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Outline

• Dynamical systems
• Solutions
• Linear systems
• Connections to discrete time models
• Next time: Properties: stability, convergence, PID
• In 2 weeks: Verification



But, first

Please put away your laptops and phones
New tech policy for class: no tech 
- Unless you are the scribe



The Biggest Productivity Killers



Professionalism

Nationwide random 
sample of 401 human 
resource professionals



Dynamical system models 

Physical plantDubin’s car model
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Steering angle
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State variables

Control inputs

Nonlinear dynamics

Vertical position
; B + 1 = : ; B , =[B]

System dynamics

Generally, nonlinear ODEs do not have 
closed form solutions! 



Nonlinear hybrid dynamics
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merge left

cruise

merge right

speed up

close to 
front car

slow down

speeding

Decision and control software Physical plant
!"
!# = % &, (

& = [*, +", +,, -,.]

( = [0, *1]

State variables

Control inputs

& 2 + 1 = % & 2 , ([2]
System dynamics



Chuchu Fan ⋅ UIUC

Hybrid system model
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Nonlinear hybrid dynamics

Physical plant
"#
"$ = &'(") *, ,

merge left
-*
-. = &/)0$(*, ,)

cruise
-*
-. = &345(*, ,)

merge right
-*
-. = &4678$(*, ,)

speed up
-*
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slow down
-*
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Cyberphysical system

Decision and 
control software 

Interaction between computation and 
physics can lead to unexpected behaviors



Comparison of RL and Control approaches

RL setting
Unknown plant model 
Unknown rewards
Typical setup: MDPs, generalized 
Markov Processes
Methods: 
• Bellman equation
• Q-learning
• DQNN
Difficult to provide hard 
guarantees

Optimal control
Known plant models
Known cost/reward
Typical setup: ODE, hybrid 
systems, stochastic differential 
equations
Methods:
• Principle of optimality
• Lyapunov methods
Hard guarantees

Reinforcement Learning Versus Model Predictive Control: A Comparison on a Power System Problem
Damien Ernst ; Mevludin Glavic ; Florin Capitanescu ; Louis Wehenkel

https://ieeexplore.ieee.org/author/37281856000
https://ieeexplore.ieee.org/author/37271725700
https://ieeexplore.ieee.org/author/37295980000
https://ieeexplore.ieee.org/author/37272491900


Simplified view of a plant and a controller

Physical plant
!"
!# = % &, (, )

Controller

( = * &, )

!"
!# = % &, * & , )
&̇ = % &, * & , )



Dynamical systems model

Describe behavior in terms of instantaneous laws
!" #
!# = %(" # , ( # , #)

# ∈ ℝ, " # ∈ ℝ,, ( # ∈ ℝ-

%:ℝ,×ℝ-×ℝ → ℝ,dynamic function Dubin’s car model

12
13 = 42
15
13 =

6
7 tan ;

4̇ = =
1>?
13 = 4 cos C
1>D
13 = 4 sin(C)

Steering angle

Heading angle

Speed

Horizontal position

Vertical position



Linear system and solutions

"̇ # = % # " # + ' # ((#)

For a given initial state "+ ∈ ℝ., #+ ∈ ℝ 012 (:ℝ:→ ℝ5 a solution or a 
state trajectory is a function 6:ℝ → ℝ.

What is a solution? 
How to find one? 
Does it always exist? 
Is it unique? 
How hard is it to compute a solution?



Notion of solution

• Fixing ! " , we define $ % " , " = '(% " , ! " , ")

• $ . , . is piece-wise continuous in the second argument with a set of 
discontinuity points + ⊆ ℝ

• .:ℝ → ℝ1 is a solution passing through "2, %2 ∈ ℝ×ℝ1 iff
1. . "2 = %2 and

2. 7
78 . " = $(. " , ") for all " ∈ ℝ\D



Is this enough to guarantee existence and 
uniqueness of solution

Consider "̇ # = −&'( " # = )−1 " # ≥ 0
1 " # < 0

". = /,> 0 #. = 0

What is the solution? 

Neither ̇2 = 1 nor ̇2 = −1 works at " = 0

Problem: 3 is discontinuous in "



Assume that !() is continuous in $

Equivalently %($, ') is continuous in $

Consider $̇ ' = $*

Does it have a solution? What is the solution? 

Check that + ' = ,
-./, is a solution from $0 = 1, '0 = 0

But, as ' → -
, the solution goes to → ∞

So, no solution defined beyond ' = -
,. 

