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Abstract

This thesis treats two problems related to Poisson manifolds of compact types: the existence of Poisson

manifolds of strong compact type, and the generalisation of classical Duistermaat-Heckman results to the

setting of Hamiltonian actions of symplectic groupoids. In Chapter 4 we prove that all strongly affine circles

and 2-tori appear as the leaf space of a regular Poisson manifold of strong compact type. These Poisson

manifolds are all fibrations over their leaf space with symplectic leaves diffeomorphic to the smooth manifold

underlying a K3 surface. In Chapter 5 we show that for a Hamiltonian action of a regular, source proper

symplectic groupoid with sufficiently nice properties there is an analogue of the Duistermaat-Heckman

measure which is a polynomial measure with respect to the natural integral affine structure.
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Chapter 1

Introduction

Poisson manifolds of compact type (PMCTs) are the “compact objects” in Poisson geometry. They were

first introduced in [1] and their role in the theory is analogous to the one played by compact Lie algebras in

Lie theory. Unlike general Poisson manifolds, PMCTs have a rich geometry transverse to their associated

symplectic foliation. For example, the leaf space of a regular PMCT inherits the structure of an integral affine

orbifold. Roughly speaking this means that the leaf space has an orbifold atlas where the transitions are

integral affine maps. The precise statement can be found in [2], [3], where many other properties of PMCTs

are discussed.

We recall that a Poisson manifold (M,π) is called integrable if there exists some Lie groupoid G ⇒ M

carrying a multiplicative symplectic form Ω ∈ Ω2(G) for which the target map t : (G,Ω) → (M,π) is a Poisson

map. PMCTs are defined as those Poisson manifolds that are integrated by a source connected, Hausdorff

symplectic groupoid having a certain compactness property. Contrary to the case of Lie groups and Lie

algebras, there are multiple notions of compactness for Lie groupoids, namely a Lie groupoid G ⇒M is called

• proper if the anchor map (s, t) : G →M ×M is proper;

• source proper , or s-proper, if the source map is proper;

• compact if the space of arrows G is compact.

Accordingly, we say that (M,π) is of proper/source proper/compact type if it admits a source connected,

Hausdorff symplectic groupoid of proper/source proper/compact type, respectively.

The types just defined depend on the choice of integration of (M,π). However, just like for Lie groups,

there is a unique “largest” integration, namely the one with 1-connected source fibers. This is often called the

Weinstein groupoid. We say that an integrable Poisson manifold has strong proper/source proper/compact

type if its Weinstein groupoid is Hausdorff and has the corresponding type.

In this thesis, we deal with two topics related to PMCTs. The first concerns the existence of the

strongest type of PMCT: Poisson manifolds of strong compact type. The second is the study of Hamiltonian

actions in the context of symplectic groupoids, and more importantly the generalisation of the classical

Duistermaat-Heckman theorems to this setting.
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1.1 Poisson manifolds of strong compact type

Just as there is the special class of compact semisimple Lie algebras among compact Lie algebras, there is

an important distinguished class among PMCTs, namely that of Poisson manifolds of strong compact type

(PMSCTs). A simple class of examples of PMSCTs is given by compact symplectic manifolds with finite

fundamental group, but it is difficult to construct examples that are not symplectic. The first example of a

PMSCT that is not symplectic was given by Martinez-Torres in [4]. The construction there is inspired by

the work of Kotschick [5], where non-trivial results on the geometry of K3 surfaces are used to construct a

free symplectic circle action with contractible orbits. The orbit space of such an action is a PMSCT with

smooth leaf space a circle endowed with its standard integral affine structure (that is, the one it inherits as a

quotient of R by Z acting by translations). In general, it is not known whether any compact integral affine

orbifold can appear as the leaf space of a PMSCT. On the one hand constructing strong PMCTs is a difficult

problem on its own, and on the other not much is known about the classification of compact integral affine

manifolds in dimension greater than two. The integral affine structures on a circle are easily classified, and

the classification of integral affine structures on compact 2-dimensional manifolds was obtained in [6], [7].

The main result of Chapter 4 is the following.

Main Theorem 1. Any strongly integral affine circle or two-dimensional torus can be realised as the leaf

space of a PMSCT.

Here by a strongly integral affine structure we mean an integral affine structure with integral translational

part (see [8, Remark 5.10] and Remark 4.16).

1.2 Duistermaat-Heckman measures

The study of symmetries has a long history in classical mechanics and its mathematical formalisations. A

particularly powerful instance of this is the theory of Hamiltonian actions, where one can perform a “double

reduction” using the symmetry (the action) and the conserved quantities (the moment map) [9], [10]. This

classical notion of Hamiltonian actions of Lie groups on symplectic manifolds has been thoroughly studied

and many remarkable results have been obtained, such as singular reduction [11], convexity [12], [13] and

localisation [14], [15]. A special case of the localisation formula appears also in [16], where Hamiltonian actions

of a torus are studied and a sequence of results is obtained that culminates in the aforementioned formula.

