4o

Principles of Safe Autonomy:
Lecture 9:
Mobile Robot Localization

Sayan Mitra
Feb 20, 2019

Reference: Probabilistic Robotics by Sebastian Thrun, Wolfram Burgard, and Dieter Fox
Slides: From the book’s website

Sensors: Camera, LIDAR,
RADAR\V2V...

Perception: lane
tracking, detection

—

w

———
%

Simulation, verification,
testing

Low-level control

Compute platform:

vehicle / environment, = GPUs, power, memory
human models ‘

4o

Outline

* Introduction: Localization problem, taxonomy
* Discrete Bayes Filter

e Histogram filter
* Grid localization

e Particle filter
e Monte Carlo localization

 Conclusions

4o

Localization problem

e Determine the pose of the robot relative to the given map of the
environment
e Pose: position, velocity, attitude, angles
* Also known as position or state estimation problem

 First: why localize?
* “Localization is the biggest hack in autonomous cars”

4o

Localization as coordinate transformation

Shaded known:

map (m), control inputs (u),
measurements(z). White nodes
to be determined (x)

maps (m) are described in
global coordinates. Localization
= establish coord transf.
between m and robot’s local
coordinates

Transformation used for objects
of interest (obstacles,

pedestrians) for decision,
planning and control

4o

Localization taxonomy

Global vs Local

* Local: assumes initial pose is known, has to only account for the uncertainty
coming from robot motion (position tracking problem)

* Global: initial pose unknown; harder and subsumes position tracking

* Kidnapped robot problem: during operation the robot can get teleported to
a new unknown location (models failures)

Static vs Dynamic Environments
Single vs Multi-robot localization
Passive vs Active Approaches

 Passive: localization module only observes and is controlled by other means;
motion not designed to help localization (Filtering problem)

* Active: controls robot to improve localization

Ambiguity in global localization arising from
locally symmetric environment

Discrete Bayes Filter Algorithm

4o

Setup, notations

e Discrete time model
* Xt it, = Xt Xt 41, Xe 42,) Xp, SEQUENCE of robot states tyto t,

e Robot takes one measurement at a time
* Zt..t, = Zt,» -, Zt, S€quence of all measurements from t;to t;

* Control also exercised at discrete steps
* Up.t, = U, U, +1, Ug, 42, -+ Ug, SEQUENCE CONtrol inputs

4o

State evolution and measurement models

Evolution of state and measurements governed by probabilistic laws
p(x; [X0.t—1, Z1.¢—1, Uq.¢) describes motion/state evolution model
* |f state is complete, sufficient summary of the history then

* p(x; |X0.t—1, Zg-t—1, Ug:t—1) = P(x¢ |X:_1,Uu;) state transition prob.

* p(x'|x,u) if transition probabilities are time invariant

W O

Measurement model

Measurement process p(z; |Xg.t) Z1.t—1, Ug-t—1)
e Again, if state is complete
* p(2¢ |%0:0) Z1:t-1, Ure) = P(2¢ |x¢)
* p(z; |x¢): measurement probability
* p(z |x): time invariant measurement probability

4o

Beliefs

Belief: Robot’s knowledge about the state of the environment

True state is unknowable / measurable typically, so, robot must infer state from data
and we have to distinguish this inferred/estimated state from the actual state x;

bel(x¢) = p(x¢|z1.¢, U1:t)
Posterior distribution over state at time t given all past measurements and control
Prediction: M(xt) = p(xt|Zl:t_1,u1:t)

Calculating bel(x;) from bel(x;) is called correction or measurement update

4o

Recursive Bayes Filter

Algorithm Bayes_filter(bel(x;_1), us, z;)

for all x; do:
bel(x;) = fp(xt|ut,xt;1)bel(xt—1)dxt—1
bel(x;) = n p(z:|x;) bel(x;)

end for

return bel(x;)

P2

e p(xelue, 3) p(z¢|xt)

Histogram Filter or Discrete Bayes Filter

4o

Finitely many states x;, x;, etc. Random state vector X;
Pk ¢ belief at time t for state xj; discrete probability distribution
Algorithm Discrete_Bayes_filter({py ;_1}, us, 2¢):
for all k do:
Prt = iP(Xe = xplue Xe—1 = x)Dit—1
Pre = NP2 | Xy = X)) Pt
end for

return {pk’t}

bel(x¢-1) bel(x;_4)

4o

Grid Localization

* Solves global localization in some cases kidnapped robot problem

e Can Process raw sensor data
* No need for feature extraction

* Non-parametric

* In particular, not bound to unimodal distributions (unlike Extended Kalman
Filter)

4o

Grid localization

Algorithm Grid_localization ({py ¢—1}, U, ¢, m)
for all k do:
Dkt = 2 Dit—1 motion_model(mean(xy), u,, mean(x;))
Dkt = 1 Dy smeasurement_model(z,, mean(xy), m)
end for
return bel(x;)

Piecewise Constant Representation

o S S S

e

LS S S S S S

prd

oz A LA L ST

1
s S S S S

&

6

(0,0,0)

17

T

Motion Model

10 meters

Proximity Sensor Model Reminder

0.125 |- ' ' ' '] 0.135 |] i
Approximated —— Approximated +—f
Measured — ol Measured —
o1t ! 1k _
2 0075 o 00T :
= =
Z: | Xy = x ge 8
plze 1Xe =x0) £ | (R -
g a.
0.025 + = 0.015 | ; \ -
0] | I) 0 1 1 dam, L
100 200 300 400 500 100 00 300 100 500
measured distance [cm] measured distance [cm]

Laser sensor Sonar sensor

Grid localization,
bel(x,;)represented by a
histogram over grid

1 Ba(y)

20

4o

Summary

o0 O

e Key variable: Grid resolution

* Two approaches

e Topological: break-up pose space into regions of significance (landmarks)

e Metric: fine-grained uniform partitioning; more accurate at the expense of higher
computation costs

* Important to compensate for coarseness of resolution

* Evaluating measurement/motion based on the center of the region may not be
enough. If motion is updated every 1s, robot moves at 10 cm/s, and the grid resolution
is Im, then naive implementation will not have any state transition!

