
Principles of Safe Autonomy:
Lecture 9:

Mobile Robot Localization
Sayan Mitra
Feb 20, 2019

Reference: Probabilistic Robotics by Sebastian Thrun, Wolfram Burgard, and Dieter Fox
Slides: From the book’s website

Sensors Perception Tactical decision
making Trajectory planning Low level

controller
Simulation and

validation

vehicle / environment,
human models

Compute platform:
GPUs, power, memory

Low-level control

Trajectory planning

Tactical decision making

Perception: lane
tracking, detection

Sensors: Camera, LIDAR,
RADAR,V2V…

Simulation, verification,
testing

Outline

• Introduction: Localization problem, taxonomy
• Discrete Bayes Filter
• Histogram filter
• Grid localization

• Particle filter
• Monte Carlo localization

• Conclusions

Localization problem

• Determine the pose of the robot relative to the given map of the
environment
• Pose: position, velocity, attitude, angles
• Also known as position or state estimation problem

• First: why localize?
• “Localization is the biggest hack in autonomous cars”

Localization as coordinate transformation

m

zt-1 zt zt+1

ut-1 ut ut+1

xt-1 xt xt+1
Shaded known:
map (m), control inputs (u),
measurements(z). White nodes
to be determined (x)

maps (m) are described in
global coordinates. Localization
= establish coord transf.
between m and robot’s local
coordinates

Transformation used for objects
of interest (obstacles,
pedestrians) for decision,
planning and control

Localization taxonomy
Global vs Local
• Local: assumes initial pose is known, has to only account for the uncertainty

coming from robot motion (position tracking problem)
• Global: initial pose unknown; harder and subsumes position tracking
• Kidnapped robot problem: during operation the robot can get teleported to

a new unknown location (models failures)
Static vs Dynamic Environments
Single vs Multi-robot localization
Passive vs Active Approaches
• Passive: localization module only observes and is controlled by other means;

motion not designed to help localization (Filtering problem)
• Active: controls robot to improve localization

Ambiguity in global localization arising from
locally symmetric environment

Discrete Bayes Filter Algorithm

Setup, notations

• Discrete time model
• !"#:"% = !"#, !"#(), !"#(*, … , !"% sequence of robot states ,)to ,*
• Robot takes one measurement at a time
• -"#:"% = -"#, … , -"% sequence of all measurements from ,)to ,*

• Control also exercised at discrete steps
• ."#:"% = ."#, ."#(), ."#(*, … , ."% sequence control inputs

State evolution and measurement models

Evolution of state and measurements governed by probabilistic laws
! "# "$:#&',)':#&', *':#) describes motion/state evolution model
• If state is complete, sufficient summary of the history then
• ! "# "$:#&',)$:#&', *$:#&') = ! "# "#&', *#) state transition prob.
• ! "′ ", *) if transition probabilities are time invariant

zt-1 zt
zt+
1

ut-1 ut
ut+
1

xt-1 xt
xt+
1

Measurement model

Measurement process ! "# $%:#, "(:#)(, *%:#)()
• Again, if state is complete
• ! "# $%:#, "(:#)(, *(:#) = ! "# $#)
• ! "# $#): measurement probability
• ! " $): time invariant measurement probability

zt-1 zt
zt+
1

ut-1 ut
ut+
1

xt-1 xt
xt+
1

Beliefs

Belief: Robot’s knowledge about the state of the environment
True state is unknowable / measurable typically, so, robot must infer state from data
and we have to distinguish this inferred/estimated state from the actual state !"
#$%(!") =)(!"|+,:", /,:")

Posterior distribution over state at time t given all past measurements and control

Prediction: #$%(!") =)(!"|+,:"0,, /,:")

Calculating #$%(!") from #$%(!") is called correction or measurement update

Recursive Bayes Filter

Algorithm Bayes_filter(!"# $%&' ,)%, *%)
for all $% do:

!"# $% = ∫ -($%|)%,$%&')!"#($%&')1$%&'
!"# $% = 2 - *% $% !"#($%)

end for
return !"#($%)

!"# $%&'

$%
-′

1
-'

2
-4

3
-5

- $%|)%, 1

- $%|)%, 2

- $%|)%, 3

!"# $%&'

!"#($%)

- *% $%

Histogram Filter or Discrete Bayes Filter

Finitely many states !", !$, %&'. Random state vector)*
+$,*: belief at time t for state !$; discrete probability distribution

Algorithm Discrete_Bayes_filter(+$,*-. , /*, 0*):
for all 1 do:

+̅$,* = ∑" +()* = !$|/*,)*-. = !")+",*-.
+$,* = 8 + 0*)* = !$)+̅$,*

end for
return {+$,*}

;%< !*-.

!$
+′

1
+.,*-.

2
+>,*-.

3
+?,*-.

+ !$|/*, 1

+ !*|/*, 2

+ !*|/*, 3

;%< !*-.

;%<(!*)

+ 0*

Grid Localization

• Solves global localization in some cases kidnapped robot problem
• Can process raw sensor data
• No need for feature extraction

• Non-parametric
• In particular, not bound to unimodal distributions (unlike Extended Kalman

Filter)

Grid localization

Algorithm Grid_localization (!",$%& , '$, ($,))
for all * do:

!̅",$ = ∑. !.,$%&/01203_/0567()9:; <" , '$,)9:; <.)
!",$ = > !̅",$/6?@AB6/631_/0567(($,)9:; <" ,))

end for
return C9D(<$)

17

Piecewise Constant Representation

),,(>=< qyxxBel t

Start

Motion Model

!"#$ %&

Proximity Sensor Model Reminder

Laser sensor Sonar sensor

!"
$% &% = !")