First, the linear variation theorem asserts that the symplectic forms on the reduced spaces vary linearly

in cohomology. Next it is proved that the pushforward of the Liouville measure by the moment map is a

polynomial measure, which then results in an integration formula for an oscillatory integral. Several variations

of Hamiltonian actions have also been introduced, such as quasi-Hamiltonian actions [17], Hamiltonian actions

of Poisson-Lie groups [18] and group-valued moment maps [19]. A more general notion of Hamiltonian

action that unifies the ones mentioned above can be formulated using symplectic groupoids. An action of

(G,Ω) ⇒ (M,π) on a symplectic manifold (X,ω) along µ : X →M is called Hamiltonian if the multiplicativity

condition A∗ω = pr∗1Ω+pr∗2ω ∈ Ω2(G ×s µX) holds. In Chapter 5 we consider source proper, source connected,

regular symplectic groupoids. There is a nice theory of measures on the leaf space (see [20]): they are in some

sense “transverse measures” on M , with respect to the orbit foliation. The integral affine structure on the

leaf space induces a measure on it which we refer to as the affine measure. It plays the role of the Lebesgue

measure on the dual of the Lie algebra in the classical setting. There is also the Duistermaat-Heckman
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measure, which we define as in the classical case as the pushforward of the Liouville measure on X along the

moment map and the quotient map to the leaf space.

Main Theorem 2. If the action is locally free and effective and the moment is proper and has connected

fibers, the Duistermaat-Heckman measure is equal to a polynomial function times the affine measure.

Just as in the classical case, we have an exact interpretation of the polynomial function. It is, up to integer

factors having to do with the isotropy of G, the function that assigns to an orbit the symplectic volume of the

orbit times the symplectic volume of the associated reduced space.
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Chapter 2

Groupoids in Poisson geometry

We introduce the basics and establish notation for the main objects of study in this thesis, Hamiltonian

groupoid actions, and their preliminaries. For a textbook account of this material, see [21].

2.1 Poisson structures

Definition 2.1 (Poisson structures). A Poisson structure on a manifoldM is a bivector π ∈ X2(M) satisfying

[π, π] = 0.

A Poisson map between (M1, π1) and (M2, π2) is a smooth map φ :M1 →M2 such that π1 and π2 are

f -related. ♢

Remark 2.2. Equivalently, a Poisson structure can be defined as a Lie bracket {·, ·} on the space of smooth

functions C∞(M) which is also a biderivation: {f, gh} = g{f, h}+{f, g}h. One can pass between two notions

by the relation {f, g} = π(df, dg). In this formulation, a Poisson map is simply a map that intertwines the

brackets.

The cotangent bundle of a Poisson manifold (M,π) is endowed with several interesting structures. Firstly,

there is the contraction map

π# : T ∗M → TM,α 7→ iαπ. (2.1)

This bundle map is useful for stating certain properties of Poisson manifolds. For instance, a map φ :

(M1, π1) → (M2, π2) is Poisson if and only if the diagram

T ∗
pM1 T ∗

pM2

TpM1 TpM2

(dpφ)
∗

π#
1

dpφ

π#
2

commutes for all p ∈M . There are also certain objects attached to Poisson manifolds that we can define in

terms of this map. For p ∈ M , one can show that ker(π#
p ) ⊂ T ∗

pM has the structure of a Lie algebra: the

bracket is defined as [dpf, dpg] := dp{f, g}.

Definition 2.3. The isotropy Lie algebra of (M,π) at p is gp := ker(π#
p ) endowed with the bracket defined

above. ♢
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In general, im(π#) is not a subbundle of TM , but one can show that it still has leaves, in the following

sense.

Theorem 2.4 ([21, Theorem 4.1]). There is a partition of M into immersed submanifolds S satisfying

TpS = im(π#
p ) (2.2)

for all p ∈ S. Furthermore, S carries a symplectic structure ωS ∈ Ω2(S) induced by the Poisson bracket:

ωS,p(π
#
p (α), π

#
p (β)) := −πp(α, β). (2.3)

We call these (S, ωS) the symplectic leaves of the Poisson manifold (M,π), and the collection {(S, ωS)}
the symplectic foliation. We usually denote it by Fπ. We call a Poisson manifold regular if its leaves have

constant dimension (and thus form a regular foliation). In this case, the symplectic forms on the leaves patch

together into a foliated symplectic form ωFπ
∈ Ω2(TFπ).

Lemma 2.5. Let (M,π) be a regular Poisson manifold. Then the isotropy Lie algebras are abelian.

