Principles of Safe Autonomy ECE 498 SM
 Lecture 1: Overview

Katie Driggs-Campbell and Sayan Mitra
Chuchu Fan, Ted Liu, and Pulkit Katdare

There is a greater societal push than ever before...

THE WALL STREET JOURNAL.

Home World U.S. Politics Economy Business Tech Markets Opinion Arts Life Real Estate
BUSINESS | AUTOS \& TRANSPORTATION | AUTOS
U.S. Proposes Spending \$4 Billion to Encourage Driverless Cars

Obama administration aims to remove hurdles to making autonomous cars more widespread

Autonomous Vehicles in the News

Science

Google promises autonomous cars for
a ${ }^{\text {mAltantic }}$

Teenloloer
Google's Self-Driving Cars: $\mathbf{3 0 0 , 0 0 0} \mathbf{~ M i l}$ a Single Accident Under Computer Control
Rebecca J. ROSEN AUG 9, 2012

The automated cars are slowly building a driving record that's better than that of your average American.

44
4 Service Work
SIDNEY FUSSELL

WIRED

12.19.1

After Peak Hype, Self-Driving Cars
Enter the Trough of Disillusionment

ars TECHNICA

BIZEIT TECH SCIENE POLLCY CARS GAMING\&CUL

The hype around driverless cars came crashing

The 10 Worst Self-Driving Stories of 2018

How many ways can you say Suboptimal? Here's 10 more.
byalex roy december 30, 2018

ANTHONY LEVANDOWsKI

AUDI

OPINION

What could possibly

 go wrong?A lot of things. For example:

- sensor failure

What could possibly

 go wrong?A lot of things. For example:

- sensor failure
- strict region of operation

What could possibly go wrong?
 A lot of things. For example:
 - sensor failure
 - strict region of operation
 - weird things happen

Low Probability, High Risk Events

Hazardous Event Frequencies

Disengagement Rate	0.12 per 1000 km
Collision Rate	12.5 per 100 million km
Fatality Rate	0.70 per 100 million km

Low Probability, High Risk Events

Hazardous Event Frequencies

Disengagement Rate	0.12 per 1000 km
Collision Rate	12.5 per 100 million km
Fatality Rate	0.70 per 100 million km

- If an agent's motion is discretized, sampling will not give good coverage
- As more agents are added, the number of trajectories to test grows exponentially
- How can we verify such a complex, multiagent system?

Principles of Safe Autonomy

2019 Edition

About the course

Everything starts here: https://publish.illinois.edu/safe-autonomy/

- team
- schedule
- resources, papers, MPs, code, gitlab links
- lectures: https://gitlab.engr.illinois.edu/GolfCar/lectures

Piazza for Q\&A, discussions

Sayan Mitra (mitras)

Ted Liu (tliu51)

Katie Driggs-Campbell (krdc)

Pulkit Katdare (katdare2)

Chuchu Fan (cfan1o)

Compass for grades

Outlook of this class

Principles

- panoply of technologies behind the Self-driving project; we will zoom in on a few fundamental elegant ideas that we believe are also important

Practice

- hack, learn the language of autonomy today; use some of the latest and most interesting tools.
Fun
- "To do things right, first you need love, then technique." - Antoni Gaudí

Course

Midterm and final exam ($15+15 \%$)
Analysis, concept questions, individual
March 4 midterm
May 1 in class final
Assignments, MPs 45\%
5-6 sets, mostly coding, using tools, in groups

Project 20\%

Start today! more in the next slides ...

Participation 5\%

Notes, piazza, contribute code, make cool videos for class page, more...

Next 2 weeks: MPs

Next lecture very important!

MPO will be released on Wednesday Jan $16^{\text {th }}$

- Get started asap (install FastX)
- Tutorial on using VMs, Righthook, ROS by Pulkit and Ted
- MPO not graded, but the tools will be used for MP* and Projects
- MP1 will be released next week

10 minute project pitch/discussion with us Wednesday Jan $23^{\text {rd }}$

- Form your team now

Next 2 weeks: Project

Project ideas released today here
You can also design your own project

Important dates:

Jan 23	Form your team; discussion
Mar 13	Intermediate progress report
Apr 29	Poster and demos to course staff
May 11	Final report

Expectation: Explore new ideas, build end-to-end system, argue about safety/correctness Outcomes: Technical papers, jumpstart grad research, incubate startup ideas

Participation

- Latex template for notes, reports and poster
- Make cool videos for the class
- Contribute answers on piazza, help troubleshoot
-Contribute code

A brief intro to some linear algebra concepts

- Linear spaces, linear transformation, linearly independent
- Norms
- Eigenvalues, eigenvectors
- Linear regression

