, Khansari-Zadeh, Billard - Robotics and Autonomous Systems, 2014 - Elsevier

Linear autonomous systems

- $\dot{x} = Ax, A \in \mathbb{R}^{n \times n}$
- The Lyapunov equation: $A^TP + PA + Q = 0$ where $P, Q \in \mathbb{R}^{n \times n}$ are symmetric

• Interpretation:
$$V(x) = x^T P x$$
 then
 $\dot{V}(x) = (Ax)^T P x + x^T P (Ax)$
 $[\text{using } \frac{\partial u^T P v}{\partial t} = \frac{\partial u}{\partial t} P v + \frac{\partial v}{\partial t} P^T u]$
 $= x^T (A^T P + PA) x = -x^T Q x$

• If $x^T P x$ is the generalized energy then $-x^T Q x$ is the associated dissipation

Quadratic Lyapunov Functions

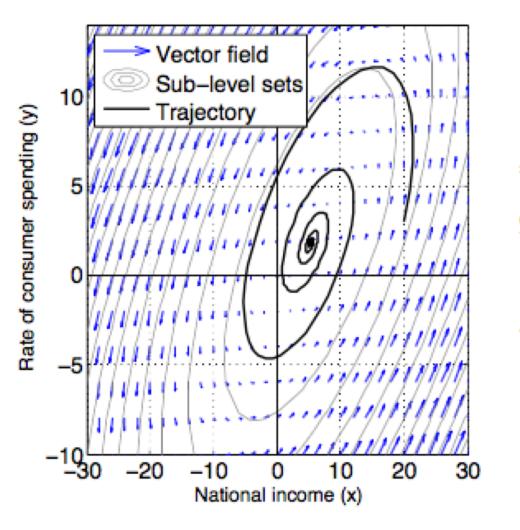
- If P > 0 (positive definite)
- $V(x) = x^T P x = 0 \Leftrightarrow x = 0$
- The sub-level sets are ellipsoids
- If Q > 0 then the system is globally asymptotically stable

A **positive definite matrix** is a symmetric **matrix** with all **positive** eigenvalues.

Same example

Lyapunov equations are solved as a set of $\frac{n(n+1)}{2}$ equations in n(n+1)/2 variables. Cost O(n^6)

Choose
$$Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 solving Lyapunov equations we
get $P = \begin{bmatrix} 2.59 & -2.29 \\ -2.29 & 4.92 \end{bmatrix}$ and we get the quadratic
Lyapunov function $(x - x^*)P(x - x^*)^T$ an a
sequence of invariants

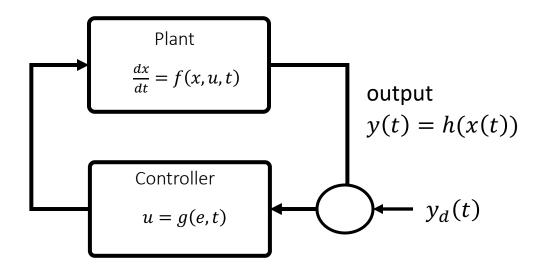


Converse Lyapunov

Converse Lyapunov theorems show that conditions of the previous theorem are also necessary. For example, if the system is asymptotically stable then there exists a positive definite, continuously differentiable function V, that satisfies the inequalities.

For example if the LTI system $\dot{x} = Ax$ is globally asymptotically stable then there is a quadratic Lyapunov function that proves it.

Plant and controller



$$\frac{dx}{dt} = f(x, u(t), t); \quad y(t) = h(x(t));$$
$$e(t) = y(t) - y_d(t)$$

u(t) = g(e(t), t)

PID control

- 90% (or more) of control loops in industry are PID
- Simple control design model ightarrow simple controller
- The standard form of a PID controller:

$$u(t) = k_p e(t) + k_I \int_0^t e(\tau) d\tau + k_d \frac{de}{dt}$$

- where the error term $e(t) = y(t) y_d(t)$
- $y_d(t)$: desired output or setpoint value
- k_p, k_I, k_d : constant gains
- Many techniques for tuning these parameters: Ziegler-Nichols, relay method, Cohen-Coon method, etc.
- Analysis in frequency domain

P control

- Consider a simple integrator plant model
- $\dot{y}(t) = u(t) + d$
- $u(t) = -k_p(y(t) y_d(t))$
- $\dot{y}(t) = -k_p (y(t) y_d(t)) + d$
- $\dot{y}(t) = -k_p y(t) + \left(k_p y_d(t) + d\right)$

