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“Classic” recognition pipeline
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• Hand-crafted feature representation
• Off-the-shelf trainable classifier 
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Classifiers: Nearest neighbor

f(x) = label of the training example nearest to x

• All we need is a distance or similarity function for our inputs
• No training required!
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K-nearest neighbor classifier

• For a new point, find the k closest points from training data
• Vote for class label with labels of the k points 

k = 5



K-nearest neighbor classifier

• 2d points, and 3 classes. White regions are “ambiguous” 
• Which classifier is more robust to outliers?

Credit: Andrej Karpathy, http://cs231n.github.io/classification/

http://cs231n.github.io/classification/


Linear classifiers

•Find a linear function to separate the classes:

f(x) = sgn(w × x + b)



Nearest neighbor vs. linear classifiers

• NN pros:
• Simple to implement
• Decision boundaries not necessarily linear
• Works for any number of classes
• Nonparametric method

• NN cons:
• Need good distance function
• Slow at test time

• Linear pros:
• Low-dimensional parametric representation
• Very fast at test time

• Linear cons:
• Works for two classes
• How to train the linear function?
• What if data is not linearly separable?



SVMs



Linear classifiers
• When the data is linearly separable, there may be more than one 

separator (hyperplane)

Which separator
is best?



Support vector machines
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• Find hyperplane that maximizes the margin between the positive and 
negative examples
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MarginSupport vectors

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998 

Distance between point 
and hyperplane:

For support vectors, 

Therefore, the margin is  2 / ||w||

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


• https://cs.stanford.edu/people/karpathy/svmjs/demo/



Finding the maximum margin hyperplane
1. Maximize margin 2 / ||w||
2. Correctly classify all training data:

• Quadratic optimization problem:

•
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C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998 
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http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


SVM parameter learning

• Demo: http://cs.stanford.edu/people/karpathy/svmjs/demo
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http://cs.stanford.edu/people/karpathy/svmjs/demo


Nonlinear SVMs
General idea: the original input space can always be mapped to some 
higher-dimensional feature space where the training set is separable

Φ:  x→ φ(x)

Image source

http://stackoverflow.com/questions/9480605/what-is-the-relation-between-the-number-of-support-vectors-and-training-data-and


Linearly separable dataset in 1D:

Non-separable dataset in 1D:

We can map the data to a higher-dimensional space:

0 x

0 x

0 x

x2

Nonlinear SVMs

Slide credit: Andrew Moore



General idea: the original input space can always be 
mapped to some higher-dimensional feature space 
where the training set is separable

The kernel trick: instead of explicitly computing the 
lifting transformation φ(x), define a kernel function K 
such that

K(x,y) = φ(x) · φ(y)

(to be valid, the kernel function must satisfy 
Mercer’s condition)

The kernel trick



The kernel trick
• Linear SVM decision function:

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998 
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http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


The kernel trick

bKyby
i

iii
i

iii +=+× åå ),()()( xxxx ajja

• Linear SVM decision function:

• Kernel SVM decision function:

• This gives a nonlinear decision boundary in the original feature space

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998 
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http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Polynomial kernel:
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Gaussian kernel
• Also known as the radial basis function (RBF) kernel:
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SV’s

Gaussian kernel



SVMs: Pros and cons

• Pros
• Kernel-based framework is very powerful, flexible
• Training is convex optimization, globally optimal solution can be found
• Amenable to theoretical analysis
• SVMs work very well in practice, even with very small training sample sizes

• Cons
• No “direct” multi-class SVM, must combine two-class SVMs (e.g., with one-

vs-others)
• Computation, memory (esp. for nonlinear SVMs)



Kernels for bags of features

• Histogram intersection:

• Square root (Bhattacharyya kernel):

• Generalized Gaussian kernel:

• D can be L1 distance, Euclidean distance, χ2 distance, etc.

K(h1,h2 ) = min(h1(i),h2 (i))
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