Vectors

\Rightarrow a vector is an ordered list of numbers
$v=[1,0,0.5,2.8] ; \bar{u}=(0,1,0,0) ; \boldsymbol{x}=(x+i y, 0, a+i b,-i)$
$>$ the numbers are scalars that come from a field
$\Delta v_{4}=2.8 ; v_{i}$ is the $i^{\text {th }}$ member or component of the vector

- unit vectors: $[0,0,1] ;[0,1,0] ;[1,0,0]$
- operations on vectors
- addition $v+u$; commutative, associative, 0 identity, additive inverse
- scalar multiplication av; associative, left and right distributive
- inner product: $v^{T} u=\sum v_{i} \times u_{i}$

Linear combinations

- A linear combination of a finite set of vectors $v_{1}, v_{2}, \ldots, v_{k}$ is a vector $\sum_{i=1}^{k} \lambda_{i} v_{i}$ where $\lambda_{i} \in F$
- A set of vectors $v_{1}, v_{2}, \ldots, v_{k}$ is linearly independent if the only solution of $\sum_{i=1}^{k} \lambda_{i} v_{i}=0$ is the trivial solution $\lambda_{1}=\lambda_{2}=\cdots \lambda_{k}=0$
- The set of vectors $v_{1}, v_{2}, \ldots, v_{k}$ is linearly dependent if one of the vectors can be written as a linear combination of the others, that is, $v_{1}=\sum_{i=2}^{k} \lambda_{i} v_{i}$

Norms

A norm of a vector measures its size

- Any function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geq 0}$ such that
- Homogeneity: $f(a x)=a f(x)$
- Triangle inequality: $f(x+y) \leq f(x)+f(y)$
- Definiteness: $f(x)=0 \Leftrightarrow x=\mathbf{0}$
- Euclidean $|x|_{2}=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}}$
- $|x-y|_{2}$ is the standard notion of Euclidean distance between x and y
$\triangleright|x|_{1}=\left|x_{1}\right|+\cdots+\left|x_{n}\right|$
$-|x|_{\infty}=\max \left(x_{1}, x_{2}, \ldots, x_{n}\right)$
$\Rightarrow \operatorname{rms}(x)=\frac{|x|_{2}}{\sqrt{n}}$

Means and deviations

$\downarrow \operatorname{sum} \mathbf{1}^{T} x=x_{1}+x_{2}+\ldots+x_{n}$
\downarrow mean, average: $\bar{x}=\frac{1}{\mathrm{n}} \mathbf{1}^{T} x$

- demeaned vectors: $\tilde{x}=x-\bar{x}$
- $\overline{\tilde{x}}=$?
-standard deviation: $\operatorname{rms}(\tilde{x})=\frac{1}{\sqrt{n}}|x-\bar{x}|_{2}$
-correlation: $\rho_{x, y}=\frac{\tilde{x}^{T} \tilde{y}}{|\tilde{x}|_{2}|\tilde{y}|_{2}}$

Regression

We would like to fit a model to a bunch of data points

- Affine model: $y=x^{T} \theta+b$
- $x \in \mathbb{R}^{n}$ "feature" vector

- $\theta \in \mathbb{R}^{n}$ vector of coefficients
- $b \in \mathbb{R}$ an offset
$\triangleright y \in \mathbb{R}$ is the prediction, dependent variable

Fitting models to data

Suppose we have m data points $\left(y^{1}, x^{1}\right),\left(y^{2}, x^{2}\right), \ldots,\left(y^{m}, x^{m}\right)$
We would like to find the coefficients $\theta \in \mathbb{R}^{n}$ of linear combination s.t.
$y^{1}=x_{1}^{1} \theta_{1}+x_{2}^{1} \theta_{2}+\cdots+x_{k}^{1} \theta_{k}$
$y^{m}=x_{1}^{m} \theta_{1}+x_{2}^{m} \theta_{2}+\cdots+x_{k}^{m} \theta_{k}$
Many more equations than unknowns, overdetermined system, so we will not find a solution that works

Given $\theta, \hat{y}^{1}=\left(x^{1}\right)^{T} \theta$ is the prediction for y
Prediction error or residual $r_{1}=\hat{y}^{1}-y^{1}=\left(x^{1}\right)^{T} \theta-y^{1}$
$r=\hat{y}-y=\left[\begin{array}{ccc}x_{1}^{1} & \cdots & x_{k}^{1} \\ \vdots & \vdots & \vdots \\ x_{1}^{m} & \cdots & x_{k}^{m}\end{array}\right]\left[\begin{array}{c}\theta_{1} \\ \vdots \\ \theta_{k}\end{array}\right]-y$
Reduce the RMS error on r : choose θ such that minimize prediction $\left(\frac{r_{1}^{2}+r_{2}^{2}+\cdots r_{m}^{2}}{n}\right)^{\frac{1}{2}}$ error on the data set