Problem: %() grows too fast



Assume !() changes slowly with respect to $

Lipschitz continuity. 

Examples 

Non-examples



Existence and uniqueness of solutions

!" #
!# = %(" # , ( # , #)

Fixing ( # , we define * " # , # = %(" # , ( # , #)

* . , . is piece-wise continuous in the second argument with a set of 
discontinuity points , ⊆ ℝ

Theorem. If * . , . is Lipschitz continuous in the first argument then the 
system has a unique solution.



Example: Pendulum

Pendulum equation

!" = $ !% = $̇

!% = !̇"

!̇% = −() sin !" − -
. !%

̇!%
̇!" = −

/
0 sin !" − 1

2 !%!%

-: friction coefficient 

)
$

.



Example: Pendulum

Pendulum equation

!" = $ !% = $̇

!% = !̇"

!̇% = −() sin !" − -
. !%

̇!%
̇!" = −

/
0 sin !" − 1

2 !%!%

3 = 4, 4
asymptotically stable

3 = 6, 4
unstable

!"

! %



Special classes of systems

For general nonlinear dynamical systems, we may not have closed form 
expressions for the solution !(#)

&̇(#) = ((& # , * # , #)

Linear Time Varying Systems (LTV): ((& # , * # , #) is a linear function of 
state and input

&̇ # = + # & # + -(#)* # --- state evolution

.(#) = / # & # + 0(#)* # --- output

Linear Systems Theory
by João P. Hespanha

https://www.amazon.com/Jo%C3%A3o-P.-Hespanha/e/B001HCXG6U/ref=dp_byline_cont_book_1


Properties of solutions of LTV systems

Theorem. Let ! ", "$, %$, & :ℝ → ℝ* be the solution of LTV system with 
D, ⊆ ℝ points of discontinuity
1. (continuous w.r.t. time) For all "$, %$, and & . ∈ 01 ℝ,ℝ* , 

! . , "$, %$, & is continuous and differentiable at all " ∈ ℝ ∖ 34
2. (continuous w.r.t. initial state) For all "$, ", and & . ∈ 01 ℝ,ℝ* , 

! ", "$, . , & is continuous
3. (Linearity w.r.t. initial states and inputs) For all 

", "$, %$5, %$6, &5, &6, 75, 76
! ", "$, 75%$5 + 76%$6, 75&5 + 76&6 = 75! ", "$, %$5, &5 + 76! ", "$, %$6, &6

4. (Linearity w.r.t. initial states and inputs) For all ", "$, %$, &,
! ", "$, %$, & = ! ", "$, %, : + ! ", "$, 0, &



Special Linear system and solutions

• Since ! . , $%, &%, ' :ℝ → ℝ+ is a linear function of the initial state and 
input,
• ! $, $%, &%, ' = ! $, $%, 0, ' + ! $, $%, &%, 0
• Let us focus on the linear function ! . , $%, &%, 0
• Define Φ . , $% &% = ! . , $%, &%, '
• This Φ . , $% :ℝ → ℝ+×+ is called the state transition matrix



Linear time invariant system (LTI)

"̇ # = %" # + '( #

Matrix exponential:

)*+ = 1 + %# + 1
2! %#

/ + …

=1
2

3 1
4! %#

5

Theorem. 6 #, #2, "2, ( =

"2e*(+:+;) + =
+;

+
e*(+:>)'( ? @?



Relating ODEs to discrete time models / 
discrete transition systems

• ! " + 1 = & ! " , ( "
• ! " + 1 = &(! " ) autonomous system (with no inputs)
• Execution: !+, & !+ , &, !+ , … takes the place of solutions
• System described as an automaton . = ⟨0, 0+, 1⟩
• 0 = ℝ4, 0+ = !+
• 1:ℝ4 → ℝ4;	T(!) = &(!)
• This makes it a deterministic discrete time system
• If we quantize 0 = ℚ4: discrete time, discrete state system or automaton
• If the state space is finite, then Deterministic Finite Automaton (DFA)



For systems with inputs: sampled-time model

• "̇ # = % " # , ' #
• Assume: ' ∈ )* ℝ,, -ℎ/0/ , ⊆ ℝ2 is a finite set
• 3 #, #4, "4, '
• Fix a sampling period 5 > 0
•89 = ⟨;, ;4, ,, <⟩
• ; = ℝ>, ;4 = "4 , ?@# = ,,
• < ⊆ ℝ>×,× ℝ>;	 ", ', "D ∈ T iff	 "D = 3(5, 0, ", ')
• Nondeterministic transitions can capture dynamics 

conservatively
• This leads to a Nondeterministic Automaton, NFA



Θ

"#$%&'

()
(0,0)

Example: Descretization can lead to conservative 
analysis



Requirements for dynamical systems

What type of requirements or properties are we interested in? 
• Invariance, safety 
• State remains bounded 
• Converges to target
• Bounded input gives bounded output (BIBO)



!