Proof. Let p ∈M . Note that gp = ν∗p(Fπ). Since π is regular, we can represent two arbitrary elements in the

conormal space as dpf and dpg, where f and g are functions that are constant along Fπ in a neighbourhood

of p. This means that {f, g} = 0 on this neighbourhood, which implies [dpf, dpg] = dp{f, g} = 0.

It turns out that some of these notions – the isotropy Lie algebra and the existence of ”singular leaves” –

are part of a more general picture. The space of 1-forms Ω1(M) of a Poisson manifold (M,π) is equipped

with a bracket given by

[α, β]π := Lπ#(α)(β)− Lπ#(β)(α)− d
(
π(α, β)

)
. (2.4)

One can show that this is in fact a Lie bracket, and that it satisfies the Leibniz identity

[α, fβ]π = f [α, β]A + Lπ#(α)(f)β. (2.5)

This means that the tuple (T ∗M,π#, [·, ·]π) is a so-called Lie algebroid. We discuss these in the next section.

Example 2.6. Any manifold M admits the zero Poisson structure π = 0. △

Example 2.7. Any symplectic manifold is a Poisson manifold. In fact, let π ∈ X2(M) be any nondegenerate

bivector. We obtain a (nondegenerate) 2-form ω = π−1 ∈ Ω2(M) by ω♭ = (π#)−1, and one can show that

[π, π] = 0 iff dω = 0. It follows that the symplectic manifolds are precisely the nondegenerate Poisson

manifolds. △

Example 2.8. Let g be a Lie algebra. There is an induced Poisson structure πlin on its dual g∗, called the

linear Poisson structure, described as follows. For f, g ∈ C∞(g∗) and ξ ∈ g∗ we identify dξf, dξg ∈ g and set

{f, g}(ξ) := ξ([dξf, dξg]). The symplectic leaves of (g∗, πlin) are the coadjoint orbits. △

2.2 Lie groupoids & algebroids

2.2.1 Lie algebroids

Definition 2.9 (Lie algebroids). A Lie algebroid is a triple (A →M,ρ, [·, ·]A) consisting of:
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• a vector bundle A →M ;

• a vector bundle map ρ : A → TM covering the identity;

• a Lie bracket [·, ·]A on the space of sections Γ(A)

satisfying the Leibniz identity

[α, fβ]A = f [α, β]A + Lρ(α)(f)β (2.6)

for all α, β ∈ Γ(A) and f ∈ C∞(M).

A Lie algebroid morphism between (A1 → M1, ρ1, [·, ·]A1) and (A2 → M2, ρ2, [·, ·]A2) is a bundle map

(ϕ, φ) that intertwines the anchors and brackets. ♢

Remark 2.10. The precise meaning of “intertwining the brackets” is quite complicated, unless φ is a

diffeomorphism. We don’t need these details here, so we omit them.

We will usually refer to a Lie algebroid simply by A →M or just A. Associated to a Lie algebroid we

have at each p ∈M the isotropy Lie algebra at p, defined as gp := ker(ρp): the bracket [·, ·]A restricts to a

Lie algebra structure on gp. The image of the anchor gives a singular foliation, and we call its leaves the

orbits of A. When the anchor has constant rank, this is in fact a regular foliation and in this case we say that

the Lie algebroid is regular.

Example 2.11. One of the simplest examples of a Lie algebroid is the tangent bundle TM → M , with

ρ = id and the bracket given by the Lie bracket of vector fields. △

Example 2.12. As we saw in Section 2.1, for any Poisson manifold (M,π) we have a Lie algebroid

(T ∗M,π#, [·, ·]π). This is often called the cotangent algebroid. △

Example 2.13. Any Lie algebra g is a Lie algebroid over M = pt. One can think of Lie algebroids as a

generalisation of Lie algebras in this way. △

Example 2.14. Given a Lie algebra action g → X(M), we can form the action algebroid g⋉M as follows.

As a bundle, it is just the trivial bundle g ×M . The bracket is given on constant sections by [·, ·]g and

extended to general sections by the Leibniz rule. The anchor map is induced by the action map itself. △

As we know, there is a rich Lie theory associated to Lie algebras. They are the “infinitesimal objects” and

have Lie groups as their “global” counterparts. It turns out that a similar story holds for Lie algebroids. This

leads us to Lie groupoids, which provide a “global” counterpart to Lie algebroids, and thus also to Poisson

manifolds.

2.2.2 Lie groupoids

Definition 2.15 ((Lie) groupoids). A groupoid is a small category in which all arrows are invertible.

