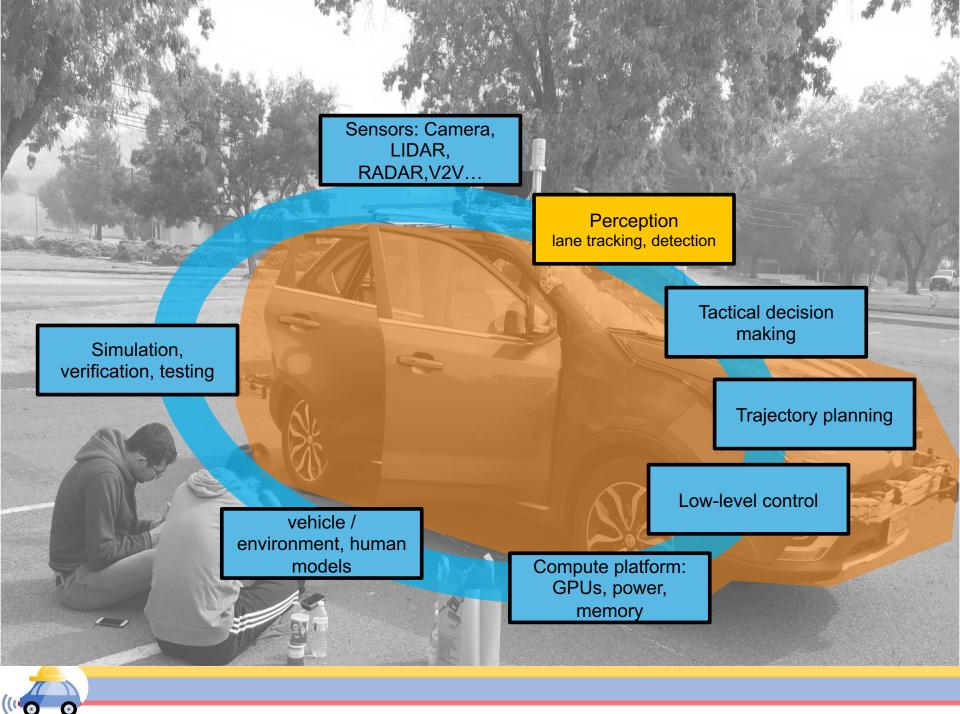
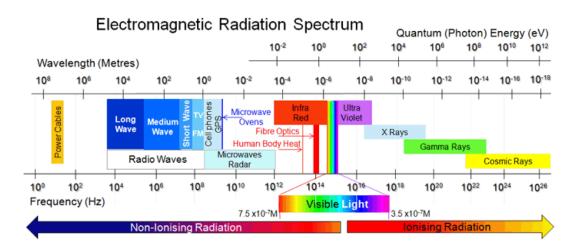
Principles of Safe Autonomy Lecture 3: Vision 1

Sayan Mitra Jan 28, 2019 slides from Svetlana Lazebnik



Perception: EM to objects

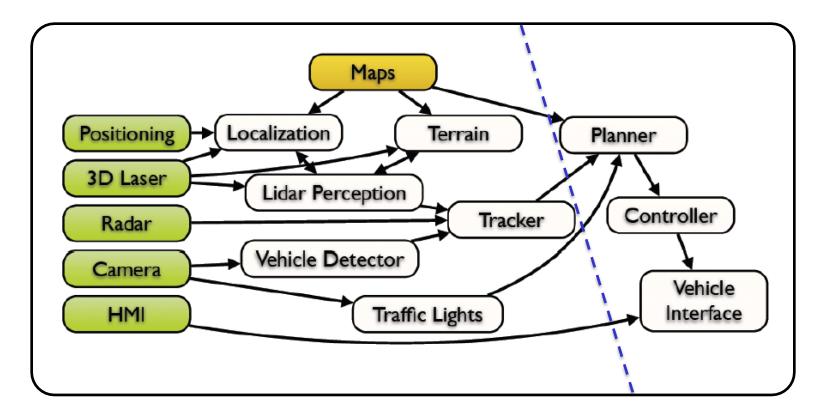
Problem: Process electromagnetic radiation from the environment to construct a *model* of the world, so that the constructed model is close to the real world



Challenging for computers: millions of years of evolution

Ill-defined problem: impossibility of defining meaning "car", "bicycle", etc.

