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Cars are sensing more and mor

Cars are communicating more and more

USDOT Issues Advance Notice of Proposed
Rulemaking to Begin Implementation of V2V

Communications Technology

— NHTSA, Aug. 2015
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Demonstrations of
| driverless cars date back to

the 80s/90s in the Eureka/
Prometheus Project

%

There is a greater societal push than ever before...
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U.S. Proposes Spending $4 Billion to Encourage Driverless Cars

Obama administration aims to remove hurdles to making autonomous cars more widespread

.




Autonomous Vehicles in the News
Addd IEEE

Science
Google promises autonomous cars for

e\ "Atlantic
TEEHNULUGY
Google s Self-Driving Cars: 300,000 Mil
la Single Accident Under Computer Control dl'S TECHNICA

REBECCA J. ROSEN AUGS, 2012
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After Peak Hype, Self-Driving Cars
Enter the Trough of Disillusionment

The automated cars are slowly building a driving record that's better than that of MORE STORIES R

youraverage American. mouews) 111€ NYpe around driverless cars came
crashing

Automation Is{|
| M December 31, 2018, 6:08 AM CST

The 10 Worst Self-Driving Stories of °eP
2018

Bloomberg Businessw

)ays can you say Suboptimal? Here's 10 more
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What could possibly
go wrong?

A lot of things. For example:

e sensor failure
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go wrong?
A lot of things. For example:

sensor failure

strict region of operation

VEHICLE STATUS:
Time:

AD-Engaged:
Velocity-cmd:
Velocity-vcu:

Curvature-cmd:
Curvature-vcu:
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What could possibly
go wrong?

A lot of things. For example:
sensor failure
strict region of operation

weird things happen
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Low Probability, High Risk Events

Hazardous Event Frequencies

Disengagement Rate 0.12 per 1000 km
Collision Rate 12.5 per 100 million km
Fatality Rate 0.70 per 100 million km



Low Probability, High Risk Events

Hazardous Event Frequencies

Disengagement Rate 0.12 per 1000 km
Collision Rate 12.5 per 100 million km
Fatality Rate 0.70 per 100 million km

If an agent’s motion is discretized, sampling

will not give good coverage

As more agents are added, the number of

trajectories to test grows exponentially

| How can we verify such a complex, multi-
agent system?
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we create a safe and
autonomous vehicle?




Sensors: Camera, LIDAR,
RADAR\V2V...

Perception: lane
tracking, detection

Simulation, verification,
testing

Compute platform:

vehicle / environment, GPUs, power, memory
human models
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About the course

Everything starts here: https://publish.illinois.edu/safe-autonomy/

» team
» schedule
» resources, papers, MPs, code, gitlab links

» lectures: https://gitlab.engr.illinois.edu/GolfCar/lectures

Piazza for Q&A, discussions

Sayan Mitra (mitras)

Compass for grades

Ted Liu (tlius1)

Katie Driggs-Campbell (krdc)

Pulkit Katdare (katdare2)

Chuchu Fan (cfan10)


https://publish.illinois.edu/safe-autonomy/
https://gitlab.engr.illinois.edu/GolfCar/lectures
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Outlook of this class

Principles

panoply of technologies behind the Self-driving project; we will zoom in on a
few fundamental elegant ideas that we believe are also important

Practice

hack, learn the language of autonomy today; use some of the latest and most
interesting tools.

Fun
“To do things right, first you need love, then technique.” — Antoni Gaudi
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Course
Midterm and final exam (15 + 15%)

Analysis, concept questions, individual
March 4 midterm
May 1 in class final

Assignments, MPs 45%

5-6 sets, mostly coding, using tools, in groups

Project 20%

Start today! more in the next slides ...

Participation 5%

Notes, piazza, contribute code, make cool videos for class page, more...
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Next 2 weeks: MPs

Next lecture very important!

MPO will be released on Wednesday Jan 16t

Get started asap (install FastX)

Tutorial on using VMs, Righthook, ROS by Pulkit and Ted

MPO not graded, but the tools will be used for MP* and Projects
MP1 will be released next week

10 minute project pitch/discussion with us Wednesday Jan 23™
Form your team now
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Next 2 weeks: Project

Project ideas released today here
You can also design your own project

Important dates:

Jan 23 Form your team; discussion

Mar 13 Intermediate progress report
Apr 29 Poster and demos to course staff
May 11 Final report

Expectation: Explore new ideas, build end-to-end system, argue about safety/correctness
Qutcomes: Technical papers, jumpstart grad research, incubate startup ideas



http://publish.illinois.edu/safe-autonomy/files/2019/01/Project-Ideas498SM_2018.pdf
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Participation
Latex template for notes, reports and poster
Make cool videos for the class
Contribute answers on piazza, help troubleshoot

Contribute code
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A brief intro to some linear algebra concepts

Linear spaces, linear transformation, linearly independent
Norms

Eigenvalues, eigenvectors

Linear regression
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Vectors

a vector is an ordered list of numbers o\ |
v =[1,0,0.5,2.8];7 = (0,1,0,0); x = (x + iy,0,a + ib, —i) \ P

the numbers are scalars that come from a field .