Specifically, it consists of

• a set G of arrows;

• a set M of objects;

• maps s, t : G →M called the source and target maps, respectively;
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• the multiplication map m : G(2) → G, (g, h) 7→ gh, defined on the set G(2) = G ×s t G of composable

arrows;

• the unit map u :M → G, p 7→ 1p;

• the inversion map i : G → G, g 7→ g−1;

subject to the following axioms:

• composition: for all (g, h) ∈ G(2), s(gh) = s(h) and t(gh) = t(g);

• associativity: for all g, h, k ∈ G such that (g, h) ∈ G(2) and (h, k) ∈ G(2), (gh)k = g(hk);

• units: for all g ∈ G, g1s(g) = g and 1t(g)g = g;

• inverses: for all g ∈ G, gg−1 = 1t(g) and g
−1g = 1s(g).

A Lie groupoid is a groupoid where G and M are smooth manifolds, the maps s, t,m, u, i are smooth and s

and t are submersions.

A Lie groupoid morphism between G1 ⇒ M1 and G2 ⇒ M2 is a pair (Φ, φ) of maps Φ : G1 → G2 and

φ :M1 →M2 that intertwine the structure maps. ♢

Remark 2.16. Note that since s and t are submersions, the space G(2) inherits the structure of a smooth

manifold. The smoothness of m is with respect to this structure.

Remark 2.17. Often in the study of Lie groupoids the space of arrows G is not required to be Hausdorff. In

this thesis, we exclusively work with Lie groupoids of compact type, which we do require to be Hausdorff.

We will often denote a Lie groupoid by G ⇒M . There are several objects associated to a (Lie) groupoid.

For all p ∈M we have

• the source and target fibres s−1(p) and t−1(p): these are submanifolds of G;

• the isotropy group at p, defined as Gp := s−1(p) ∩ t−1(p): the multiplication on G restricts to a group

structure on Gp, and this makes it into a Lie group;

• the orbit through x, defined as Op := t(s−1(p)): this inherits a smooth structure as the base of the

principal bundle Gp ⟳ s−1(p)
t−→ Op, making it into an immersed submanifold of M .

The leaf space of G ⇒M , written as B =M/G, is defined as the set of orbits {Op | p ∈M}. In general, this

is just a topological space. When the dimension of the orbits is constant, we say the groupoid is regular.

For an arrow g ∈ G, left and right multiplication are only defined on target and source fibres, respectively.

More precisely, we have

Lg : t
−1(s(g)) → t−1(t(g)), h 7→ gh, Rg : s

−1(t(g)) → s−1(s(g)), h 7→ hg. (2.7)

Example 2.18. For any manifold M we can form the pair groupoid M ×M ⇒ M . The structure maps

are given by s(p1, p2) = p2, t(p1, p2) = p1, u(p) = (p, p), (p1, p2)
−1 = (p2, p1) and (p1, p2)(p2, p3) = (p1, p3).

Essentially we can think of (p1, p2) as an arrow from p2 to p1. △

7



Example 2.19. Following the spirit of the previous example, we have the fundamental groupoid Π1(M) ⇒M .

The space of arrows Π1(M) consists of equivalence classes of (smooth) paths [0, 1] →M , where the equivalence

is homotopy of paths with fixed end points. The source and target are given by the start and end point of the

path, the unit map sends p ∈M to the constant path at p, inversion reverses the orientation of a path, and

multiplication is concatenation. From the definition is follows that the isotropy groups are the fundamental

groups (as discrete groups). △

Example 2.20. Any Lie group G is a Lie groupoid over M = pt. △

Example 2.21. Given a Lie group action G ⟳ X we can form the action groupoid G⋉X ⇒ X as follows:

G⋉X := G×X, s := pr2, t is the action map, u(x) := (eG, x) and multiplication is given by

(g, hx)(h, x) := (gh, x). (2.8)

The groupoid terminology is compatible with the action terminology: the isotropy groups & orbits of G⋉X

are the isotropy groups & orbits of the action. △

2.2.3 The Lie algebroid of a Lie groupoid

Let G ⇒M be a Lie groupoid. There is an associated Lie algebroid that we describe as follows. The vector

bundle is A := ker(dt)|M , and the anchor is given by ρ := ds|A. To describe the bracket, we note that we can

identify sections of A with left invariant vector fields on G.

Definition 2.22. A vector field V ∈ X(G) is called left invariant if

(i) V ∈ Γ(ker(dt));

(ii) dhLg(Vh) = Vgh for all (g, h) ∈ G(2). ♢

It is now straightforward to see that the assignment V 7→ V |M establishes a one-to-one correspondence

between left invariant vector fields and sections of A, and thus the Lie bracket of vector fields induces a

bracket [·, ·]A on Γ(A). It is easy to check that this bracket satisfies the Leibniz identity and thus that

(A, ρ, [·, ·]A) is a Lie algebroid. We call it the Lie algebroid of the groupoid G ⇒M , often denoted A = Lie(G).