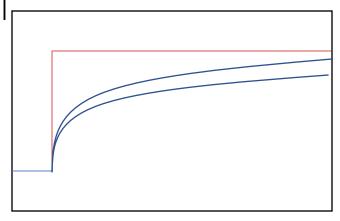
Steady state

•
$$0 = -k_p \big(y(t) - y_d(t) \big) + d$$

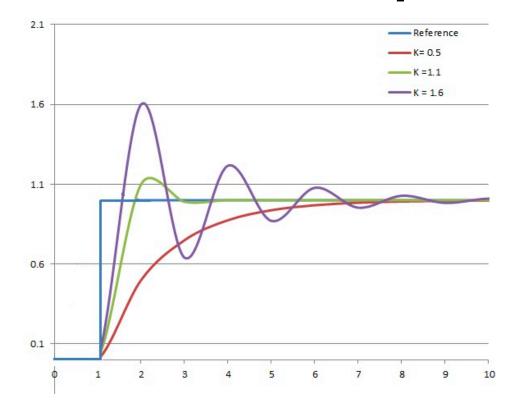
• $y_{ss} = y_d - d/k_p$ steady state error

Transient

$$y(t) = y(0)e^{-\frac{t}{T}} + y_{ss}(1 - e^{-\frac{t}{T}}), T = 1/K_p$$



Choosing proportional gain k_p in PID



Response of y(t) to step change of $y_d(t)$ vs time, for three values of K_p (K_i and K_d held constant) Fig. from wikipedia

Summary (you should know)

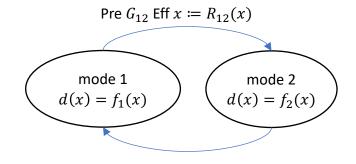
- Definitions of solutions, stability, invariance, reach set
- Properties of solutions of linear systems
- Discrete abstractions
- Lyapunov's theorems and method for proving stability
- PID controller form, basic properties

Hybrid system: Combining logic with dynamics



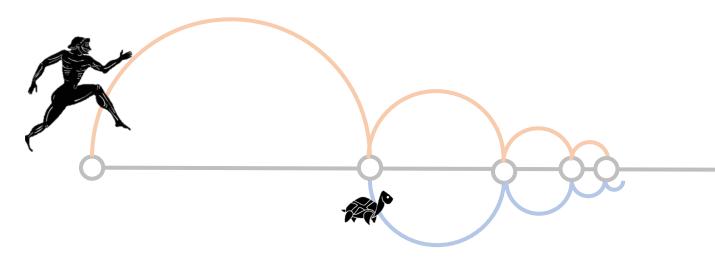
Gentle intro to hybrid systems

- Hybrid automaton: $\mathbf{A} = \langle V, A, D, T \rangle$
 - $V = X \cup \{\ell\}$
 - X: continuous variables, e.g., temperature, position, orientation, speed
 - *ℓ*: mode, e.g., {on, off}, {cruising, braking, merging}
- Execution $\alpha = \tau_0 a_1 \tau_1 a_2 \dots$
- Unexpected things can happen in hybrid executions



Zeno's Paradox

Achilles runs 10 times faster than than the tortoise, but the turtle gets to start 1 second earlier. Can Achilles ever catch Turtle?



After 1/10th of a second, Achilles reaches where the Turtle (T) started, and T has a head start of 1/10th second.

After another 1/100th of a second, A catches up to where T was at t=1/10 sec, but T has a head start of 1/100th

T is always ahead ...

. . .

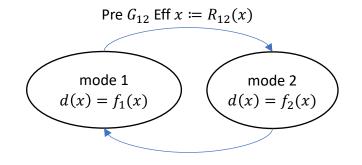
Lesson: Mixing discrete time with continuous motion can be tricky!