Given a system #̇ $ = & # $ , ()* +)+$+(, -.$ / ⊆ ℝ2 --- (1)

and a set of states ! ⊆ ℝ2 we say that ! is an invariant for (1) iff for any 
initial #3 ∈ /, and any time $ ≥ 0, 7 #3, $ ∈ !.

Related concept: Reachable states

9.(:ℎ /, < = # ∃#3 ∈ /, $ ≤ <, 7 #3, $ = #}

9.(:ℎ / = # ∃#3 ∈ /, $ > 0, 7 #3, $ = #}

To check safety of a system relative to A ⊆ ℝ2
9.(:ℎ / ∩ A)-(&. = ∅?

K
9.(:ℎ /, <

!

Invariance and safety

A



Aleksandr M. Lyapunov

Aleksandr M. Lyapunov (1857–1918), Russian 
mathematician and physicist. 

His methods make it possible to define and prove 
stability of differential equations

Created the modern theory of the stability of 
dynamic systems. 

Generalized the works of Chebyshev and Markov, 
and proved the Central Limit Theorem under more 
general conditions



Requirements for control systems: Stability

• We will focus on time invariant autonomous systems (closed systems, 
systems without inputs) 

• "̇ # = % " # , "' ∈ ℝ*, #' = 0 –(1)
• 0 # is the solution
• |0 # | norm
• "∗ ∈ ℝ* is an equilibrium point if % "∗ = 0.
• For analysis we will assume 0 to be an equilibrium point of (1) with 

out loss of generality



Example: Pendulum

Pendulum equation

!" = $ !% = $̇

!% = !̇"

!̇% = −() sin !" − -
. !%

̇!%
̇!" = −

/
0 sin !" − 1

2 !%!%

-: friction coefficient 

Two equilibrium points: 0,0 , (7, 0)

)
$

.



Lyapunov stability

Lyapunov stability: The system (1) is said to be Lyapunov stable (at the 
origin) if for every ! > 0 there exists $% > 0 such that for every if 
& 0 ≤ $% then for all t ≥ 0, & + ≤ !.

How is this related to 
invariants and 
reachable states ? $%

!



Asymptotically stability

The system (1) is said to be Asymptotically stable (at the origin) if it is 
Lyapunov stable and there exists !" > 0 such that for every if % 0 ≤ !"
then t → ∞, % + → ,.
If the property holds for any !" then Globally Asymptotically Stable



Example: Pendulum

Pendulum equation

!" = $ !% = $̇

!% = !̇"

!̇% = −() sin !" − -
. !%

̇!%
̇!" = −

/
0 sin !" − 1

2 !%!%

Two equilibrium 
points: 0,0 , (6, 0) 8 = 9, 9

asymptotically stable
8 = :, 9

unstable

!"

! %



Example: Pendulum

Pendulum equation

!" = $ !% = $̇

!% = !̇"

!̇% = −() sin !" − -
. !%

̇!%
̇!" = −

/
0 sin !" − 1

2 !%!%

- = 0 no friction
4∗ = 6, 6

stable but not 
asymptotically stable

4∗ = 8, 6
unstable



Butterfly*

̇"#
̇"$ = 

2"$"#
"$# − "##

All solutions converge to 0 but the equilibrium 
point (0,0) is not Lyapunov stable

*Not discussed in class



Van der pol oscillator

Van der pol oscillator
!"#
!$# − & 1 − "# !"

!$ + " = 0

"+ = "; "# = "̇+;
coupling coefficient & = 2 0.1
̇"#
̇"+ = & 1 − "+# "# − "+

"#
stable ? 



Stability of solutions* (instead of points)

• For any ! ∈ PC ℝ&', ℝ) define the s-norm ! * = sup
/∈ℝ

| ! 1 |

• A dynamical system can be seen as an operator that maps initial 
states to signals  2:ℝ) → 56 ℝ&', ℝ)

• Lyapunov stability required that this operator is continuous

• The solution !∗ is Lyapunov stable if 2 is continuous as 
!∗(0) . i. e. , for every > > 0 there exists @A > 0 such that for every 
B' ∈ ℝ) if !∗ 0 − B' ≤ @A then 2 !∗ 1 − 2 B' *

≤ >.