Remark 2.23. Often in the literature the Lie algebroid of a Lie groupoid is defined using right invariant

vector fields instead. One can use the inversion map to move between these two definitions. Usually the

difference between the two conventions is obvious, with occasionally a minus sign in the formulas. For more

details, see [21, Appendix D].

There are several obvious relations between objects associated to a Lie groupoid and its algebroid. For

p ∈M , the isotropy Lie algebra gp of the algebroid is the Lie algebra of the isotropy Lie group Gp, and the

orbits of the Lie algebroid are the connected components of the orbits of G. Furthermore, a Lie groupoid

morphism (Φ, φ) : (G1 ⇒ M1) → (G2 ⇒ M2) induces a map Lie(G1) → Lie(G2) by differentiating Φ at the

units: Lie(Φ, φ) = (dΦ|Lie(G1), φ).

Example 2.24. The Lie algebroid associated to both the pair groupoid M ×M and the fundamental

groupoid Π1(M) is the tangent bundle TM . △

Example 2.25. It is clear from the construction that the Lie functor for Lie groupoids applied to a Lie

group yields the classical Lie functor for Lie groups. △
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Example 2.26. Given a Lie group action G ⟳ X, we have Lie(G⋉X) = g⋉X, the action algebroid of the

induced infinitesimal action of g = Lie(G). △

2.3 Symplectic groupoids

Let us now turn to the additional structure one can put on a Lie groupoid to ensure its Lie algebroid comes

from a Poisson structure.

Definition 2.27 (Symplectic groupoids). A symplectic groupoid is a pair (G,Ω) consisting of a Lie groupoid

G ⇒M and a multiplicative symplectic form Ω ∈ Ω2(G). ♢

Remark 2.28. Recall that a form α ∈ Ω•(G) is called multiplicative if

m∗α = pr∗1α+ pr∗2α,

where m,pr1,pr2 : G(2) → G denote the multiplication and projection maps.

Lemma 2.29 ([21, Proposition 14.9]). Let (G,Ω) be a symplectic groupoid. Then we have

ker(ds)Ω = ker(dt), (2.9)

TMΩ = TM. (2.10)

In particular, this tells us that dim(G) = 2 dim(M).

Symplectic groupoids are the “global objects” corresponding to Poisson manifolds, in the sense of the

following result.

Theorem 2.30 ([21, Theorem 14.10]). Let (G,Ω) be a symplectic groupoid. There is a unique Poisson

structure π on the space of objects M such that t : (G,Ω) → (M,π) is a Poisson map.

In this case, the Lie algebroid of G ⇒M is isomorphic to the cotangent algebroid associated to (M,π).

The symplectic form Ω induces the isomorphism σΩ : Lie(G) → T ∗M given by

σΩ(α) := −Ω(α, ·)|M . (2.11)

Example 2.31. Consider T ∗M viewed as a Lie groupoid over M with both source and target given by

the projection T ∗M →M and fiberwise addition as multiplication. The canonical symplectic form ωcan is

multiplicative, so that (T ∗M,ωcan) is a symplectic groupoid. The induced Poisson structure on M is the zero

Poisson structure. △

Example 2.32. Given a symplectic manifold (M,ω), the pair groupoid becomes a symplectic groupoid

endowed with the symplectic form ω ⊕−ω = t∗ω − s∗ω. The induced Poisson structure is of course π = ω−1.

In fact, the same holds for the fundamental groupoid (Π1(M), t∗ω − s∗ω). △

Example 2.33. Let G be a Lie group and g = Lie(G) its a Lie algebra. Let G ⋉ g∗ ⇒ g∗ be the action

groupoid associated to the coadjoint action G ⟳ g∗. Since G× g∗ ∼= T ∗G, this groupoid inherits a symplectic

form −ωcan from the canonical symplectic form on the cotangent bundle. It can be shown that this form is

multiplicative and thus that (G⋉ g∗,−ωcan) is a symplectic groupoid. The induced Poisson structure on g∗

is πlin. △
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2.4 Hamiltonian actions

Definition 2.34 (Groupoid actions). A (left) action of a groupoid G ⇒ M on a set X along a map

µ : X →M is a map A : G ×s µ X → X, (g, x) 7→ gx satisfying the following properties:

• for all (g, x) ∈ G ×s µ X, µ(gx) = t(g);

• for all g, h ∈ G and x ∈ X such that (g, h) ∈ G(2) and (h, x) ∈ G ×s µ X, g(hx) = (gh)x;

• for all x ∈ X, 1µ(x)x = x.