Perception has many pieces



This architecture from a slide from M. James of Toyota Research Institute, North America

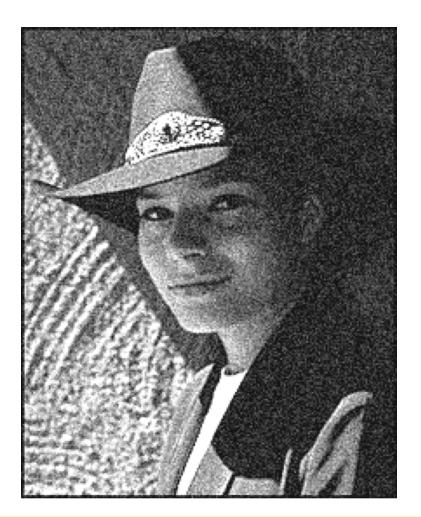
Outline

- Linear filtering (Today)
- Edge detection (Today)
- Classical recognition (Wed)
- Neural networks (Next week)

Linear filtering

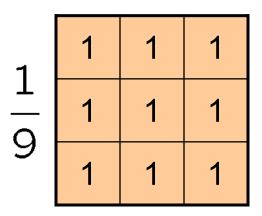
Motivation: Image denoising

• How can we reduce noise in a photograph?



Moving average

- Let's replace each pixel with a *weighted* average of its neighborhood
- The weights are called the *filter kernel*
- What are the weights for the average of a 3x3 neighborhood?

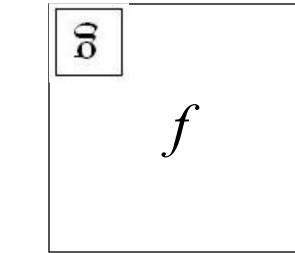


"box filter"

Defining convolution

Let *f* be the image and *g* be the kernel. The output of convolving *f* with *g* is denoted *f* * *g*.

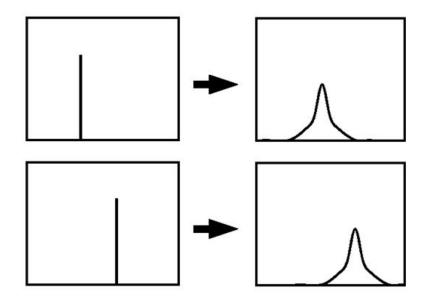
$$(f * g)[m, n] = \sum_{k, l} f[m - k, n - l]g[k, l]$$



Convention: kernel is "flipped"

Key properties

 Shift invariance: same behavior regardless of pixel location: filter(shift(f)) = shift(filter(f))



- Linearity: filter($f_1 + f_2$) = filter(f_1) + filter(f_2)
- <u>Theoretical result</u>: any linear shift-invariant operator can be represented as a convolution

Properties in more detail

- Commutative: *a* * *b* = *b* * *a*
 - Conceptually no difference between filter and signal
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: (((a * b₁) * b₂) * b₃)
 - This is equivalent to applying one filter: $a * (b_1 * b_2 * b_3)$
- Distributes over addition: a * (b + c) = (a * b) + (a * c)
- Scalars factor out: ka * b = a * kb = k (a * b)
- Identity: unit impulse e = [..., 0, 0, 1, 0, 0, ...],
 a * e = a

openCV: filter2D

Output image same size as input

Multi-channel: each channel is processed independently

Extrapolation of border

Examples

Dealing with edges

What about missing pixel values?

- the filter window falls off the edge of the image
- need to extrapolate
- methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

cv.filter2D(src, dst, cv.CV_8U, M, anchor, 0, cv.BORDER_DEFAULT);

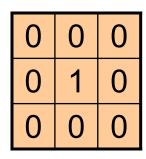
src input image

dst output image of the same size, same # of channels kernel convolution kernel, a single-channel floating point matrix anchor relative position of a filtered point within the kernel; default value cv.Point(-1, -1) = kernel center.

borderType pixel extrapolation method(see cv.BorderTypes) BORDER_DEFAULT, BORDER_WRAP

Source: S. Marschner

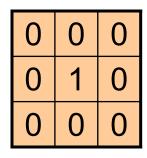
Original



Source: D. Lowe

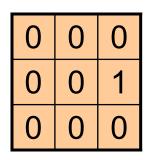
?

Original

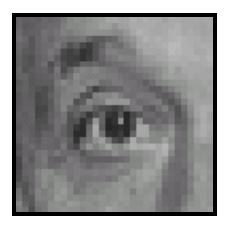


Filtered (no change)

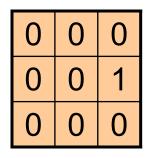
Original



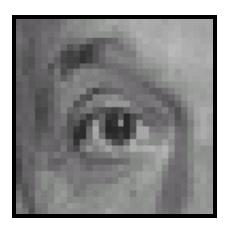
?



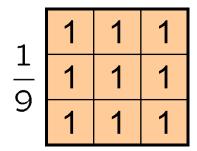
Original



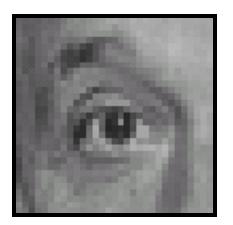
Shifted *left* By 1 pixel



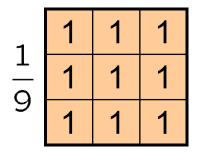
Original

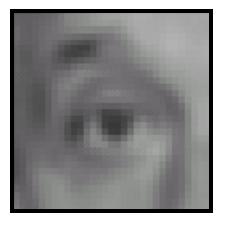


?