Recall Stability

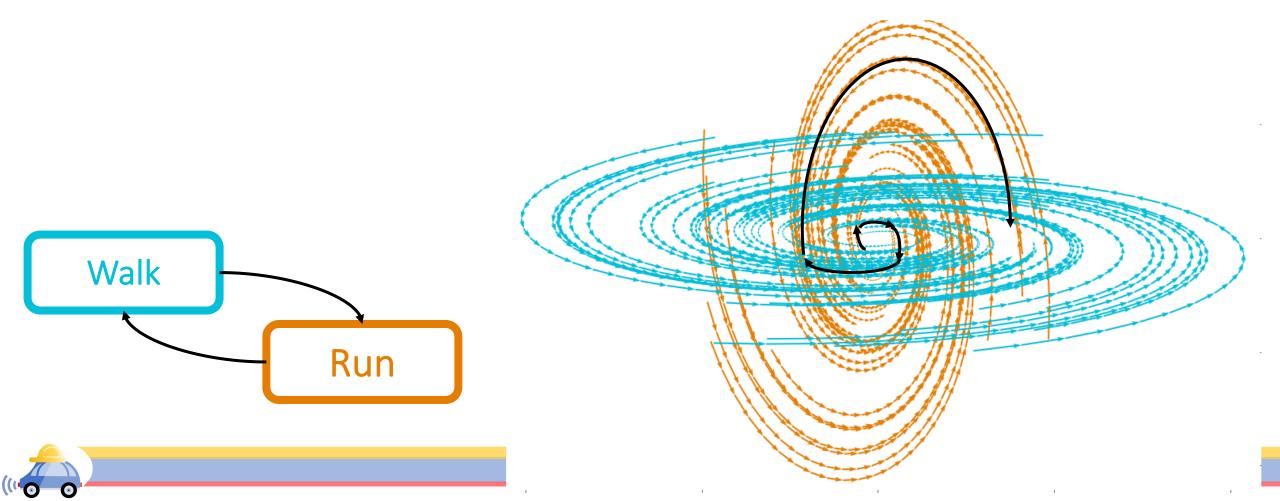
- Time invariant autonomous systems (closed systems, systems without inputs)
- $\dot{x}(t) = f(x(t)), x_0 \in \mathbb{R}^n, t_0 = 0$ -(1)
- $\xi(t)$ is the solution
- $|\xi(t)|$ norm
- $x^* \in \mathbb{R}^n$ is an **equilibrium point** if $f(x^*) = 0$.
- For analysis we will assume **0** to be an equilibrium point of (1) with out loss of generality

Gentle intro to hybrid systems

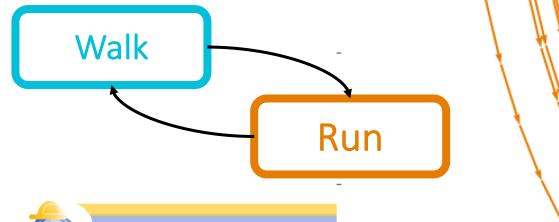
- Hybrid automaton: $\mathbf{A} = \langle V, A, D, T \rangle$
 - $V = X \cup \{\ell\}$
 - X: continuous variables, e.g., temperature, position, orientation, speed
 - ℓ : mode, e.g., {on, off}, {cruising, braking, merging}
- Execution $\alpha = \tau_0 a_1 \tau_1 a_2 \dots$
- Notation $\alpha(t)$: denotes the valuation β . *lstate* where β is the longest prefix with β . ltime = t
- $|\alpha(t)|$: norm of the continuous state X
- A is Lyapunov stable (at the origin) if for every $\varepsilon > 0$ there exists $\delta_{\varepsilon} > 0$ such that for every if $|\alpha(0)| \le \delta_{\varepsilon}$ then for all $t \ge 0$, $|\alpha(t)| \le \varepsilon$.
- Asymptotically stable if it is Lyapunov stable and there exists $\delta_2 > 0$ such that for every if $|\alpha(0)| \le \delta_2$ then $t \to \infty$, $|\alpha(t)| \to 0$.



Each of the modes of a walking robot are asymptotically stable Is it possible to switch between them to make the system unstable ?



Yes! By switching between them the system becomes unstable



Common Lyapunov Function

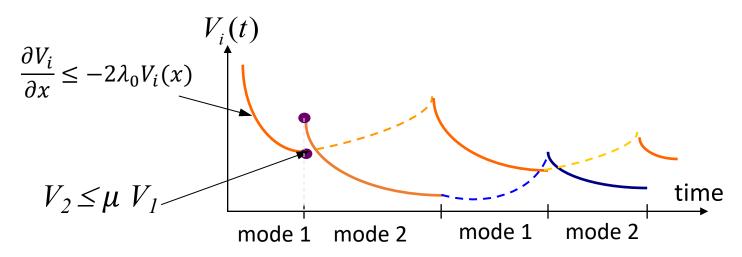
- If there exists positive definite continuously differentiable function $V: \mathbb{R}^n \to \mathbb{R}$ and a positive definite function $W: \mathbb{R}^n \to \mathbb{R}$ such that for each mode i, $\frac{\partial V}{\partial t} f_i(x) < -W(x)$ for all $x \neq 0$ then V is called a common Lyapunov function for A.
- V is called a common Lyapunov function
- Theorem. A is globally asymptotically stable if there exists a common Lyapunov function.