* Computation
* Motion model update for a 3D grid required a 6D operation, measurement update 3D

* With fine-grained models, the algorithm cannot be run in real-time
e Some calculations can be cached (ray-casting results)

Co o)

Grid-based Localization

22

4o

Sonars and
Occupancy Grid Map

<
20m

Robot position (A)

" Robot pesition (C)

26

Monte Carlo Localization

* Represents beliefs by particles

4o

Particle Filters

Represent belief by finite number of parameters (just like histogram filter)

But, they differ in how the parameters (particles) are generated and populate
the state space

Key idea: represent belief bel(x;) by a random set of state samples

Advantages
®* The representation is approximate and nonparametric and therefore can
represent a broader set of distributions than e.g., Gaussian

® Can handle nonlinear tranformations

Related ideas: Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap
filter, Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96], Dynamic Bayesian
Networks: [Kanazawa et al., 95]d

4o

Particle filtering algorithm

Xe = xilj,xtlzj, ...x}MJ particles

Algorithm Particle_filter(X,;_1, u;, z¢):
Xe1=X=0

for allmin [M] do:

sample xl[m] ~p(xeluy, xt[r—nb

w™ = p (zt|x£m])

X, =X, + (2™, w™)
end for
for allmin [M] do:

draw i with probability « Wt[i]

add x4 to X,
end for

return X;

ideally, xgm] is selected with probability prop. to
(Xt | Z1:4, Ug:t)

X;_q is the temporary particle set

// sampling from state transition dist.

// calculates importance factor w; or weight

// resampling or importance sampling; these are
distributed accordington p (Zt‘xgm]) bel(x;)

// survival of fittest: moves/adds particles to parts of
the state space with higher probability

Importance Sampling

suppose we want to compute Ef[I(x € A)Jbut [T
we can only sample from density g !

E¢[I(x € A)] S

= [f(x)I(x € A)dx

f(x) T S~

= ﬁg(x)l(x € A)dx, provided g(x) > 0

_ f W(x)g(x)l(x € A)dx o ‘\ JH‘ l. ||.|| ; | .' ‘| |||‘ ;.” 5 310 J

=E [w()I(x € A)]

We need f(x) >0=g(x) >0

Weight samples: w =f/g

4o

Monte Carlo Localization (MCL)

X = xl[l],xt[z], ...xEM] particles

Algorithm MCL(X;_, u¢, z¢,m):
Xe1=X=0

for allmin [M] do:

x,{m] = sample_motion_model(u; xPﬂ)
ng] = measurement_model(z,, xim]’m)

X, =X, + (2™ w™)
end for
for allmin [M] do:

[2]

draw i with probability < w;

add x4 to X,
end for

return X;

Plug in motion and measurement models
in the particle filter

Particle Filters

Sensor Information: Importance Sampling

[

p(s)

)
T UNT SO T TN T A T 1 T ™

(g A

T

Robot Motion

L LU U L e 1) “ ‘}i | |“|‘ i 1= 1 W uminne -

(gugy S L —eemrs

Sensor Information: Importance Sampling

T

Robot Motion

'
(NN (N (N (NN N (NN NN NN 1] (NN NN N (N (N (N N NN (NN (N (NN NN N (NN N N (N (N (NN N (NN (NN N

)
1 1 | (I [[1] I I e [Il | (N (1 0 o 1 W1 oy

(¢

(«

(«

(«

(«

(«

AN

W =Y

W =Y

W =Y

W =Y

W =Y

Sample-based Localization (sonar)

Initial Distribution

After Incorporating Ten Ultrasound
Scans

After Incorporating 65 Ultrasound Scans

Estimated Path

Using Ceiling Maps for Localization

Vision-based Localization

=

P(z|x)

000003

T

W O

Under a Light

Measurement z:

P(zlx):

.2

Next to a Light

Measurement z:

P(z|x):

4o

Elsewhere

Measurement z:

P(zlx):

4o

Global Localization Using Vision

.

Limitations

* The approach described so far is able to
 track the pose of a mobile robot and to
* globally localize the robot.

* Can we deal with localization errors (i.e., the kidnapped robot
problem)?

* How to handle localization errors/failures?
 Particularly serious when the number of particles is small

68

4o

Approaches

 Randomly insert samples
e Why?
* The robot can be teleported at any point in time

* How many particles to add? With what distribution?

» Add particles according to localization performance

* Monitor the probability of sensor measurements p(z¢|z1.4—1, U1.¢, M)

e 1
* For particle filters: p(z¢|z1.¢—1, Uq.py M) = HZ Wt[m]

* Insert random samples proportional to the average likelihood of the
particles (the robot has been teleported with higher probability when the
likelihood of its observations drops).

Random Samples

Vision-Based Localization
936 Images, 4MB, .6secs/image

Trajectory of the robot:

Kidnapping the Robot

4o

Summary

e Particle filters are an implementation of recursive
Bayesian filtering

 They represent the posterior by a set of weighted
samples.

* |nthe context of localization, the particles are
propagated according to the motion model.

* They are then weighted according to the likelihood of
the observations.

* Inare-sampling step, new particles are drawn with a
probability proportional to the likelihood of the
observation.