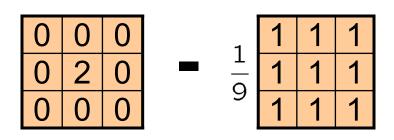


Original





Blur (with a box filter)

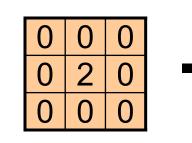


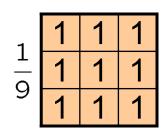
(Note that filter sums to 1)

Original

Source: D. Lowe

'





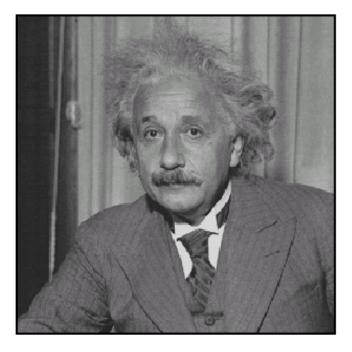
Original

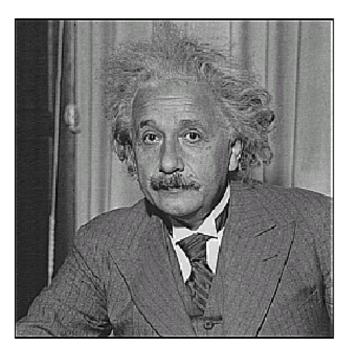
Sharpening filter

- Accentuates differences

with local average

Sharpening



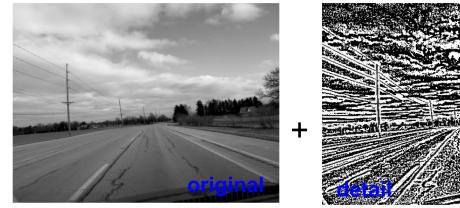


before

after

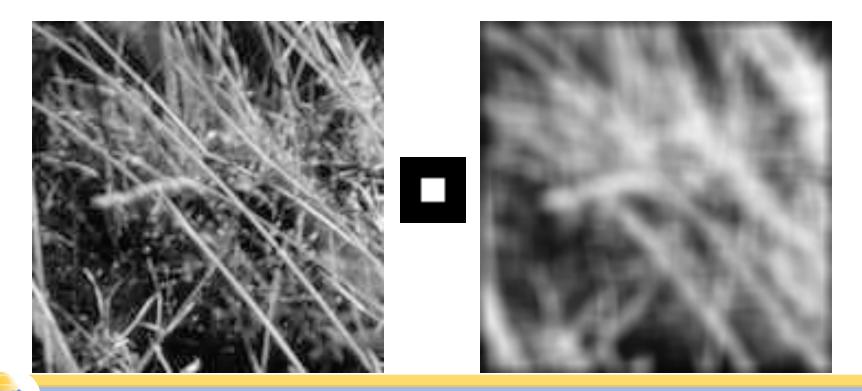
Sharpening What does blurring take away?

Let's add it back:



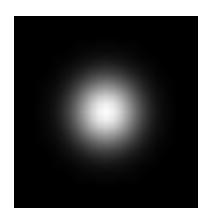
Smoothing with box filter revisited

- What's wrong with this picture?
- What's the solution?



Smoothing with box filter revisited

- What's wrong with this picture?
- What's the solution?
 - To eliminate edge effects, weight contribution of neighborhood pixels according to their closeness to the center



"fuzzy blob"

Gaussian Kernel

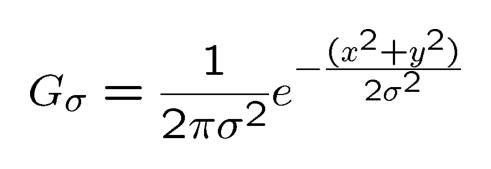
$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

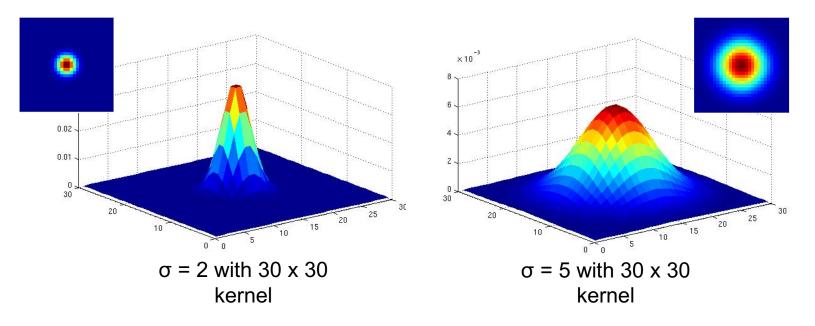
	0.0030.0130.0220.0130.0030.0130.0590.0970.0590.0130.0220.0970.1590.0970.0220.0130.0590.0970.0590.0130.0030.0130.0220.0130.003
--	---