Multiple Lyapunov Functions

- In the absence of a common lyapunov function the stability verification has to rely of the discrete transitions.
- The following theorem gives such a stability in terms of *multiple Lyapunov function*.
- Theorem [Branicky] If there exists a family of positive definite continuously differentiable Lyapunov functions $V_i: \mathbb{R}^n \to \mathbb{R}$ and a positive definite function $W_i: \mathbb{R}^n \to \mathbb{R}$ such that for any execution α and for any time $t_1 t_2 \quad \alpha(t_1)$. $\ell = \alpha(t_2)$. $\ell = i$ and for all time $t \in (t_1, t_2)$, $\alpha(t)$. $\ell \neq i$
 - $V_i(\alpha(t_2).x) V_i(\alpha(t_1).x) \le -W_i(\alpha(t_1).x)$

Then the system is globally asymptotically stable.

Stability Under Slow Switching [Hespanha and Morse`99]



- Average Dwell Time (ADT) characterizes rate of mode switches
- Definition: H has ADT T if there exists a constant N₀ such that for every execution α , N(α) \leq N₀ + duration(α)/T.

N(α): number of mode switches in α

• **Theorem** [HM`99] H is asymptotically stable if its modes have a set of Lyapunov functions (μ, λ_0) and ADT(H) > log μ/λ_0 .

Remarks about ADT theorem assumptions

- 1. If f_i is globally asymptotically stable, then there exists a Lyapunov function V_i that satisfies $\frac{\partial V_i}{\partial x} \leq -2\lambda_i V_i(x)$ for appropriately chosen $\lambda_i > 0$
- 2. If the set of modes is finite, choose λ_0 independent of *i*
- 3. The other assumption restricts the maximum increase in the value of the current Lyapunov functions over any mode switch, by a factor of μ .
- 4. We will also assume that there exist strictly increasing functions β_1 and β_2 such that $\beta_1(|x|) \le V_i(x) \le \beta_2(|x|)$

Proof sketch

Suppose α is any execution of A.

Let $T = \alpha$. *ltime* and $t_1, ..., t_{N(\alpha)}$ be instants of mode switches in α .

We will find an upper-bound on the value of $V_{\alpha(T),l}(\alpha(T), x)$

Define $W(t) = e^{2\lambda_0 t} V_{\alpha(t).l}(\alpha(t).x)$

W is non-increasing between mode switches $\left[\frac{\partial V_i}{\partial x} \leq -2\lambda_0 V_i(x)\right]$

That is, $W(t_{i+1}^-) \leq W(t_i^-)$

 $W(t_{i+1}) \le \mu W(t_{i+1}^-) \le \mu W(t_i)$

Iterating this $N(\alpha)$ times: $W(T) \le \mu^{N(\alpha)} W(0)$

 $e^{2\lambda_0 T} V_{\alpha(T),l}(\alpha(T), x) \le \mu^{N(\alpha)} V_{\alpha(0),l}(\alpha(0), x)$ $V_{\alpha(T),l}(\alpha(T), x) \le \mu^{N(\alpha)} e^{-2\lambda_0 T} V_{\alpha(0),l}(\alpha(0), x) = e^{-2\lambda_0 T + N(\alpha) \log \mu} V_{\alpha(0),l}(\alpha(0), x)$

If α has ADT τ_a then, recall, $N(\alpha) \le N_0 + T/\tau_a$ and $V_{\alpha(T),l}(\alpha(T), x) \le e^{-2\lambda_0 T + (N_0 + T/\tau_a) \log \mu} V_{\alpha(0),l}(\alpha(0), x) \le C e^{T(-2\lambda_0 + \log \mu/\tau_a)}$

If $\tau_a > \log \mu / 2\lambda_0$ then second term converges to 0 as $T \to \infty$ then from assumption 4 it follows that α converges to 0.

Summary and references

- Surprises with hybrid executions: Zeno, instability
- Common and Multiple Lyapunov Function Criteria
- Verification with Average Dwell Time