v, = 2.8; v; is the it member or component of the vector

unit vectors: [0,0,1];[0,1,0]; [1,0,0]

operations on vectors

addition v + u; commutative, associative, O identity, additive inverse
scalar multiplication av; associative, left and right distributive

inner product: viu = Yv; Xu;
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Linear combinations

A linear combination of a finite set of vectors vy, V5, ..., Uy is a vector
K Av; where A; € F

A set of vectors vq, V5, ..., Uy is linearly independent if the only solution
of Zﬁ;l/livi =0 is the trivial solution A4, =4, = -4, =0

The set of vectors v4, V5, ..., Vg is linearly dependent if one of the
vectors can be written as a linear combination of the others, that is,

vk
V1 = i=ZAivi
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Norms

A norm of a vector measures its size

Any function f: R™ = R, such that
Homogeneity: f(ax) = af (x)

Triangle inequality: f(x + y) < f(x) + f(y)
Definiteness: f(x) =0 x =0

Euclidean |x|, = x2 + xZ + ...+ x?2

|x — y|, is the standard notion of Euclidean distance between x and y
x| = [oeg| + -+ [y
|X| o = max(xq, X5, .v, Xpp)

rms(x) = I\?;_I;
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Means and deviations

sum1fx = x; + %, + ...+ x,,

_ 17
mean, average: X = ;1 X

demeaned vectors: X = x — X

~

X =?
. - 1 _
standard deviation: rms(X¥) = —|x — x|,
Vn
~T ~
. X
correlation: py,, = — Y
’ 1X]2|¥ 12



Regression

We would like to fit a model to a bunch of

data points

» Affine model: y = xT0 + b

3.0

2.5

2.0

1.0 1

0.5 4

0.0

T

» x € R™ “feature” vector

» 8 € R™ vector of coefficients

» b € R an offset

» y € Ris the prediction, dependent variable



Fitting models to data

Suppose we have m data points (y1,x1), (v2,x2), ..., (™, x™)

We would like to find the coefficients 8 € R™ of linear combination s.t.
yl = x16, + x316, + - + x7.6,

y™ = x1"0; + xJ'0, + -+ x'0,

Many more equations than unknowns, overdetermined system, so we will not find a
solution that works

Given 8,91 = (x1)7 6 is the prediction for y

Prediction error or residual r; = 1 —y1 = (x1)76 — y?

-

2 e
Reduce the RMS error on r: choose 6 such that minimize prediction (%)2 error

r=?—y=

1

on the data set

This is called the Least Squares problem: choose 8 to make r as small as possible if not 0

3.0 %
® o
2.5 ¢ .‘
oo by ¢
i e o0
2.0 '.. e) oo .. 'o  } ]
y o *° o o
1.57 » : ‘ .. ..
o ® o o ® o
1.0 - ® o o \\o
05 0% ° %o XV
. . X,y
O.O—] . T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X
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Simple regression: straight line fit

m data points x = (xl, o XMy = (yl, Y™
yLxt € R
' = b + 6x?

can work out 8, 61 explicitly
0 = rms(x)
= Pxy rms(¥)
b — y - 91 E

<<

Code




Clustering N

Given N vectors xq, ..., Xy € R™, the goal is to partition
them into k groups so that the vectors in the same group 0+
are close to one another

Examples: image compression (vectors are pixel values);

o © 5
o %o o © o, o
° o o o
} om o
°Fo o "o
& o o o
> P
o o0 8 o
o (4] o
o © d?:pf? ?
o
[+ Q 00
&} (b o o
0
-2 -1 0 1 2 3 4 5

patient clustering (patient attributes, tests); :
c; € {1, ..., k}is the group x; belongs to
Ge, € {x1, ..., X} group

Zc, group representative

1
N
by choosing the groups {c;} and the representatives

: S L 2
Clustering objective minimize Jcjyust = Il-v=1|xl- — Zci|

from Boyd & Vandenberghe
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Algorithm: Step 1

Suppose the representatives zq, ..., Z, are given, how do we assign the
vectors x4, ..., Xy to the k groups?

13N
Recall Jeruse = " i=1‘xi — Z;
. 1 @pN 2
mjmﬁziﬂ‘xi ~ 7]

That is, assign x; to the nearest representative z;
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Algorithm: Step 2

Given the partition Gy, ..., Gy, how to choose the representatives
Z1y eeny Zg ?
k 1

]clust :]1 T e +]k — j=1|G_ZieGj‘xi — Zj

‘2
jl

o . 1 .
Choose z; to minimize J;, thatis z; = mZiEGj x; the mean (centroid)
j



Algorithm: Combined

alternate between updating the partition, then the representatives
a famous algorithm called k-means clustering
objective J .14t decreases in each step

given x4,...,xy € R"and z,...,z; € R"?

