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Localization problem

• Determine the pose of the robot relative to the given map of the 
environment
• Pose: position, velocity, attitude, angles
• Also known as position or state estimation problem

• First: why localize?
• “Localization is the biggest hack in autonomous cars”



Localization as coordinate transformation
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Localization taxonomy
Global vs Local
• Local: assumes initial pose is known, has to only account for the uncertainty 

coming from robot motion (position tracking problem)
• Global: initial pose unknown; harder and subsumes position tracking
• Kidnapped robot problem: during operation the robot can get teleported to

a new unknown location (models failures)
Static vs Dynamic Environments
Single vs Multi-robot localization
Passive vs Active Approaches
• Passive: localization module only observes and is controlled by other means; 

motion not designed to help localization (Filtering problem)
• Active: controls robot to improve localization



Ambiguity in global localization arising from 
locally symmetric environment



Discrete Bayes Filter Algorithm



Setup, notations

• Discrete time model
• !"#:"% = !"#, !"#(), !"#(*, … , !"% sequence of robot states ,)to ,*
• Robot takes one measurement at a time
• -"#:"% = -"#, … , -"% sequence of all measurements from ,)to ,*

• Control also exercised at discrete steps
• ."#:"% = ."#, ."#(), ."#(*, … , ."% sequence control inputs



State evolution and measurement models

Evolution of state and measurements governed by probabilistic laws
! "# "$:#&', )':#&', *':#) describes motion/state evolution model
• If state is complete, sufficient summary of the history then
• ! "# "$:#&', )$:#&', *$:#&') = ! "# "#&', *#) state transition prob. 
• ! "′ ", *) if transition probabilities are time invariant
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Measurement model

Measurement process ! "# $%:#, "(:#)(, *%:#)()
• Again, if state is complete
• ! "# $%:#, "(:#)(, *(:#) = ! "# $#)
• ! "# $#): measurement probability
• ! " $): time invariant measurement probability
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Beliefs

Belief: Robot’s knowledge about the state of the environment
True state is unknowable / measurable typically, so, robot must infer state from data 
and we have to distinguish this inferred/estimated state from the actual state !"
#$%(!") = )(!"|+,:", /,:")

Posterior distribution over state at time t given all past measurements and control

Prediction: #$%(!") = )(!"|+,:"0,, /,:")

Calculating #$%(!") from #$%(!") is called correction or measurement update



Recursive Bayes Filter

Algorithm Bayes_filter(!"# $%&' , )%, *%)
for all $% do:

!"# $% = ∫ -($%|)%,$%&')!"#($%&')1$%&'
!"# $% = 2 - *% $% !"#($%)

end for
return !"#($%)
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Histogram Filter or Discrete Bayes Filter

Finitely many states !", !$, %&'. Random state vector )*
+$,*: belief at time t for state !$; discrete probability distribution

Algorithm Discrete_Bayes_filter( +$,*-. , /*, 0*):
for all 1 do:

+̅$,* = ∑" +()* = !$|/*,)*-. = !")+",*-.
+$,* = 8 + 0* )* = !$)+̅$,*

end for
return {+$,*}
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Grid Localization

• Solves global localization in some cases kidnapped robot problem
• Can process raw sensor data
• No need for feature extraction

• Non-parametric
• In particular, not bound to unimodal distributions (unlike Extended Kalman 

Filter)



Grid localization

Algorithm Grid_localization ( !",$%& , '$, ($,))
for all * do:

!̅",$ = ∑. !.,$%&/01203_/0567()9:; <" , '$,)9:; <. )
!",$ = > !̅",$/6?@AB6/631_/0567(($,)9:; <" ,))

end for
return C9D(<$)
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Piecewise Constant Representation
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Start

Motion Model

!"#$ %&



Proximity Sensor Model Reminder

Laser sensor Sonar sensor

!"
# $% &% = !")
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Grid localization, 
!"# $% represented by a 
histogram over grid &((|$)

&((|$)



Summary

• Key variable: Grid resolution
• Two approaches

• Topological: break-up pose space into regions of significance (landmarks)
• Metric: fine-grained uniform partitioning; more accurate at the expense of higher 

computation costs
• Important to compensate for coarseness of resolution

• Evaluating measurement/motion based on the center of the region may not be
enough. If motion is updated every 1s, robot moves at 10 cm/s, and the grid resolution
is 1m, then naïve implementation will not have any state transition!