This is called the Least Squares problem: choose θ to make r as small as possible if not 0

Simple regression: straight line fit

- m data points $\boldsymbol{x}=\left(x^{1}, \ldots, x^{m}\right) ; \boldsymbol{y}=\left(y^{1}, \ldots, y^{m}\right)$
- $y^{i}, x^{i} \in \mathbb{R}$
- $\hat{y}^{i}=b+\theta x^{i}$
- can work out θ_{0}, θ_{1} explicitly

$$
\begin{aligned}
\Rightarrow \theta & =\rho_{x, y} \frac{r m s(\hat{\boldsymbol{x}})}{r m s(\hat{\boldsymbol{y}})} \\
-b & =\overline{\boldsymbol{y}}-\theta_{1} \overline{\boldsymbol{x}}
\end{aligned}
$$

- Code

Clustering

Given N vectors $x_{1}, \ldots, x_{N} \in \mathbb{R}^{n}$, the goal is to partition them into k groups so that the vectors in the same group are close to one another

Examples: image compression (vectors are pixel values); patient clustering (patient attributes, tests);

$c_{i} \in\{1, \ldots, k\}$ is the group x_{i} belongs to
$G_{c_{i}} \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$ group
$z_{c_{i}}$ group representative
Clustering objective minimize $\mathrm{J}_{\text {clust }}=\frac{1}{N} \sum_{i=1}^{N}\left|x_{i}-z_{c_{i}}\right|^{2}$ by choosing the groups $\left\{c_{i}\right\}$ and the representatives

Algorithm: Step 1

- Suppose the representatives z_{1}, \ldots, z_{k} are given, how do we assign the vectors x_{1}, \ldots, x_{N} to the k groups?
- Recall $\mathrm{J}_{\text {clust }}=\frac{1}{n} \sum_{i=1}^{N}\left|x_{i}-z_{c_{i}}\right|^{2}$
$\triangleright \min _{j} \frac{1}{N} \sum_{i=1}^{N}\left|x_{i}-z_{j}\right|^{2}=\frac{1}{N} \sum_{i=1}^{N} \min _{j}\left|x_{i}-z_{j}\right|^{2}$
- That is, assign x_{i} to the nearest representative z_{j}

Algorithm: Step 2

- Given the partition G_{1}, \ldots, G_{k}, how to choose the representatives z_{1}, \ldots, z_{k} ?
$\triangleright \mathrm{J}_{\text {clust }}=J_{1}+\cdots+J_{k}=\sum_{j=1}^{k} \frac{1}{\left|G_{j}\right|} \sum_{i \in G_{j}}\left|x_{i}-z_{j}\right|^{2}$
\downarrow Choose z_{j} to minimize J_{j}, that is $z_{j}=\frac{1}{\left|G_{j}\right|} \sum_{i \in G_{j}} x_{i}$ the mean (centroid)

Algorithm: Combined

- alternate between updating the partition, then the representatives
- a famous algorithm called k-means clustering
- objective $\mathrm{J}_{\text {clust }}$ decreases in each step

```
given }\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{N}{}\in\mp@subsup{\mathbb{R}}{}{n}\mathrm{ and }\mp@subsup{z}{1}{},\ldots,\mp@subsup{z}{k}{}\in\mp@subsup{\mathbb{R}}{}{n
repeat
    update partition: assign i to }\mp@subsup{G}{j}{},j=\mp@subsup{\operatorname{argmin}}{j}{}|\mp@subsup{x}{i}{}-\mp@subsup{z}{j}{}\mp@subsup{|}{2}{2
    update centroids: }\mp@subsup{z}{j}{}=\frac{1}{|\mp@subsup{P}{j}{}|}\mp@subsup{\sum}{i\in\mp@subsup{P}{j}{}}{}\mp@subsup{x}{i}{
until }\mp@subsup{z}{1}{},\ldots,\mp@subsup{z}{k}{}\mathrm{ stop changing
```


Linear transformations

- A linear function or linear transformation $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has the property that $f\left(\alpha v_{1}+\beta v_{2}\right)=\alpha f\left(v_{1}\right)+\beta f\left(v_{2}\right)$
- Any linear function can be written as $y=A x$, where $A \in \mathbb{R}^{m \times n}$

Examples

Projection on $x: \Pi_{x}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$

- CCW rotation by $\theta: \mathrm{R}_{\theta}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$

Eigenvalues and eigenvectors

- The set of eigenvectors of a matrix A is a special set of input vectors for which the action A is described as a simple scaling
-If $v \in \mathbb{R}^{n}$ is an eigenvector, then $A v=\lambda v$ for some scalar λ
- To find eigenvectors and eigenvalues, solve for the roots of the characteristic polynomial $\mathrm{p}(\lambda)=\operatorname{det}(A-\lambda I)$
- This gives n roots which are the n eigenvalues
- For each eigenvalue λ, solve $(A-\lambda I) v=0$ to find an eigenvector v.

