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There is a greater societal push than ever before…

Cars are sensing more and moreCars are communicating more and more
USDOT Issues Advance Notice of Proposed
Rulemaking to Begin Implementation of V2V
Communications Technology
— NHTSA, Aug. 2015

Demonstrations of 
driverless cars date back to 
the 80s/90s in the Eureka/ 
Prometheus Project



Autonomous Vehicles in the News



What could possibly 
go wrong?
A lot of things.  For example:

• sensor failure



What could possibly 
go wrong?
A lot of things.  For example:

▶ sensor failure

▶ strict region of operation



What could possibly 
go wrong?
A lot of things.  For example:

▶ sensor failure

▶ strict region of operation

▶ weird things happen



Low Probability, High Risk Events

Hazardous Event Frequencies
Disengagement Rate 0.12 per 1000 km 
Collision Rate 12.5 per 100 million km 
Fatality Rate 0.70 per 100 million km



Low Probability, High Risk Events

Hazardous Event Frequencies
Disengagement Rate 0.12 per 1000 km 

Collision Rate 12.5 per 100 million km 

Fatality Rate 0.70 per 100 million km

▶ If an agent’s motion is discretized, sampling
will not give good coverage

▶ As more agents are added, the number of
trajectories to test grows exponentially

▶ How can we verify such a complex, multi-
agent system?



How do we create a safe and 
effective autonomous vehicle?
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Sensors Perception Tactical decision 
making Trajectory planning Low level 

controller
Simulation and 

validation

vehicle / environment, 
human models

Compute platform: 
GPUs, power, memory

Low-level control

Trajectory planning

Tactical decision making

Perception: lane 
tracking, detection

Sensors: Camera, LIDAR, 
RADAR,V2V…

Simulation, verification, 
testing
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About the course

Everything starts here: https://publish.illinois.edu/safe-autonomy/

▶ team

▶ schedule 

▶ resources, papers, MPs, code, gitlab links

▶ lectures: https://gitlab.engr.illinois.edu/GolfCar/lectures

Piazza for Q&A, discussions

Compass for grades

https://publish.illinois.edu/safe-autonomy/
https://gitlab.engr.illinois.edu/GolfCar/lectures


Outlook of this class

Principles
▶ panoply of technologies behind the Self-driving project; we will zoom in on a 

few fundamental elegant ideas that we believe are also important

Practice
▶ hack, learn the language of autonomy today; use some of the latest and most 

interesting tools.

Fun
▶ “To do things right, first you need love, then technique.” – Antoni Gaudí



Course 

Midterm and final exam (15 + 15%)

Analysis, concept questions, individual

March 4 midterm

May 1 in class final

Assignments, MPs 45% 

5-6 sets, mostly coding, using tools, in groups 

Project 20% 

Start today! more in the next slides ... 

Participation 5% 

Notes, piazza, contribute code, make cool videos for class page, more…



Next 2 weeks: MPs

Next lecture very important!

MP0 will be released on Wednesday Jan 16th

▶ Get started asap (install FastX)
▶ Tutorial on using VMs, Righthook, ROS by Pulkit and Ted
▶ MP0 not graded, but the tools will be used for MP* and Projects
▶ MP1 will be released next week

10 minute project pitch/discussion with us Wednesday Jan 23rd

▶ Form your team now



Next 2 weeks: Project

Project ideas released today here

You can also design your own project

Important dates: 
Jan 23 Form your team; discussion
Mar 13 Intermediate progress report
Apr 29 Poster and demos to course staff
May 11 Final report

Expectation: Explore new ideas, build end-to-end system, argue about safety/correctness
Outcomes: Technical papers, jumpstart grad research, incubate startup ideas 

http://publish.illinois.edu/safe-autonomy/files/2019/01/Project-Ideas498SM_2018.pdf


Participation

▶Latex template for notes, reports and poster

▶Make cool videos for the class

▶Contribute answers on piazza, help troubleshoot

▶Contribute code



A brief intro to some linear algebra concepts

▶ Linear spaces, linear transformation, linearly independent
▶ Norms 
▶ Eigenvalues, eigenvectors
▶ Linear regression