repeat
2
update partition: assign i to G;, j = argmin; |x; — zj|2
: 1
update centroids: z; = mziepj X;
J

until z4, ..., z, stop changing
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Linear transformations

A linear function or linear transformation f: R"™ — R™ has the
property that f(avy + Bv,) = af(vy) + Bf (vy)

Any linear function can be written as y = Ax, where A € R™*"
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Examples

Projection on x: II,, = [(1) 8
cos 6

CCW rotation by 8: Rg = [sin 0

—sin @
cos @

|



Eigenvalues and eigenvectors

The set of eigenvectors of a matrix 4 is a special set of input vectors
for which the action A is described as a simple scaling

If v € R" is an eigenvector, then Av = Av for some scalar A

To find eigenvectors and eigenvalues, solve for the roots of the
characteristic polynomial p(4) = det(4 — Al)

This gives n roots which are the n eigenvalues
For each eigenvalue 4, solve (4 — AI)v = 0 to find an eigenvector v.

python function eig(A)

g o
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Eigenvectors as limits of repeated improvement

Application: ranking web pages
Each webpage (node) i has a PageRank 7; € R

17 is refined repeatedly according to the update rule: Each page divides its
current PageRank equally among the outgoing links

Njj: Portion of i’'s PageRank that j should get in one step; Nij =
1/outdeg;

ri(k + 1) = Nyyry (k) + Npirp (k) + - + Ny (k)

05
r(k +1) = NTr(k) = |05
Say, 7(0) = ’%,%, %], what is (k) = (NT)* r(0)? 05

If the update rule converges in the limit, then we expect r(*¥) = NT r(*);
that is r(*) to be an eigenvector of N with corresponding eigenvalue of 1.

45

.05
.05

.05

.05

45
.05

.85

45

45
.05

.05
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Perron’s theorem. Any matrix N with all positive entries has a real
eigenvalue 4,4, > 0 such that A,,,,, > |4] for all other eigenvalues A.

There is an eigenvector v corresponding to A,,,, With positive real
coordinates that is unique up to scaling. If A, = 1, then for any
starting vector x the sequence P¥x converges to a vector in the
direction of v as k goes to infinity.

The max eigenvector of the scaled matrix N gives the stable PageRank!




The PageRank Citation Ranking:
Bringing Order to the Web

January 29, 1998

Abstract

The importance of a Web page is an inherently subjective matter, which depends on the
readers interests, knowledge and attitudes. But there is still much that can be said objectively
about the relative importance of Web pages. This paper describes PageRank, a method for
rating Web pages objectively and mechanically, effectively measuring the human interest and
attention devoted to them,

We compare PageRank to an idealized random Web surfer. We show how to efficiently
compute PageRank for large numbers of pages. And, we show how to apply PageRank to search
and to user navigation.

1 Introduction and Motivation

The World Wide Web creates many new challenges for information retrieval. It is very large and
heterogeneous. Current estimates are that there are over 150 million web pages with a doubling
life of less than one year. More importantly, the web pages are extremely diverse, ranging from
“What is Joe having for lunch today?” to journals about information retrieval. In addition to these
major challenges, search engines on the Web must also contend with inexperienced users and pages
engineered to manipulate search engine ranking functions.

However, unlike "flat” document collections, the World Wide Web is hypertext and provides
considerable auxiliary information on top of the text of the web pages, such as link structure and
link text. In this paper, we take advantage of the link structure of the Web to produee a global
“importance” ranking of every web page. This ranking. called PageRank, helps search engines and
users quickly make sense of the vast heterogeneity of the World Wide Web.

1.1 Diversity of Web Pages

Although there is already a large literature on academic citation analysis, there are a number
of significant differences between web pages and academic publications. Unlike academic papers
which are scrupulously reviewed, web pages proliferate free of quality control or publishing costs.
With a simple program, huge numbers of pages can be created easily, artificially inflating citation
counts. Because the Web environment contains competing profit seeking ventures, attention getting
strategies evolve in response to search engine algorithms. For this reason, any evaluation strategy
which counts replicable features of web pages is prone to manipulation. Further, academic papers
are well defined units of work, roughly similar in quality and number of citations, as well as in
their purpose — to extend the body of knowledge. Web pages vary on a much wider scale than
academic papers in quality, usage, citations, and length. A random archived message posting

Sergey Brin received his B.S. degree in mathematics and

didate in p science at Stanford U
duate Fel ip. His i ir
of large text collections and scientific data.

Lawrence Page was born in East Lansing, Michigan, and
1995. He is currently a Ph.D. candidate in Computer Scie
web, human computer interaction, search engines, scalabi

8 Appendix A: Advertising and Mix
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Figure 2: Simplified PageRank Calculation

Convergence of PageRank Computation
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Exercise: Try coding PageRank;
It is essentially just matrix
multiplication or computing

eigenvectors.
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Summary

Vector operations and norms
Regression

Clustering

Eigenvalues and eigenvectors

Homework

Form team; decide on project; we discuss in 2 weeks
Start MPO before next lecture