5 x 5,
$$\sigma = 1$$

Constant factor at front makes volume sum to 1 (can be ignored when computing the filter values, as we should renormalize weights to sum to 1 in any case)

Gaussian Kernel

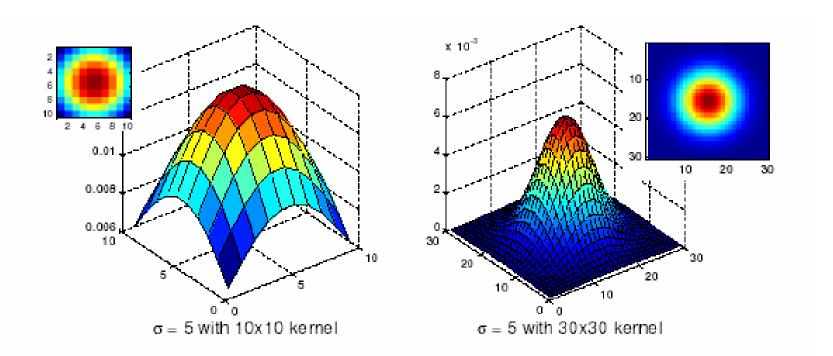




Standard deviation σ : determines extent of smoothing

Choosing kernel width

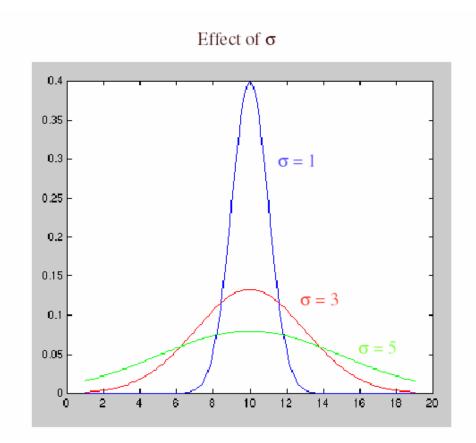
The Gaussian function has infinite support, but discrete filters use finite kernels



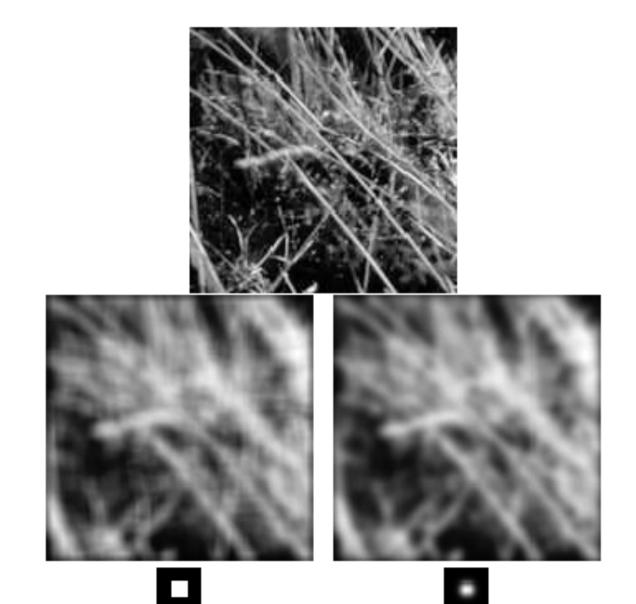
Source: K. Grauman

Choosing kernel width

Rule of thumb: set filter half-width to about 3σ



Gaussian vs. box filtering



Gaussian filters

- Remove high-frequency components from the image (*low-pass filter*)
- Convolution with self is another Gaussian
 - So can smooth with small- σ kernel, repeat, and get same result as larger- σ kernel would have
 - Convolving two times with Gaussian kernel with std. dev. σ is same as convolving once with kernel with std. dev. $\sigma\sqrt{2}$
- Separable kernel
 - Factors into product of two 1D Gaussians
 - Discrete example:

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$
$$= \left(\frac{1}{\sqrt{2\pi\sigma}} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi\sigma}} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Why is separability useful?

- Separability means that a 2D convolution can be reduced to two 1D convolutions (one along rows and one along columns)
- What is the complexity of filtering an n×n image with an m×m kernel?
 - O(n² m²)
- What if the kernel is separable?
 - O(n² m)

Noise

Original

Salt and pepper noise

Impulse noise

Gaussian noise

- Salt and pepper noise: contains random occurrences of black and white pixels
- Impulse noise: contains random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Reducing salt-and-pepper noise

3x3

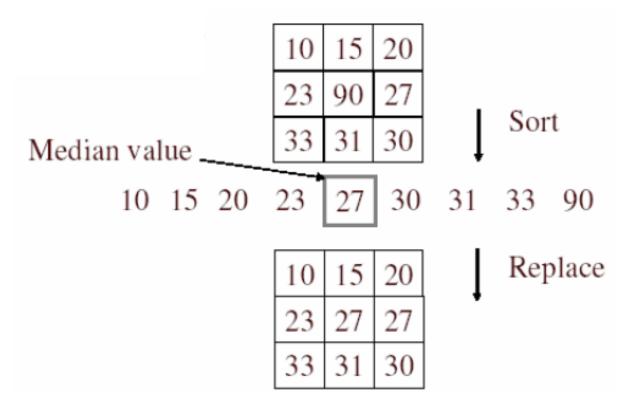
5x5

7x7

What's wrong with the results?