• Computation
• Motion model update for a 3D grid required a 6D operation, measurement update 3D
• With fine-grained models, the algorithm cannot be run in real-time
• Some calculations can be cached (ray-casting results)
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Grid-based Localization



26

Sonars and 
Occupancy Grid Map 



Monte Carlo Localization 

• Represents beliefs by particles 



• Represent belief by finite number of parameters (just like histogram filter)

• But, they differ in how the parameters (particles) are generated and populate
the state space

• Key idea: represent belief !"# $% by a random set of state samples

• Advantages

• The representation is approximate and nonparametric and therefore can 
represent a broader set of distributions than e.g., Gaussian 

• Can handle nonlinear tranformations

• Related ideas: Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap 
filter, Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96], Dynamic Bayesian 
Networks: [Kanazawa et al., 95]d

Particle Filters



Particle filtering algorithm 
!" = $"[&], $"[)], … $"[+] particles

Algorithm Particle_filter(!",&, -", ."):/!",& = !" = ∅
for all 1 in [M] do:

sample $"
[2]~4 $" -", $",&

[2])
6"[2] = 4 ." $"2

/!" = /!" + ⟨ $"2 , 6"
[2]⟩

end for
for all 1 in [M] do:

draw : 6:;ℎ 4=>?@?:A:;B ∝ 6"[D]

add $"[D] ;> !"
end for

return !"

ideally,  $"[2] is selected with probability prop. to 
4 $" .&:", -&:")
/!",& is the temporary particle set

// sampling from state transition dist.

// calculates importance factor 6" or weight 

// resampling or importance sampling; these are 
distributed according to F 4 ." $"[2] ?GA $"
// survival of fittest: moves/adds particles to parts of 
the state space with higher probability



Weight samples: w = f / g

Importance Sampling

suppose we want to compute !" # $ ∈ & but 
we can only sample from density '

!" # $ ∈ &

= ∫ * $ # $ ∈ & +$
= ∫ " ,

- , ' $ # $ ∈ & +$, provided ' $ > 0
= ∫ 0 $ ' $ # $ ∈ & +$
= !- 0($)# $ ∈ &

We need * $ > 0 ⇒ ' $ > 0



Monte Carlo Localization (MCL)
!" = $"

[&], $"
[)], … $"

[+] particles

Algorithm MCL(!",&, -", .",m):
/!",& = !" = ∅
for all 1 in [M] do:

$"
[2] = 345678_5:;<:=_5:>87(-" $",&

[2])

A"
[2] = 5843BC858=;_5:>87(.", $"

2 ,2)
/!" = /!" + ⟨ $"

2 , A"
[2]⟩

end for

for all 1 in [M] do:

draw G AGHℎ JKLMNMGOGHP ∝ A"
[R]

add $"
[R] HL !"

end for

return !"

Plug in motion and measurement models 
in the particle filter



Particle Filters
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Sensor Information: Importance Sampling



The picture can't be displayed.
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Robot Motion
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Robot Motion

ò¬- 'd)'()'|()( , xxBelxuxpxBel



39



40



41



42



43



44



45



46



47



48



49



50



51



52



53



54



55



56



57

Sample-based Localization (sonar)
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Initial Distribution
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After Incorporating Ten Ultrasound 
Scans
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After Incorporating 65 Ultrasound Scans
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Estimated Path



Using Ceiling Maps for Localization



Vision-based Localization

P(z|x)

h(x)
z



Under a Light
Measurement z: P(z|x):



Next to a Light
Measurement z: P(z|x):



Elsewhere
Measurement z: P(z|x):



Global Localization Using Vision
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Limitations

• The approach described so far is able to 
• track the pose of a mobile robot and to
• globally localize the robot.

• Can we deal with localization errors (i.e., the kidnapped robot 
problem)?
• How to handle localization errors/failures? 
• Particularly serious when the number of particles is small



69

Approaches
• Randomly insert samples 

• Why? 
• The robot can be teleported at any point in time

• How many particles to add? With what distribution? 
• Add particles according to localization performance
• Monitor the probability of sensor measurements  !(#$|#&:$(&, *&:$, +)
• For particle filters: !(#$|#&:$(&, *&:$, +) ≈ &

.∑0$
[2]

• Insert random samples proportional to the average likelihood of the 
particles (the robot has been teleported with higher probability when the 
likelihood of its observations drops). 
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Random Samples
Vision-Based Localization
936 Images, 4MB, .6secs/image
Trajectory of the robot:
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Kidnapping the Robot
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Summary
• Particle filters are an implementation of recursive 

Bayesian filtering
• They represent the posterior by a set of weighted 

samples.
• In the context of localization, the particles are 

propagated according to the motion model.
• They are then weighted according to the likelihood of 

the observations.
• In a re-sampling step, new particles are drawn with a 

probability proportional to the likelihood of the 
observation. 