If G ⇒M is a Lie groupoid, X is a manifold and µ a smooth map, we say the action is smooth if the map A

is smooth. ♢

The familiar notions associated to (Lie) group actions also make sense in this context: for x ∈ X we have

the isotropy group at x

Gx := {g ∈ s−1(µ(x)) | gx = x} ⊂ Gµ(x) (2.12)

and the orbit through x

G · x := {gx | g ∈ s−1(µ(x))}. (2.13)

The quotient space X/G is defined as usual as the collection of orbits. We can form the action groupoid

G ⋉X ⇒ X just as in Example 2.21, with some slight modifications: we set G ⋉X := G ×s µ X, s := pr2,

t = A, u(x) := (1µ(x), x) and multiplication as

(g, hx)(h, x) := (gh, x). (2.14)

The isotropy groups, orbits and quotient space defined above can be recognised as the isotropy groups, orbits

and leaf space of this groupoid. In particular, in the smooth case the isotropy groups and orbits inherit

smooth structure as described in Section 2.2.2.

We say that the action is free if the isotropy groups are trivial and locally free if they are discrete. We say

that the action is proper if the map G ×s µ X → X ×X given by (g, x) 7→ (gx, x) is proper.

Lemma 2.35. If a Lie groupoid G ⇒M acts freely and properly on a manifold X, the quotient X/G inherits

a unique smooth structure making the quotient map X → X/G into submersion.

Proof. This follows from the “Godement Criterion” for quotient manifolds.

Definition 2.36 (Lie algebroid actions). An action of a Lie algebroid A →M on a manifold X along a map

µ : X →M is a Lie algebra morphism a : (Γ(A), [·, ·]A) → (X(X), [·, ·]) satisfying

(i) dxµ(a(α)x) = ρ(α)µ(x) for all α ∈ Γ(A) and x ∈ X;

(ii) a(fα) = µ∗(f)a(α) for all α ∈ Γ(A) and f ∈ C∞(M). ♢

Remark 2.37. We usually denote the action by a(α) = αX ∈ X(X).

Associated to a Lie algebroid action is the action Lie algebroid A ⋉ X → X, with A ⋉ X := µ∗A,

the anchor map being the bundle map induced by the action, and the (unique) bracket determined by

[µ∗α, µ∗β] = µ∗[α, β]A. This gives us for every x ∈M the isotropy Lie algebra gx and the orbit A · x.
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Given a Lie groupoid G ⇒M acting on µ : X →M , there is an induced infinitesimal action of A = Lie(G)
which we describe as follows. For fixed x ∈ X, we consider the map t−1(µ(x)) → X given by g 7→ g−1x.

Taking its derivative at 1µ(x) yields a map Aµ(x) → TxX and these maps fit together into a bundle map

µ∗A → TX. The induced map on sections a : Γ(A) → X(X) can be checked to give a Lie algebroid action.

In this case, just as in Example 2.26 we have Lie(G ⋉X) = A⋉X and hence the obvious relations between

isotropy and orbits.

Remark 2.38. The use of the inverse here is a consequence of our conventions in defining the Lie algebroid

of a Lie groupoid.

Definition 2.39 (Hamiltonian actions). An action A of a symplectic groupoid (G,Ω) ⇒ (M,π) on a

symplectic manifold (X,ω) along µ : X →M is called Hamiltonian if

A∗ω = pr∗1Ω+ pr∗2ω, (2.15)

where pr1 : G ×s µ X → G and pr2 : G ×s µ X → X denote the projection maps. ♢

In this context, we call µ the moment map of the action. It is a Poisson map and satisfies the “moment

map condition”

iαXω = µ∗(σΩ(α)). (2.16)

When G is source connected, this is in fact equivalent to (2.15).

We can display the data of a Hamiltonian action in a diagram as follows:

(G,Ω) (X,ω)

(M,π)

µ

Lemma 2.40. For x ∈ X we have

Tx(G · x) = ker(dxµ)
ω, (2.17)

σΩ(gx) = im(dxµ)
◦. (2.18)

Proof. For the first equality, note that using the moment map condition (2.16) we have

v ∈ Tx(G · x)ω ⇐⇒ ωx(α
X , v) = 0 for all α ∈ Aµ(x)

⇐⇒ σΩ(α)µ(x)(dxµ(v)) = 0 for all α ∈ Aµ(x)

⇐⇒ Ω(αµ(x), dxµ(v)) = 0 for all α ∈ Aµ(x)

⇐⇒ dxµ(v) = 0.

Here in the last equivalence we use (2.10).

For the second equality, note first that for any α ∈ gx we have αX = 0 and thus by (2.16)

σΩ(α)(dxµ(v)) = 0 for all v ∈ TxX.
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This shows that σΩ(gx) ⊂ im(dxµ)
◦. Then a simple dimension count shows that the dimensions of the left

and right side spaces coincide.

The following example shows how this notion of Hamiltonian action generalises the classical one.