Vectors

▶a vector is an ordered list of numbers 
▶ ! = 1,0,0.5,2.8 ; + = 0,1,0,0 ; , = - + /0, 0, 1 + /2, −/

▶ the numbers are scalars that come from a field
▶!4 = 2.8; !5 is the /67 member or component of the vector
▶unit vectors: 0,0,1 ; 0,1,0 ; [1,0,0]
▶operations on vectors

▶ addition ! + +; commutative, associative, 0 identity, additive inverse
▶ scalar multiplication a!; associative, left and right distributive

▶ inner product: !;+ = ∑!5×+5



Linear combinations

▶A linear combination of a finite set of vectors !", !$, … , !& is a vector 
∑()"& *(!( where *( ∈ ,

▶A set of vectors !", !$, … , !& is linearly independent if the only solution 
of ∑()"& *(!( =0 is the trivial solution *" = *$ = ⋯*& = 0

▶The set of vectors !", !$, … , !& is linearly dependent if one of the 
vectors can be written as a linear combination of the others, that is, 
!" = ∑()$& *(!(



Norms
A norm of a vector measures its size

▶ Any function !:ℝ$ → ℝ&' such that
▶ Homogeneity: ! () = (! )
▶ Triangle inequality: ! ) + , ≤ ! ) + ! ,
▶ Definiteness: ! ) = 0 ⇔ ) = 0

▶ Euclidean ) 1 = )21 + )11 + …+ )$1
▶ ) − , 1 is the standard notion of Euclidean distance between ) and ,

▶ |)|2 = )2 +⋯+ |)$|
▶ |)|7 = max()2, )1, … , )$)

▶ rms ) = @ A
√$



Means and deviations

▶sum !"# = #% + #' + …+ #)
▶mean, average: #̅ = %

+ !
"#

▶demeaned vectors: ,# = # − #̅
▶ ,̅# =?

▶standard deviation: rms ,# = %
) # − #̅ '

▶correlation: 23,5 = ,36 ,5
,3 7 ,5 7



Regression

We would like to fit a model to a bunch of 
data points

▶Affine model: ! = #$% + '
▶ # ∈ ℝ* “feature” vector
▶ % ∈ ℝ* vector of coefficients
▶ ' ∈ ℝ an offset
▶ ! ∈ ℝ is the prediction, dependent variable

#

!



Suppose we have m data points !", $" , !%, $% , … , !', $'

We would like to find the coefficients ( ∈ ℝ+ of linear combination s.t.
!" = $""(" + $%"(% + ⋯+ $/"(/
!' = $"'(" + $%'(% + ⋯+ $/'(/
Many more equations than unknowns, overdetermined system, so we will not find a 
solution that works 

Given (,	 1!" = $" 2( is the prediction for !
Prediction error or residual 3" = 1!" − !" = $" 2( − !"

3 = 1! − ! =
$""
⋮
$"'

…
⋮
…

$/"
⋮
$/'

("
⋮
(/

− !

Reduce the RMS error on 3: choose ( such that minimize prediction 67896889⋯6:8
+

7
8

error 
on the data set 

This is called the Least Squares problem: choose ( to make 3 as small as possible if not 0 $

!

$̅, <!

Fitting models to data 



Simple regression: straight line fit

▶ m data points ! = #$,… , #' ; ) = *$,… , *'
▶ *+, #+ ∈ ℝ
▶ .*+ = / + 1#+
▶ can work out 12, 1$ explicitly 

▶ 1 = 3!,) 4'5(7!)
4'5(7))

▶ / = 9) − 1$ 9!

▶ Code

.*



Clustering

Given  N vectors !", … , !% ∈ ℝ(, the goal is to partition 
them into ) groups so that the vectors in the same group 
are close to one another

Examples: image compression (vectors are pixel values); 
patient clustering (patient attributes, tests); 

*+ ∈ {1, … , )} is the group !+ belongs to 

/01 ⊆ !", … , !( group 

301 group representative

Clustering objective minimize J05678 = "
%∑+;"

% !+ − 301
=

by choosing the groups {*+} and the representatives

from Boyd & Vandenberghe



Algorithm: Step 1

▶Suppose the representatives !", … , !% are given, how do we assign the 
vectors &", … , &' to the ( groups?

