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Sensors: Camera, LIDAR,
RADAR\V2V...

Perception: lane
tracking, detection
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Simulation, verification,
testing

Low-level control

Compute platform:

vehicle / environment, = GPUs, power, memory
human models ‘
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* Introduction: Localization problem, taxonomy
* Discrete Bayes Filter

e Histogram filter
* Grid localization

e Particle filter
e Monte Carlo localization

 Conclusions
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Localization problem

e Determine the pose of the robot relative to the given map of the
environment
e Pose: position, velocity, attitude, angles
* Also known as position or state estimation problem

 First: why localize?
* “Localization is the biggest hack in autonomous cars”
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Localization as coordinate transformation

Shaded known:

map (m), control inputs (u),
measurements(z). White nodes
to be determined (x)

maps (m) are described in
global coordinates. Localization
= establish coord transf.
between m and robot’s local
coordinates

Transformation used for objects
of interest (obstacles,

pedestrians) for decision,
planning and control
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Localization taxonomy

Global vs Local

* Local: assumes initial pose is known, has to only account for the uncertainty
coming from robot motion (position tracking problem)

* Global: initial pose unknown; harder and subsumes position tracking

* Kidnapped robot problem: during operation the robot can get teleported to
a new unknown location (models failures)

Static vs Dynamic Environments
Single vs Multi-robot localization
Passive vs Active Approaches

 Passive: localization module only observes and is controlled by other means;
motion not designed to help localization (Filtering problem)

* Active: controls robot to improve localization



Ambiguity in global localization arising from
locally symmetric environment




Discrete Bayes Filter Algorithm
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Setup, notations

e Discrete time model
* Xt it, = Xt Xt 41, Xe 42, ) Xp, SEQUENCE of robot states tyto t,

e Robot takes one measurement at a time
* Zt..t, = Zt,» -, Zt, S€quence of all measurements from t;to t;

* Control also exercised at discrete steps
* Up.t, = U, U, +1, Ug, 42, -+ Ug, SEQUENCE CONtrol inputs
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State evolution and measurement models

Evolution of state and measurements governed by probabilistic laws
p(x; [X0.t—1, Z1.¢—1, Uq.¢) describes motion/state evolution model
* |f state is complete, sufficient summary of the history then

* p(x; |X0.t—1, Zg-t—1, Ug:t—1) = P(x¢ |X:_1,Uu;) state transition prob.

* p(x'|x,u) if transition probabilities are time invariant
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Measurement model

Measurement process p(z; |Xg.t) Z1.t—1, Ug-t—1)
e Again, if state is complete
* p(2¢ |%0:0) Z1:t-1, Ure) = P(2¢ |x¢)
* p(z; |x¢): measurement probability
* p(z |x): time invariant measurement probability
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Beliefs

Belief: Robot’s knowledge about the state of the environment

True state is unknowable / measurable typically, so, robot must infer state from data
and we have to distinguish this inferred/estimated state from the actual state x;

bel(x¢) = p(x¢|z1.¢, U1:t)
Posterior distribution over state at time t given all past measurements and control
Prediction: M(xt) = p(xt|Zl:t_1,u1:t)

Calculating bel(x;) from bel(x;) is called correction or measurement update
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Recursive Bayes Filter

Algorithm Bayes_filter(bel(x;_1), us, z;)

for all x; do:
bel(x;) = fp(xt|ut,xt;1)bel(xt—1)dxt—1
bel(x;) = n p(z:|x;) bel(x;)

end for

return bel(x;)

P2

e p(xelue, 3) p(z¢|xt)




Histogram Filter or Discrete Bayes Filter
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Finitely many states x;, x;, etc. Random state vector X;
Pk ¢ belief at time t for state xj; discrete probability distribution
Algorithm Discrete_Bayes_filter({py ;_1}, us, 2¢):
for all k do:
Prt = iP(Xe = xplue Xe—1 = x)Dit—1
Pre = NP2 | Xy = X)) Pt
end for

return {pk’t}

bel(x¢-1) bel(x;_4)
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Grid Localization

* Solves global localization in some cases kidnapped robot problem

e Can Process raw sensor data
* No need for feature extraction

* Non-parametric

* In particular, not bound to unimodal distributions (unlike Extended Kalman
Filter)
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Grid localization

Algorithm Grid_localization ({py ¢—1}, U, ¢, m)
for all k do:
Dkt = 2 Dit—1 motion_model(mean(xy), u,, mean(x;))
Dkt = 1 Dy smeasurement_model(z,, mean(xy), m)
end for
return bel(x;)




Piecewise Constant Representation
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Motion Model

10 meters




Proximity Sensor Model Reminder
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Grid localization,
bel(x,;)represented by a
histogram over grid
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Summary

o0 O

e Key variable: Grid resolution

* Two approaches

e Topological: break-up pose space into regions of significance (landmarks)

e Metric: fine-grained uniform partitioning; more accurate at the expense of higher
computation costs

* Important to compensate for coarseness of resolution

* Evaluating measurement/motion based on the center of the region may not be
enough. If motion is updated every 1s, robot moves at 10 cm/s, and the grid resolution
is Im, then naive implementation will not have any state transition!