Alternative idea: Median filtering

• A median filter operates over a window by selecting the median intensity in the window



• Is median filtering linear?

Median filter

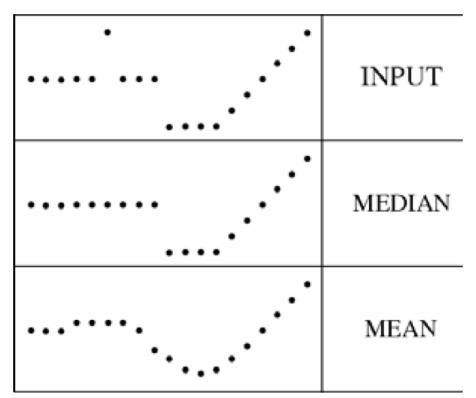
- Is median filtering linear?
- Let's try filtering

$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 2 & 2 & 2 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

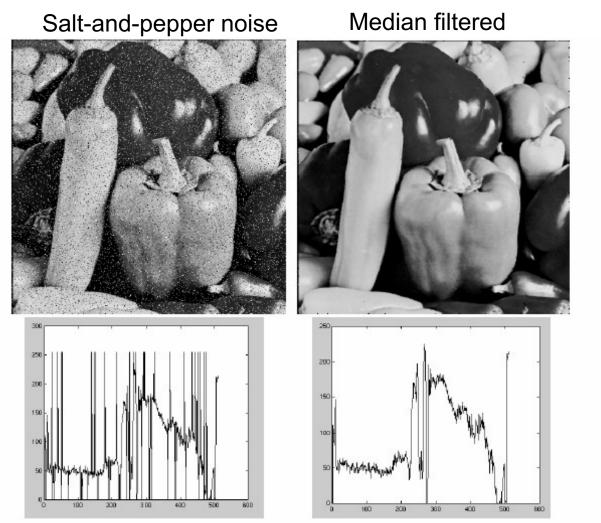
Median filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers

filters have width 5 :



Median filter



open cv: cv2.medianBlur (input, output,ksize)