*Not discussed in class



Verifying Stability for Linear Systems

Consider the linear system "̇ = $"

Theorem. 

1. It is asymptotically stable iff all the eigenvalues of A have strictly
negative real parts (Hurwitz).

2. It is Lyapunov stable iff all the eigen values of A have real parts that 
are either zero or negative and the Jordan blocks corresponding to the 
eigenvalues with zero real parts are of size 1.



Example 1: Simple linear model of an economy

• !: national income ": rate of consumer spending; $: rate government 
expenditure
• !̇ = ! − ("
• "̇ = ) ! − " − $
• $ = $* + ,! (, ), , are positive constants
• What is the equilibrium? 

• !∗ = /01
123241 "

∗ = /01
123241

• Dynamics:

• !̇
"̇ = 1 −(

)(1 − ,) −)
!
"



Example: Simple linear model of an 
economy

• ! = 3, % = 1, ' = 0

• )*, )*∗ = (−.25 ± 2 1.714)

•Negative real parts, therefore, 
asymptotically stable and the 
national income and consumer 
spending rate converge to 6 =
1.764 8 = 5.294



Stability of nonlinear systems

• For any positive definite function of state !:ℝ$ → ℝ
• ! & ≥ 0 and ! & = 0 iff & = 0

• Sub level sets of *+ = {& ∈ ℝ$ |	! & ≤ 1}
• !(4 5 )
V differentiable with continuous first derivative

• !̇ = 8 9 : ;
<; = ?

• >9>? .
<
<; 4 5 = >9

>? . A(&) is also continuous

• ! is radially unbounded if & → ∞ ⇒ ! & → ∞



Verifying Stability

Theorem. (Lyapunov) Consider the system (1) with state space ! " ∈
ℝ% and suppose there exists a positive definite, continuously 
differentiable function &:ℝ% → ℝ. The system is: 

1. Lyapunov stable if &̇ ! " = +,
+- . / ≤ 0

2. Asymptotically stable if &̇ ! " < 0
3. It is globally AS if V is also radially unbounded. 



Proof sketch: Lyapunov stable if "̇ ≤ 0

• Assume "̇ ≤ 0
• Consider a ball  B& around the origin of radius 
' > 0.
• Pick a positive number * < min/ 0& " 1 .
• Let 2 be a radius of ball around origin which is 

inside B3 = 1 " 1 ≤ *}
• Since along all trajectories V is non-increasing, 

starting from 63 each solution satisfies 
" 7 8 ≤ * and therefore remains in B&

B&
9: 63



Proof sketch: Asymptotically stable if "̇ # $ < 0
• Assume "̇ < 0
• Take arbitrary # 0 ≤ (, where this ( comes 

from some * for Lyapunov stability

• Since " # . > 0 and decreasing along # it 
has a limit - ≥ 0 at $ → ∞
• It suffices to show that this limit is actually 0
• Suppose not, c > 0 then the solution evolves in 

the compact set 1 = 3 4 ≤ 3 ≤ *} for 
some sufficiently small 4
• Let 6 = max:∈< "̇(3) [slowest rate]

• This number is well-defined and negative

• "̇ # $ ≤ 6 for all t

• " $ ≤ " 0 + 6$
• But then eventually " $ < -

BA

4



Example 2
• "̇# = −"# + ' "( ; "̇( = −"( + ℎ "#
• ' + ≤ -

( , ℎ + ≤ -
(

• Use / = #
( "#( + "(( ≥ 0

• /̇ = "# "̇# + "( "̇(
=−"#( −"(( +"#' "( + "(ℎ "#
≤ −"#( −"(( + #

( |"#"(| + |"("#|

≤ − #
( ("#

( + "(() = −/
We conclude global asymptotic stability (in fact global exponential stability) 
without knowing solutions

"# − "( ( ≥ 0
"#( + "(( ≥ 2 "#"(

"#"( ≤ 1
2 ("#

( + "(()



Proposition. Every sublevel set of V is an invariant

Proof. ! " # =
= ! " 0 + ∫(

) !̇ " + ,+
≤ !("(0))



An aside: Checking inductive invariants

• ! = #,%&, '
• #: set of variables

• %& ⊆ *+, #
• ' ⊆ *+, # ×*+, # written as a program .′ ⊆ '(.)