* Computation
* Motion model update for a 3D grid required a 6D operation, measurement update 3D

* With fine-grained models, the algorithm cannot be run in real-time
e Some calculations can be cached (ray-casting results)
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Grid-based Localization
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Sonars and
Occupancy Grid Map

<
20m

Robot position (A)

" Robot pesition (C)
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Monte Carlo Localization

* Represents beliefs by particles
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Particle Filters

Represent belief by finite number of parameters (just like histogram filter)

But, they differ in how the parameters (particles) are generated and populate
the state space

Key idea: represent belief bel(x;) by a random set of state samples

Advantages
®* The representation is approximate and nonparametric and therefore can
represent a broader set of distributions than e.g., Gaussian

® Can handle nonlinear tranformations

Related ideas: Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap
filter, Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96], Dynamic Bayesian
Networks: [Kanazawa et al., 95]d
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Particle filtering algorithm

Xe = xilj,xtlzj, ...x}MJ particles

Algorithm Particle_filter(X,;_1, u;, z¢):
Xe1=X=0

for allmin [M] do:

sample xl[m] ~p(xeluy, xt[r—nb

w™ = p (zt|x£m])

X, =X, + (2™, w™)
end for
for allmin [M] do:

draw i with probability « Wt[i]

add x4 to X,
end for

return X;

ideally, xgm] is selected with probability prop. to
(Xt | Z1:4, Ug:t)

X;_q is the temporary particle set

// sampling from state transition dist.

// calculates importance factor w; or weight

// resampling or importance sampling; these are
distributed accordington p (Zt‘xgm]) bel(x;)

// survival of fittest: moves/adds particles to parts of
the state space with higher probability



Importance Sampling

suppose we want to compute Ef[I(x € A)Jbut [T
we can only sample from density g !

E¢[I(x € A)] S

= [ f(x)I(x € A)dx

f(x) T S~

= ﬁg(x)l(x € A)dx, provided g(x) > 0

_ f W(x)g(x)l(x € A)dx o ‘\ JH‘ l. ||.|| ; | .' ‘| |||‘ ;.” 5 310 J

=E [w()I(x € A)]

We need f(x) >0=g(x) >0

Weight samples: w =f/g
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Monte Carlo Localization (MCL)

X = xl[l],xt[z], ...xEM] particles

Algorithm MCL(X;_, u¢, z¢,m):
Xe1=X=0

for allmin [M] do:

x,{m] = sample_motion_model(u; xPﬂ)
ng] = measurement_model(z,, xim]’m)

X, =X, + (2™ w™)
end for
for allmin [M] do:

[2]

draw i with probability < w;

add x4 to X,
end for

return X;

Plug in motion and measurement models
in the particle filter



Particle Filters




Sensor Information: Importance Sampling
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Robot Motion
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Sample-based Localization (sonar)




Initial Distribution




After Incorporating Ten Ultrasound
Scans




After Incorporating 65 Ultrasound Scans




Estimated Path




Using Ceiling Maps for Localization




Vision-based Localization
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P(z|x)
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Under a Light

Measurement z:

P(zlx):
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Next to a Light

Measurement z:

P(z|x):
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Elsewhere

Measurement z:

P(zlx):
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Global Localization Using Vision
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Limitations

* The approach described so far is able to
 track the pose of a mobile robot and to
* globally localize the robot.

* Can we deal with localization errors (i.e., the kidnapped robot
problem)?

* How to handle localization errors/failures?
 Particularly serious when the number of particles is small

68
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Approaches

 Randomly insert samples
e Why?
* The robot can be teleported at any point in time

* How many particles to add? With what distribution?

» Add particles according to localization performance

* Monitor the probability of sensor measurements p(z¢|z1.4—1, U1.¢, M)

e 1
* For particle filters: p(z¢|z1.¢—1, Uq.py M) = HZ Wt[m]

* Insert random samples proportional to the average likelihood of the
particles (the robot has been teleported with higher probability when the
likelihood of its observations drops).



Random Samples

Vision-Based Localization
936 Images, 4MB, .6secs/image

Trajectory of the robot:




Kidnapping the Robot
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Summary

e Particle filters are an implementation of recursive
Bayesian filtering

 They represent the posterior by a set of weighted
samples.

* |nthe context of localization, the particles are
propagated according to the motion model.

* They are then weighted according to the likelihood of
the observations.

* Inare-sampling step, new particles are drawn with a
probability proportional to the likelihood of the
observation.