Source: M. Hebert

Gaussian vs. median filtering

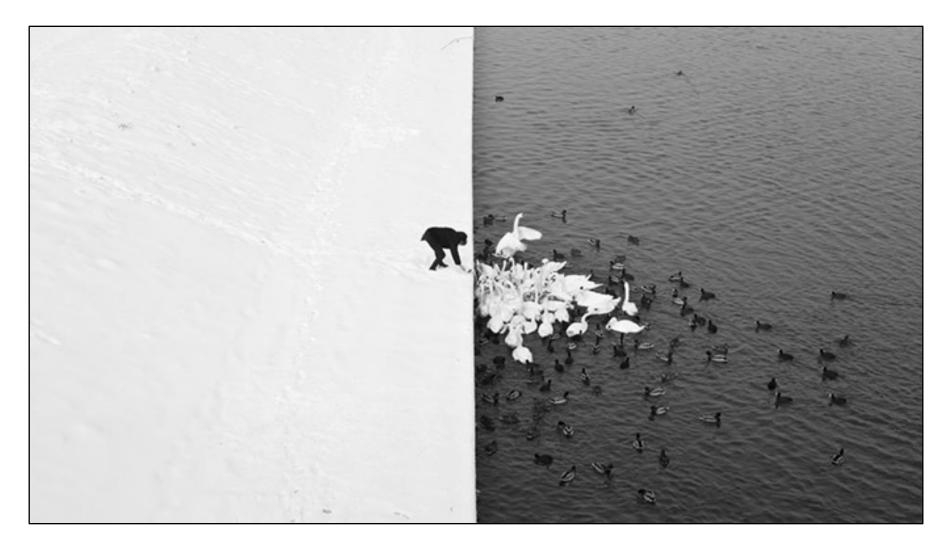
Gaussian

7x7

Review: Image filtering

- Convolution
- Box vs. Gaussian filter
- Separability
- Median filter

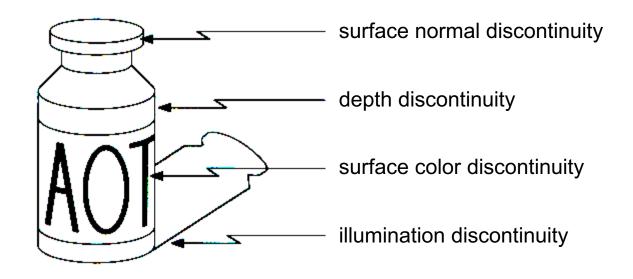
Edge detection



Winter in Kraków photographed by Marcin Ryczek

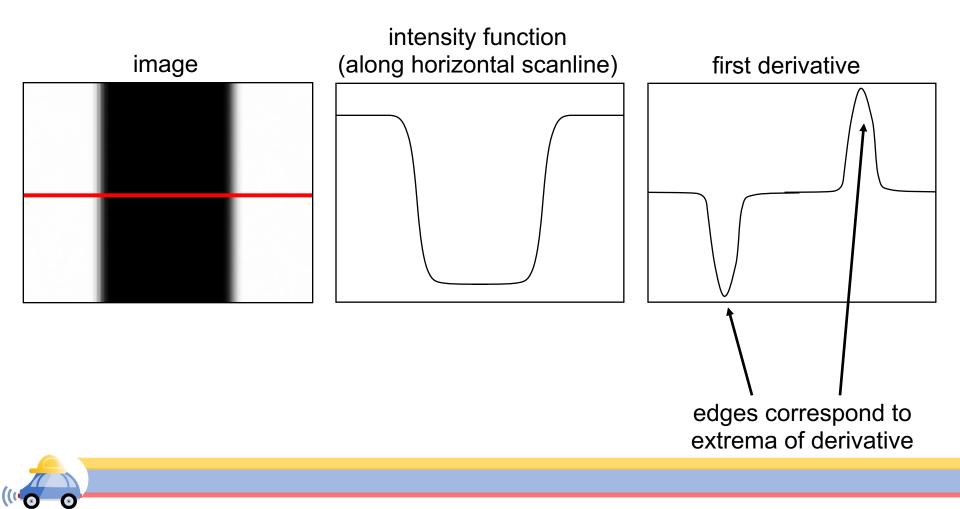
Edge detection

- **Goal:** Identify sudden changes (discontinuities) in an image
- Intuitively, edges carry most of the semantic and shape information from the image
 - E.g., Lanes, traffic signs, cars



Edge detection

• An edge is a place of rapid change in the image intensity function



Derivatives with convolution

For 2D function f(x,y), the partial derivative w.r.t x is:

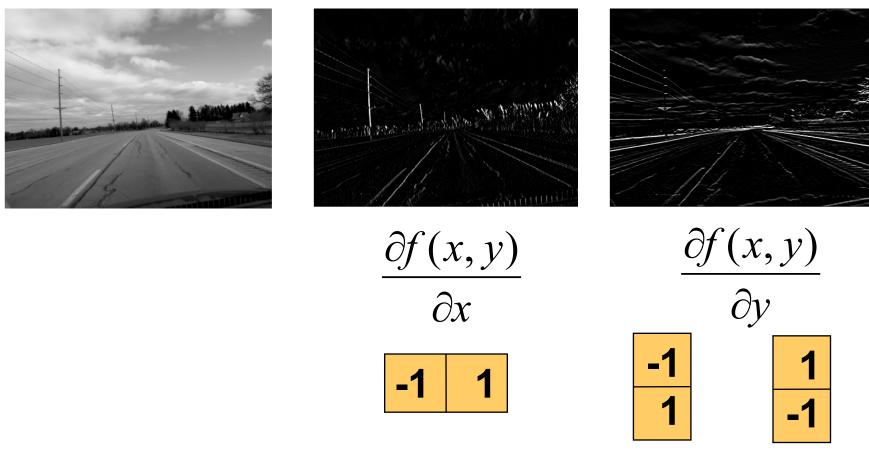
$$\frac{\partial f(x, y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x + \varepsilon, y) - f(x, y)}{\varepsilon}$$

For discrete data, we can approximate using finite differences:

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+1,y) - f(x,y)}{1}$$

To implement the above as convolution, what would be the associated filter?

Partial derivatives of an image



Which shows changes with respect to x?

Finite difference filters

Other approximations of derivative filters exist:

Prewitt:

$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
 ;
 $M_y = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$

 Sobel:
 $M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$
 ;
 $M_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

 Roberts:
 $M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
 ;
 $M_y = \begin{bmatrix} 1 & 0 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

Source: K. Grauman

Image gradient

The gradient of an image: $\nabla f = \left| \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right|$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient points in the direction of most rapid increase in intensity

• How does this direction relate to the direction of the edge?