• How do we check that 2 ⊆ *+,(#) is an inductive invariant?
• %& ⇒ 2(#)
• 2 # ⇒ 2(' # )

• Implies that 45+6ℎ! %& ⊆ 2 without computing the executions or 
reachable states of A

• The key is to find such 2



Finding Lyapunov Functions

• The key to using Lyapunov theory is to find a Lyapunov function and verify 
that it has the properties

• In general for nonlinear systems this is hard

• There are several approaches
• Linear quadratic Lyapunov functions for linear systems
• Decide the form/template of the function (e.g., quadratic), parameterized by 

some parameters
• Try to find values of the parameters so that the conditions hold
• NNs for learning Lyapunov functions from data [Billard`14]

Learning control Lyapunov function to ensure stability of dynamical system-based robot reaching 
motions, Khansari-Zadeh, Billard - Robotics and Autonomous Systems, 2014 - Elsevier



Linear autonomous systems

• "̇ = $", $ ∈ ℝ(×(

• The Lyapunov equation: $*+ + +$ + - = 0
where +, - ∈ ℝ(×( are symmetric

• Interpretation: / " = "*+" then 

/̇ " = $" *+" + "*+($")

[using 23
456
27 = 23

27 +8 +
26
27 +

*9]
= "* $*+ + +$ " = −"*-"

• If "*+" is the generalized energy then −"*-" is the associated dissipation



Quadratic Lyapunov Functions

• If ! > 0 (positive definite)
• $ % = %'!% = 0 ⇔ % = 0
• The sub-level sets are ellipsoids
• If ) > 0 then the system is globally asymptotically stable 



Same example

Lyapunov equations are solved as a 
set of ! !"#

$ equations in 
% % + 1 /2 variables. Cost O(%*)

Choose , = 1 0
0 1 solving 

Lyapunov equations we get / =
2.59 −2.29
−2.29 4.92 and we get the 

quadratic Lyapunov function 
5 − 5∗ / 5 − 5∗ 7 an a sequence 

of invariants



Converse Lyapunov

Converse Lyapunov theorems show that conditions of 
the previous theorem are also necessary. For 
example, if the system is asymptotically stable then 
there exists a positive definite, continuously 
differentiable function V, that satisfies the 
inequalities. 

For example if the LTI system "̇ = $" is globally 
asymptotically stable then there is a quadratic 
Lyapunov function that proves it. 



Plant and controller

Plant
!"
!# = % &, (, )

Controller

( = * +, )

,&
,) = % &, (()), ) ; 0 ) = ℎ & ) ;

+ ) = 0 ) − 0!())

( ) = *(+ ) , ))

0 ) = ℎ(& ) )
output

0! )



PID control

• 90% (or more) of control loops in industry are PID 
• Simple control design model → simple controller
• The standard form of a PID controller:

! " = $%& " + $( )
*

+
& , -, + $.

-&
-"

• where the error term e " = 0 " − 0. "
• 0. " : desired output or setpoint value
• $%, $(, $.: constant gains
• Many techniques for tuning these parameters: Ziegler-Nichols, relay 

method, Cohen-Coon method, etc. 
• Analysis in frequency domain



P control

• Consider a simple integrator plant model
• "̇ # = % # + '
• %(#) = −+,(" # − "-(#))
• "̇ # = −+, " # − "- # + '
• "̇ # = −+," # + +,"- # + '
Steady state

• 0 = −+, " # − "- # + '
• "// = "- − '/+, steady state error
Transient

" # = " 0 12
3
4 + "// 1 − 12

3
4 , 7 = 1/8,



Choosing proportional gain !" in PID 

Response of y(t) to step change of #$(&) vs 
time, for three values of Kp (Ki and Kd held 
constant) Fig. from wikipedia



PI Control
• !#̇ $ = −# $ + ( $ + ) First order system
• * $ = # $ − #+ $
• ,̇ = *, that is , $ = ∫/

0 * 1 )1
• ( = −23, − 24*
• !#̇ $ = −# $ + −23,($) − 24*($) + ) Closed loop 

system

• *̇ $ = − 1 + 89
: * $ + −8;

: , $ + <
: () + (2= − 1)#+)

• Steady state ,̇ = 0; * = 0; *̇ = 0
• That is, #+ $ = # $ no steady state error

• ∫ * 1 )1 = <
8;
() + (2= − 1)#+) integral input  



Summary (you should know)

• Definitions of solutions, stability, invariance, reach set
• Properties of solutions of linear systems
• Discrete abstrations
• Lyapunov’s theorems and method for proving stability
• PID controller form, basic properties


