Principles of Safe Autonomy
Lecture 8: Linear Classifiers
Support Vector Machines

Sayan Mitra
Feb 18 2019
“Classic” recognition pipeline

- Hand-crafted feature representation
- Off-the-shelf trainable classifier
Classifiers: Nearest neighbor

\[f(x) = \text{label of the training example nearest to } x \]

- All we need is a distance or similarity function for our inputs
- No training required!
K-nearest neighbor classifier

- For a new point, find the k closest points from training data
- Vote for class label with labels of the k points
K-nearest neighbor classifier

- 2d points, and 3 classes. White regions are “ambiguous”
- Which classifier is more robust to outliers?

Linear classifiers

• Find a *linear function* to separate the classes:

\[f(x) = \text{sgn}(w \cdot x + b) \]
Nearest neighbor vs. linear classifiers

• **NN pros:**
 • Simple to implement
 • Decision boundaries not necessarily linear
 • Works for any number of classes
 • *Nonparametric* method

• **NN cons:**
 • Need good distance function
 • Slow at test time

• **Linear pros:**
 • Low-dimensional *parametric* representation
 • Very fast at test time

• **Linear cons:**
 • Works for two classes
 • How to train the linear function?
 • What if data is not linearly separable?
SVMs
Linear classifiers

• When the data is linearly separable, there may be more than one separator (hyperplane)

Which separator is best?
Support vector machines

• Find hyperplane that maximizes the *margin* between the positive and negative examples

\[\mathbf{x}_i \text{ positive } (y_i = 1) : \quad \mathbf{x}_i \cdot \mathbf{w} + b \geq 1 \]

\[\mathbf{x}_i \text{ negative } (y_i = -1) : \quad \mathbf{x}_i \cdot \mathbf{w} + b \leq -1 \]

For support vectors, \(\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1 \)

Distance between point and hyperplane:

\[\frac{| \mathbf{x}_i \cdot \mathbf{w} + b |}{|| \mathbf{w} ||} \]

Therefore, the margin is \(\frac{2}{|| \mathbf{w} ||} \)

• https://cs.stanford.edu/people/karpathy/svmjs/demo/
Finding the maximum margin hyperplane

1. Maximize margin $2 / ||w||$

2. Correctly classify all training data:
 - x_i positive ($y_i = 1$): $x_i \cdot w + b \geq 1$
 - x_i negative ($y_i = -1$): $x_i \cdot w + b \leq -1$

- Quadratic optimization problem:

$$
\min_{w,b} \frac{1}{2} ||w||^2 - \sum \alpha_i [y_i(w \cdot x_i + b) - 1]
$$

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998
SVM parameter learning

\[\min_{w,b} \frac{1}{2} ||w||^2 - \sum \alpha_i [y_i (w \cdot x_i + b) - 1] \]
Nonlinear SVMs

General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable

$$\Phi: \mathbf{x} \rightarrow \varphi(\mathbf{x})$$
Nonlinear SVMs

Linearly separable dataset in 1D:

Non-separable dataset in 1D:

We can map the data to a *higher-dimensional space*:
The kernel trick

General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable.

The kernel trick: instead of explicitly computing the lifting transformation $\varphi(x)$, define a kernel function K such that

$$K(x, y) = \varphi(x) \cdot \varphi(y)$$

(to be valid, the kernel function must satisfy Mercer’s condition)
The kernel trick

- Linear SVM decision function:

\[\mathbf{w} \cdot \mathbf{x} + b = \sum_i \alpha_i y_i \mathbf{x}_i \cdot \mathbf{x} + b \]

The kernel trick

- Linear SVM decision function:

\[\mathbf{w} \cdot \mathbf{x} + b = \sum_i \alpha_i y_i \mathbf{x}_i \cdot \mathbf{x} + b \]

- Kernel SVM decision function:

\[\sum_i \alpha_i y_i \varphi(\mathbf{x}_i) \cdot \varphi(\mathbf{x}) + b = \sum_i \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}) + b \]

- This gives a nonlinear decision boundary in the original feature space

Polynomial kernel:

$$K(x, y) = (c + x \cdot y)^d$$
Gaussian kernel

- Also known as the radial basis function (RBF) kernel:

\[
K(x, y) = \exp\left(-\frac{1}{\sigma^2} \|x - y\|^2\right)
\]
Gaussian kernel
SVMs: Pros and cons

• **Pros**
 • Kernel-based framework is very powerful, flexible
 • Training is convex optimization, globally optimal solution can be found
 • Amenable to theoretical analysis
 • SVMs work very well in practice, even with very small training sample sizes

• **Cons**
 • No “direct” multi-class SVM, must combine two-class SVMs (e.g., with one-vs-others)
 • Computation, memory (esp. for nonlinear SVMs)
Kernels for bags of features

• Histogram intersection: \[K(h_1, h_2) = \sum_{i=1}^{N} \min(h_1(i), h_2(i)) \]

• Square root (Bhattacharyya kernel):
 \[K(h_1, h_2) = \sum_{i=1}^{N} \sqrt{h_1(i)h_2(i)} \]

• Generalized Gaussian kernel:
 \[K(h_1, h_2) = \exp\left(-\frac{1}{A} D(h_1, h_2)^2\right) \]
 • \(D \) can be L1 distance, Euclidean distance, \(\chi^2 \) distance, etc.