Eigenvectors as limits of repeated improvement

Application: ranking web pages

- Each webpage (node) i has a PageRank $r_{i} \in \mathbb{R}$
- r_{i} is refined repeatedly according to the update rule: Each page divides its current PageRank equally among the outgoing links
- $N_{i j}$: Portion of i 's PageRank that j should get in one step; $N_{i j}=$ $1 /$ outdeg $_{i}$

$$
N=\left[\begin{array}{cccc}
0 & .5 & 0 & .5 \\
0 & 0 & .5 & .5 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

- $r_{i}(k+1)=N_{1 i} r_{1}(k)+N_{2 i} r_{2}(k)+\cdots+N_{n i} r_{n}(k)$
- $r(k+1)=N^{T} r(k)$
- Say, $r(0)=\left[\frac{1}{n}, \frac{1}{n}, \ldots \frac{1}{n}\right]$, what is $r(k)=\left(N^{T}\right)^{k} r(0)$?

$$
N_{s}=\left[\begin{array}{cccc}
.05 & .45 & .05 & .45 \\
.05 & .05 & .45 & .45 \\
.85 & .05 & .05 & .05 \\
.05 & .05 & .85 & .05
\end{array}\right]
$$

- If the update rule converges in the limit, then we expect $r(*)=N^{T} r(*)$; that is $r(*)$ to be an eigenvector of N with corresponding eigenvalue of 1 .

Perron's theorem. Any matrix N with all positive entries has a real eigenvalue $\lambda_{\text {max }}>0$ such that $\lambda_{\text {max }}>|\lambda|$ for all other eigenvalues λ. There is an eigenvector v corresponding to $\lambda_{\max }$ with positive real coordinates that is unique up to scaling. If $\lambda_{\max }=1$, then for any starting vector x the sequence $P^{k} x$ converges to a vector in the direction of v as k goes to infinity.

The max eigenvector of the scaled matrix N_{s} gives the stable PageRank! readers interests, knowledge and attitudes. . But there is still much that can be said objectively
about the relative importance of Web pages. This paper describes Page Rank, a method for rating Web pages objectively and mechanically, effectively measuring the human interest and
antention dexoted to them attention devoted to them.
We compare Page Rank to an ide alized random Web surfer. We show how to efficiently
mmpute Page Rank kor large numbers of pages. And. we show how to apply Pager Rank to search compute Page Rank for large numbers of pages. And, we show how to apply PageRank to search
and to user navigation.

1 Introduction and Motivation
The World Wide Web creates many new challenges for information retrieval. It is very large and life of less than one year. More importantly, the web pages are extremely diverse, ranging from
liter What is Joe having for lunch today? to journals about informat ion retrieval. In addititon to these
Wher major challenges, search engines on the Web must also contend with inexperienced users and page Howinered to manipulate search engine ranking futhe "flat" document collect ions, the World
Hower
onsiderable auxiliary information on top of the text of the web pages, such as link structure and onsiderable auxiiary information on top of the text of the web pages, such as link struct ure and
ink text. In this paper, we take advantage of the link structure of the Web to produce a globa importance" ranking of every web page. This ranking, called PageRank, helps search eng ines an
1.1 Diversity of Web Pages

Athough there is already a large literature on academic citation analysis, there are a number of significant differences between web pages and academic publications. Unlike academic paper which are scrupulously reviewed, web pages proliferate free of quality control or publishing cost . With a simple program, huge numbers of pages can be created easily, art ificially inflat ing cit at ion
counts. Because the Web environment contains competing profit seeking ventures, attention gett ing trategies evolve in response to search engine algorit hms. For this reason, any evaluat ion strategy which counts replicable features of web pages is prone to manipulation. Further, academic papers are well defined units of work, roughly similar in quality and number of citat ons, as well as in
their purpose - to extend the body of knowledge. Web pages vary on a much wider scale than heir purpose - to extend the body of knowledge. Web pages vary on a much wider scale tha

Sergey Brin received his B.S. degree in mathematics and he is a Ph.D. candidate in computer science at Stanford U
Foundation Graduate Fellowship. His research interests i Foundation Graduate Fellowship. His researct
of large text collections and scientific data.
Lawrence Page was born in East Lansing, Michigan, and Lawrence Page was borm in East Lansing, Michigan, and
1995. He is currently a Ph.D candidate in Computer scie

8 Appendix A: Advertising and Mix

Exercise: Try coding PageRank; It is essentially just matrix multiplication or computing eigenvectors.

Summary

- Vector operations and norms
- Regression
- Clustering
- Eigenvalues and eigenvectors
- Homework
- Form team; decide on project; we discuss in 2 weeks
- Start MPO before next lecture