Example 2.41. Let G ⟳ (X,ω)
µ−→ g∗ be a classical Hamiltonian action. The symplectic groupoid

(G ⋉ g∗,−ωcan) acts on (X,ω) along µ as (g, ξ) · x := g · x, where the right hand side denotes the action

G ⟳ X. It is easily verified that this action is Hamiltonian in the groupoid sense. △
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Chapter 3

Poisson manifolds of compact types

and their leaf spaces

In this chapter we introduce Poisson manifolds of compact type and explain two fundamental results: the

existence of integral affine structure on their leaf space in Section 3.5 and the linear variation theorem in

Section 3.6.

3.1 Integration of Lie algebroids & Poisson manifolds

In Section 2.2.3 we describe the Lie functor in the context of Lie groupoids and algebroids. Just as in the

context of Lie groups and algebras, one can wonder about “inverting” this functor.

Definition 3.1. A Lie algebroid A → M is integrable if there exists a Lie groupoid G ⇒ M such that

Lie(G) = A. In this case G ⇒M is called an integration of A. ♢

There are analogues of Lie’s Three Theorems in this context.

Definition 3.2. A Lie groupoid G ⇒M is called source connected, or s-connected, if the source fibres are

connected. It is called source 1-connected if the source fibres are connected and simply connected. ♢

Theorem 3.3 (Lie’s First Theorem). An integrable Lie algebroid has, up to isomorphism, a unique source

1-connected integration.

The unique source 1-connected integration is often called the Weinstein groupoid of A.

Theorem 3.4 (Lie’s Second Theorem). Let G1 ⇒ M1 and G2 ⇒ M2 be Lie groupoids and suppose that

G1 ⇒M1 is source 1-connected. Then for any Lie algebroid morphism (ϕ, φ) : Lie(G1) → Lie(G2) there exists

a unique morphism (Φ, φ) : (G1 ⇒M1) → (G2 ⇒M2) such that Lie(Φ, φ) = (ϕ, φ).

Contrary to the case of Lie groups and algebras, Lie’s Third Theorem does not hold for groupoids

and algebroids. However, the obstructions are well understood [22]. They are formulated in terms of the

monodromy groups. For p ∈M the monodromy group at p, denoted Np(A), is a certain additive subgroup of

the isotropy at p. We will not go into the general definition, but we will explain a way of computing the

monodromy groups for regular Poisson manifolds in Section 3.1.1.
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Theorem 3.5 ([22, Theorem 4.1]). A Lie algebroid A →M is integrable if and only if the monodromy groups

are uniformly discrete.

Here uniformly discrete means that each Np(A) is discrete and additionally that there is a neighbourhood

U of the zero section M ⊂ A such that U ∩Np(A) = 0 for all p ∈M .

Definition 3.6. A Poisson manifold (M,π) is called integrable if there is a symplectic groupoid (G,Ω) ⇒M

whose induced Poisson structure is π. ♢

We know that in this case the groupoid G ⇒ M integrates the cotangent algebroid T ∗M through the

isomorphism σΩ. In general, it is not true that any integration of T ∗M can be made into a symplectic

groupoid integrating (M,π). However, if the integration is source 1-connected we have the following result.

Theorem 3.7 ([21], [23]). Let (M,π) be a Poisson manifold and G ⇒ M a source 1-connected groupoid

which integrates T ∗M through an isomorphism σ : Lie(G) → T ∗M . Then there is a unique multiplicative

form Ω ∈ Ω2(G) such that (G,Ω) integrates (M,π) and σ = σΩ.

The Weinstein groupoid of a Poisson manifold, as a symplectic groupoid, is denoted Σ(M,π).

The above result implies that a Poisson manifold is integrable if and only if its cotangent algebroid is

and in particular that integrability is governed by its monodromy groups. For a Poisson manifold (M,π), we

denote the monodromy group at p ∈M by Np(M,π).

3.1.1 Integration of regular Poisson manifolds

Let (M,π) be a regular Poisson manifold and fix p ∈M . We will give a description of Np(M,π) as “variation

of symplectic area”. For a proof of this result, see [24, Section 6].