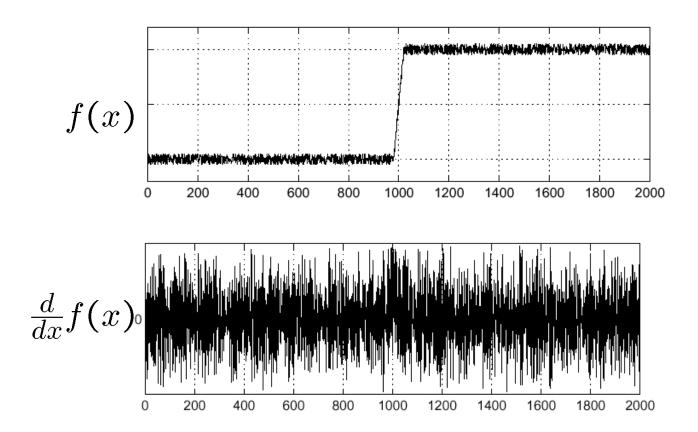
The gradient direction is given by $\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$

The edge strength is given by the gradient magnitude (norm)

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Effects of noise

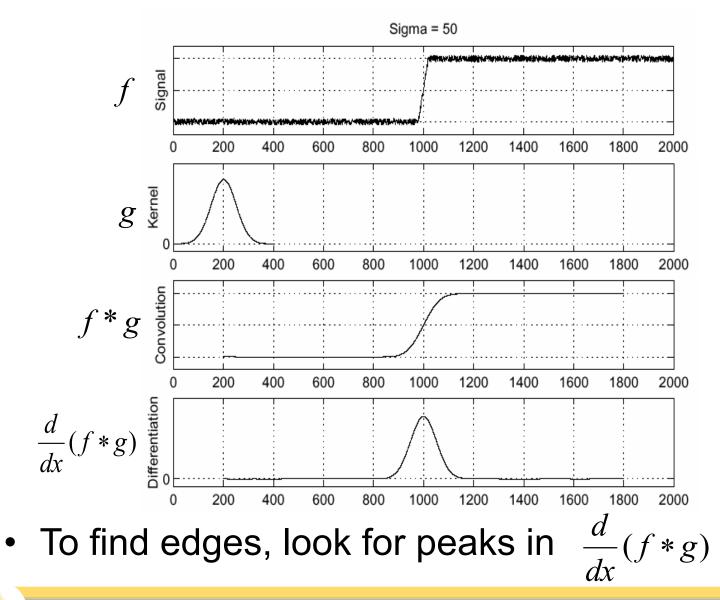
Consider a single row or column of the image



Where is the edge?

Source: S. Seitz

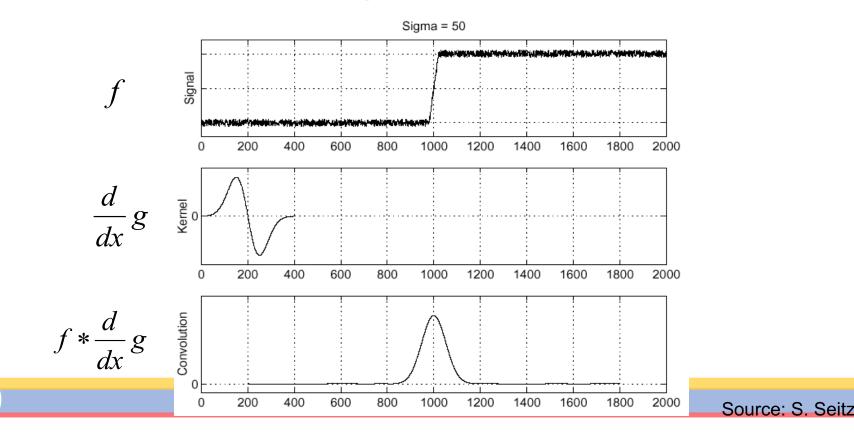
Solution: smooth first



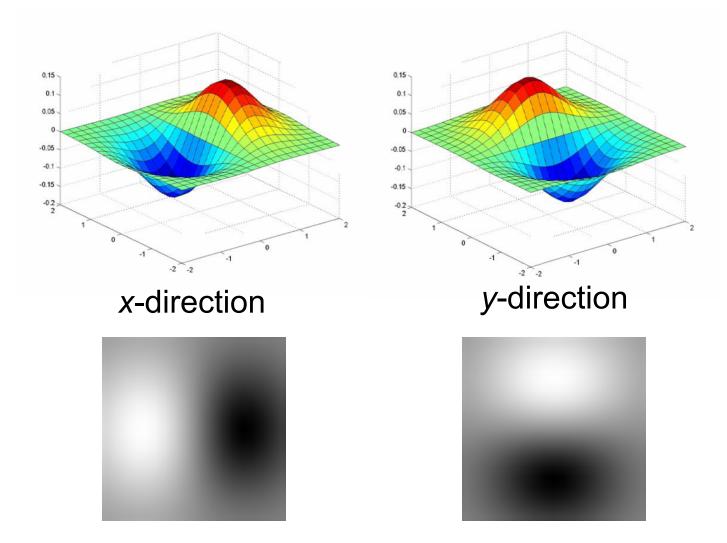
Source: S. Seitz

Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative: $\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$
- This saves us one operation:

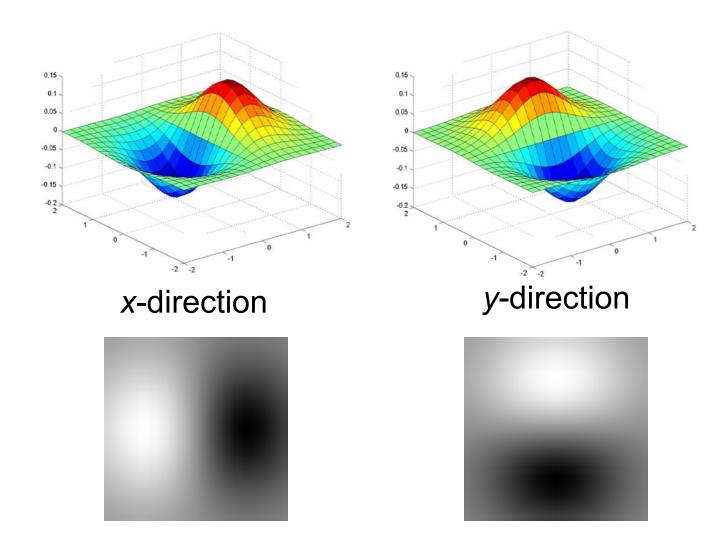


Derivative of Gaussian filters



Which one finds horizontal/vertical edges?

Derivative of Gaussian filters



Are these filters separable?

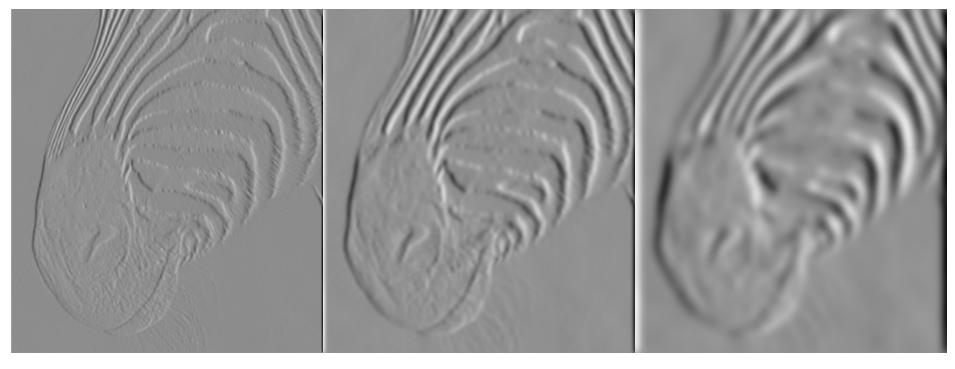
Recall: Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$
$$= \left(\frac{1}{\sqrt{2\pi\sigma}} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi\sigma}} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Scale of Gaussian derivative filter



1 pixel 3 pixels 7 pixels

Smoothed derivative removes noise, but blurs edge Also finds edges at different "scales"

Source: D. Forsyth

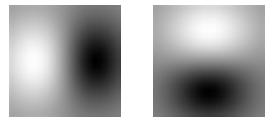
Review: Smoothing vs. derivative filters

Smoothing filters

- Gaussian: remove "high-frequency" components;
 "low-pass" filter
- Can the values of a smoothing filter be negative?
- What should the values sum to?
 - One: constant regions are not affected by the filter

Derivative filters

- Derivatives of Gaussian
- Can the values of a derivative filter be negative?
- What should the values sum to?
 - Zero: no response in constant regions



Building an edge detector

Original Image

Edge Image

original image

final output

norm of the gradient
$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Building an edge detector

How to turn these thick regions of the gradient into curves?

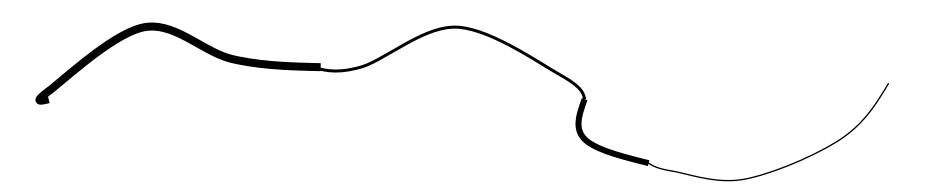
Thresholded norm of the gradient

Non-maximum suppression

Another problem: pixels along this edge didn't survive thresholding

Hysteresis thresholding

Use a high threshold to start edge curves, and a low threshold to continue them.



Hysteresis thresholding

original image

high threshold (strong edges)

low threshold (weak edges)

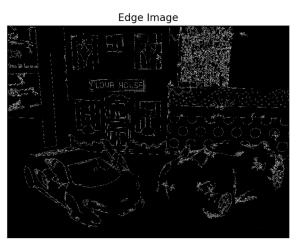
hysteresis threshold

Source: L. Fei-Fei

Recap: Canny edge detector

- 1. Compute x and y gradient images
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin wide "ridges" down to single pixel width
- 4. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

Opencv: canny(image,th1,th2)



J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