20

Grid localization,
!"# $% represented by a
histogram over grid &((|$)

&((|$)

Summary

• Key variable: Grid resolution
• Two approaches

• Topological: break-up pose space into regions of significance (landmarks)
• Metric: fine-grained uniform partitioning; more accurate at the expense of higher

computation costs
• Important to compensate for coarseness of resolution

• Evaluating measurement/motion based on the center of the region may not be
enough. If motion is updated every 1s, robot moves at 10 cm/s, and the grid resolution
is 1m, then naïve implementation will not have any state transition!

• Computation
• Motion model update for a 3D grid required a 6D operation, measurement update 3D
• With fine-grained models, the algorithm cannot be run in real-time
• Some calculations can be cached (ray-casting results)

22

Grid-based Localization

26

Sonars and
Occupancy Grid Map

Monte Carlo Localization

• Represents beliefs by particles

• Represent belief by finite number of parameters (just like histogram filter)

• But, they differ in how the parameters (particles) are generated and populate
the state space

• Key idea: represent belief !"# $% by a random set of state samples

• Advantages

• The representation is approximate and nonparametric and therefore can
represent a broader set of distributions than e.g., Gaussian

• Can handle nonlinear tranformations

• Related ideas: Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap
filter, Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96], Dynamic Bayesian
Networks: [Kanazawa et al., 95]d

Particle Filters

Particle filtering algorithm
!" = $"[&], $"[)], … $"[+] particles

Algorithm Particle_filter(!",&, -", ."):/!",& = !" = ∅
for all 1 in [M] do:

sample $"
[2]~4 $" -", $",&

[2])
6"[2] = 4 ." $"2

/!" = /!" + ⟨ $"2 , 6"
[2]⟩

end for
for all 1 in [M] do:

draw : 6:;ℎ 4=>?@?:A:;B ∝ 6"[D]

add $"[D] ;> !"
end for

return !"

ideally, $"[2] is selected with probability prop. to
4 $" .&:", -&:")
/!",& is the temporary particle set

// sampling from state transition dist.

// calculates importance factor 6" or weight

// resampling or importance sampling; these are
distributed according to F 4 ." $"[2] ?GA $"
// survival of fittest: moves/adds particles to parts of
the state space with higher probability

Weight samples: w = f / g

Importance Sampling

suppose we want to compute !" # $ ∈ & but
we can only sample from density '

!" # $ ∈ &

= ∫ * $ # $ ∈ & +$
= ∫ " ,

- , ' $ # $ ∈ & +$, provided ' $ > 0
= ∫ 0 $ ' $ # $ ∈ & +$
= !- 0($)# $ ∈ &

We need * $ > 0 ⇒ ' $ > 0

Monte Carlo Localization (MCL)
!" = $"

[&], $"
[)], … $"

[+] particles

Algorithm MCL(!",&, -", .",m):
/!",& = !" = ∅
for all 1 in [M] do:

$"
[2] = 345678_5:;<:=_5:>87(-" $",&

[2])

A"
[2] = 5843BC858=;_5:>87(.", $"

2 ,2)
/!" = /!" + ⟨ $"

2 , A"
[2]⟩

end for

for all 1 in [M] do:

draw G AGHℎ JKLMNMGOGHP ∝ A"
[R]

add $"
[R] HL !"

end for

return !"

Plug in motion and measurement models
in the particle filter

Particle Filters

)|(
)(

)()|(
)()|()(

xzp
xBel

xBelxzp
w

xBelxzpxBel

aa
a

=¬

¬

-

-

-

Sensor Information: Importance Sampling

The picture can't be displayed.

ò¬- 'd)'()'|()(, xxBelxuxpxBel

Robot Motion

)|(
)(

)()|(
)()|()(

xzp
xBel

xBelxzp
w

xBelxzpxBel

aa
a

=¬

¬

-

-

-

Sensor Information: Importance Sampling

Robot Motion

ò¬- 'd)'()'|()(, xxBelxuxpxBel

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

Sample-based Localization (sonar)

58

Initial Distribution

59

After Incorporating Ten Ultrasound
Scans

60

After Incorporating 65 Ultrasound Scans

61

Estimated Path

Using Ceiling Maps for Localization

Vision-based Localization

P(z|x)

h(x)
z

Under a Light
Measurement z: P(z|x):

Next to a Light
Measurement z: P(z|x):

Elsewhere
Measurement z: P(z|x):

Global Localization Using Vision

68

Limitations

• The approach described so far is able to
• track the pose of a mobile robot and to
• globally localize the robot.

• Can we deal with localization errors (i.e., the kidnapped robot
problem)?
• How to handle localization errors/failures?
• Particularly serious when the number of particles is small

69

Approaches
• Randomly insert samples

• Why?
• The robot can be teleported at any point in time

• How many particles to add? With what distribution?
• Add particles according to localization performance
• Monitor the probability of sensor measurements !(#$|#&:$(&, *&:$, +)
• For particle filters: !(#$|#&:$(&, *&:$, +) ≈ &

.∑0$
[2]

• Insert random samples proportional to the average likelihood of the
particles (the robot has been teleported with higher probability when the
likelihood of its observations drops).

70

Random Samples
Vision-Based Localization
936 Images, 4MB, .6secs/image
Trajectory of the robot:

71

Kidnapping the Robot

77

Summary
• Particle filters are an implementation of recursive

Bayesian filtering
• They represent the posterior by a set of weighted

samples.
• In the context of localization, the particles are

propagated according to the motion model.
• They are then weighted according to the likelihood of

the observations.
• In a re-sampling step, new particles are drawn with a

probability proportional to the likelihood of the
observation.

