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“Classic” recognition pipeline

Image
Pixels

Class
label

* Hand-crafted feature representation
« Off-the-shelf trainable classifier
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Classifiers: Nearest neighbor
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Training <> Test % Tralmrllg
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f(x) = label of the training example nearest to x

» All we need is a distance or similarity function for our inputs
* No training required!
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K-nearest neighbor classifier

 Foranew point, find the k closest points from training data

 Vote for class label with labels of the k points
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K-nearest neighbor classifier

the data NN classifier 5-NN classifier
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» 2d points, and 3 classes. White regions are “ambiguous”

* Which classifier is more robust to outliers?

Credit: Andrej Karpathy, http://cs231n.github.io/classification/
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http://cs231n.github.io/classification/

Linear classifiers
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*Find a linear function to separate the classes

f(x) = sgn(w - x + b)
(4
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Nearest neighbor vs. linear classifiers

* NN pros:
e Simple to implement
» Decision boundaries not necessarily linear
* Works for any number of classes
* Nonparametric method

* NN cons:
* Need good distance function
* Slow at test time

* Linear pros:
* Low-dimensional parametric representation

* Very fast at test time

* Linear cons:
* Works for two classes
* How to train the linear function?
* What if data is not linearly separable?



SVMs
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Linear classifiers

* When the data is linearly separable, there may be more than one
separator (hyperplane)
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© IS best?
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Support vector machines

e Find hyperplane that maximizes the margin between the positive and
negative examples

\ ® X, positive (y, =1): X -W+b>1
x, negative(y, =—1): x,-w+b<-1

® For support vectors, X, -wW+b==1

e Distance between point  |X; W+D|
and hyperplane: | w

Therefore, the margin is 2/ ||w||
Support vectors Margin
C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998
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http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

* https://cs.stanford.edu/people/karpathy/svmjs/demo/




Finding the maximum margin hyperplane

1. Maximize margin 2/ ||w]|
2. Correctly classify all training data:

X; positive (y, =1): X, -W+b2=>1

x; negative(y, =-1): x,-w+b<-1]
*  Quadratic optimization problem:

1

_ 2
min= ||w|] —Zai[yi(w.xi+b)—1]
w,b 2

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998
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http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

SVM parameter learning
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min= ||w|] —Zai[yi(w.xi+b)—1]
w,b 2
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Margin

4 5 * Demo: http://cs.stanford.edu/people/karpathy/svmijs/demo



http://cs.stanford.edu/people/karpathy/svmjs/demo

Nonlinear SVMs

General idea: the original input space can always be mapped to some
higher-dimensional feature space where the training set is separable
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Input Space Feature Space

1 Image source



http://stackoverflow.com/questions/9480605/what-is-the-relation-between-the-number-of-support-vectors-and-training-data-and

Nonlinear SVMs

Linearly separable dataset in 1D:
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Non-separable dataset in 1D:
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We can map the data to a higher-dimgnsional space:

4 0 Slide credit; Andrew Moore



The kernel trick

General idea: the original input space can always be
mapped to some higher-dimensional feature space
where the training set is separable

The kernel trick: instead of explicitly computing the
lifting transformation @(x), define a kernel function K
such that

K(x,y) = o(x) - o(y)

(to be valid, the kernel function must satisfy
Mercer’s condition)
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The kernel trick

e Linear SVM decision function:

W-X-I—bzzi ayX X +b

"/

learned Support
weight vector

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998
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http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

The kernel trick
e Linear SVM decision function:

W-X-I—bzzi ayX X +b

e Kernel SVM decision function:

Zaiyigo(xi)-go(x) +b= ZaiyiK(xi,x) +b

e This gives a nonlinear decision boundary in the original feature space

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998
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http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

K(x,y)=(c+x-y)*

Polynomial kernel:

ds = 05 0 05 1 15 2 ds = o5 0 05 1 15 2

4™ order polynomial 8 order polynomial
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Gaussian kernel

Also known as the radial basis function (RBF) kernel:

1
K(x,y) = exp —;HX—sz

[Ix -yl



Gaussian kernel
5
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SVMs: Pros and cons

® Pros
* Kernel-based framework is very powerful, flexible
* Training is convex optimization, globally optimal solution can be found
* Amenable to theoretical analysis
* SVMs work very well in practice, even with very small training sample sizes

e Cons

* No “direct” multi-class SVM, must combine two-class SVMs (e.g., with one-
vs-others)

* Computation, memory (esp. for nonlinear SVMs)
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Kernels for bags of features

N
* Histogram intersection: K(hl,hz) = Emin(hl(i),hz (l))
i=1

e Square root (Bhattacharyya kernel): N
K(hy,hy) =Y [y (i)
i=1
e Generalized Gaussian kernel:
|
K(h,h,) = GXP(_ZD(hphz)zj

D can be L1 distance, Euclidean distance, ¥? distance, etc.