▶Recall J*+,-. = "
0 ∑23"

' &2 − !*5
6

▶min
:

"
' ∑23"

' &2 − !:
6 = "

' ∑23"
' min

:
&2 − !:

6

▶That is, assign &2 to the nearest representative !:



Algorithm: Step 2

▶Given the partition !",… , !%, how to choose the representatives 
&", … , &%?

▶ J()*+, = ." + ⋯+ .% = ∑23"% "
45
∑6∈45 86 − &2

:

▶Choose &2 to minimize .2 , that is &2 = "
45
∑6∈45 86 the mean (centroid)



Algorithm: Combined

▶alternate between updating the partition, then the representatives
▶a famous algorithm called k-means clustering
▶objective J"#$%& decreases in each step

given '(, . . . , '+ ∈ ℝ. and /(, . . . , /0 ∈ ℝ.
repeat 

update partition: assign i to 12, 3 = argmin2 '; − /2 =
=

update centroids: /2 = (
>?
∑;∈>? ';

until /(, … , /0 stop changing



Linear transformations

▶A linear function or linear transformation !:ℝ$ → ℝ& has the 
property that ! '() + +(, = '! () + +!((,)

▶Any linear function can be written as 0 = 12,where 1 ∈ ℝ&×$



Examples

▶Projection on !: Π# = 1 0
0 0

▶CCW rotation by ': R) = cos ' − sin '
sin ' cos '



Eigenvalues and eigenvectors

▶The set of eigenvectors of a matrix ! is a special set of input vectors 
for which the action ! is described as a simple scaling

▶ If " ∈ ℝ% is an eigenvector, then !" = '" for some scalar '
▶To find eigenvectors and eigenvalues, solve for the roots of the 

characteristic polynomial p ' = det(! − '.)
▶This gives 0 roots which are the 0 eigenvalues
▶For each eigenvalue ', solve ! − '. " = 0 to find an eigenvector ".

python function eig(A)



Eigenvectors as limits of repeated improvement

Application: ranking web pages

▶ Each webpage  (node) ! has a PageRank "# ∈ ℝ
▶ "# is refined repeatedly according to the update rule: Each page divides its 

current PageRank equally among the outgoing links

▶ &#': Portion of !’s PageRank that j should get in one step; &#' =
1/,-./01#

▶ "# 2 + 1 = &4#"4 2 + &5#"5 2 + ⋯+ &7#"7 2
▶ " 2 + 1 = &8"(2)

▶ Say, " 0 = 4
7 ,

4
7 , …

4
7 , what is " 2 = (&8)> " 0 ?

▶ If the update rule converges in the limit, then we expect " ∗ = &8 " ∗ ;
that is " ∗ to be an eigenvector of & with corresponding eigenvalue of 1.

2
1

3 4

& =
0 .5
0 0

0 .5
.5 .5

1 0
0 0

0 0
1 0

&D =
.05 .45
.05 .05

.05 .45

.45 .45
.85 .05
.05 .05

.05 .05

.85 .05



Perron’s theorem. Any matrix N with all positive entries has a real
eigenvalue !"#$ > 0 such that !"#$ > ! for all other eigenvalues !.
There is an eigenvector ( corresponding to !"#$ with positive real
coordinates that is unique up to scaling. If !"#$ = 1, then for any
starting vector , the sequence -., converges to a vector in the
direction of ( as / goes to infinity.

The max eigenvector of the scaled matrix 01 gives the stable PageRank!



Exercise: Try coding PageRank;
It is essentially just matrix
multiplication or computing
eigenvectors.



Summary

▶Vector operations and norms
▶Regression
▶Clustering 
▶Eigenvalues and eigenvectors

▶Homework
▶ Form team; decide on project; we discuss in 2 weeks
▶ Start MP0 before next lecture