Let us write S = Sp for the symplectic leaf through p. We will describe the monodromy map ∂p :

π2(S, p) → ν∗p(S) whose image equals the monodromy group Np(M,π). Let [σ] ∈ π2(S, p), represented by a

smooth based map σ : (S2, pN ) → (S, p), and let v ∈ νp(S). One can show that there exists a path t 7→ pt

and a smooth family of maps σt : (S
2, pN ) → (St, pt) such that p0 = p, [ṗ0] = v and σ0σ. Here we write

(St, ωt) for the symplectic leaf through pt. Then we have

∂p([σ])(v) =
d

dt

∣∣∣∣
t=0

∫
S2

σ∗
t ωt. (3.1)

3.2 Poisson manifolds of compact types

Definition 3.8. A Lie groupoid G ⇒M is called

• proper if the map (s, t) : G →M ×M is proper;

• source proper , or s-proper, if s : G →M is proper;

• compact if G is compact. ♢

Definition 3.9. Let C ∈ {proper, s−proper, compact}. We say that a Poisson manifold is of C type if it can

be integrated by a Hausdorff s-connected symplectic groupoid having property C. We say it is of strong C
type if its source 1-connected integration is smooth, Hausdorff and has property C. ♢
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In general, any of the above are referred to as Poisson manifolds of compact types, or PMCTs for short.

Below we describe in detail one of the fundamental properties of regular PMCTs, namely the existence of an

induced integral affine orbifold structure on the leaf space.

Example 3.10. As we saw in Example 2.31, the Weinstein groupoid of (M, 0) is given by the cotangent

bundle (T ∗M,ωcan), which is not of proper type. However, it can be shown that given an integral affine

structure Λ ⊂ T ∗M (see Section 3.4 below), the quotient T ∗M/Λ provides a source proper integration. △

Example 3.11. In Example 2.32 we saw two integrations of a symplectic manifold (M,ω), namely the pair

groupoid and the fundamental groupoid. In fact, the latter is the Weinstein groupoid of (M,ω) (the source

fibres are the universal cover of M). Since M ×M is always proper, we see that (M,ω) is always of proper

type, and that it is of compact type if M is compact. Since the isotropy groups of the fundamental groupoid

are just the fundamental groups of M , it follows that (M,ω) is of strong proper type if π1(M) is finite, and

of strong compact type if in addition M is compact. △

Example 3.12. Let (g∗, πlin) be a linear Poisson manifold. From Example 2.33 we know that any Lie group

G integrating g induces an integration G⋉ g∗. Thus (g∗, πlin) is of source proper type if g admits a compact

integration and of strong source proper type if g admits a compact, 1-connected integration. △

3.3 Orbifolds

Definition 3.13. An orbifold atlas on a topological space B is a proper foliation groupoid B ⇒M together

with a homeomorphism q : M/B → B. An orbifold is a triple (B,B ⇒ M, q) of such data. An equivalence

between orbifolds (B,B ⇒M, q) and (B′,B′ ⇒M ′, q′) is a Morita equivalence (B ⇒M) ∼= (B′ ⇒M ′) whose

induced homeomorphism B ∼= B′ intertwines q and q′. ♢

Remark 3.14. Recall that a Lie groupoid B ⇒M is called a foliation groupoid if the isotropy groups Bp are

discrete for all p ∈M . A proper foliation groupoid is also called an orbifold groupoid.

In this thesis, the orbifolds we are dealing with are actually quotients of groupoids on the nose. Thus

Definition 3.13 simplifies significantly and we can essentially just think of orbifolds & equivalences as orbifold

groupoids & Morita equivalences.

3.4 Integral affine structures

Definition 3.15. An integral affine structure on a manifold M is a maximal atlas such that the transition

functions are integral affine maps. ♢

Remark 3.16. Recall that an integral affine map is a map Rq → Rq of the form x 7→ Ax + b, where

A ∈ GLZ(Rq) and b ∈ Rq. We denote the group of integral affine maps by AffZ(Rq).

Lemma 3.17. An integral affine structure on a manifold M is the same thing as a lattice Λ ⊂ T ∗M

that is locally spanned by closed 1-forms. In this correspondence, the lattice is given locally in a chart

(U,φ = (x1, . . . , xq)) by

Λ|U = Z dx1 + · · ·+ Z dxq

The lattice point of view is usually the more convenient one to work with, but we will use the two notions

interchangeably.
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Definition 3.18. A transverse integral affine structure on a regular foliated manifold (M,F) is a foliation

atlas for F such that the transition functions are integral affine maps. ♢

Remark 3.19. To clarify, we consider the charts of a foliation atlas to be submersions whose fibres are the

(restrictions of) leaves of the foliation.

Lemma 3.20. A transverse integral affine structure on (M,F) is the same thing as a lattice Λ ⊂ ν∗(F) that

is locally spanned by F-basic closed 1-forms. In this correspondence, the lattice is given locally in a foliation

chart (U,φ = (x1, . . . , xq)) by

Λ|U = Z dx1 + · · ·+ Z dxq

Definition 3.21. Let (B,B ⇒M, q) be an orbifold and write F for the foliation on M induced by B. An

integral affine structure on (B,B ⇒M, q) is a B-invariant transverse integral affine structure on (M,F). ♢

Remark 3.22. If B is s-connected, the invariance condition is automatic.

3.5 The leaf space of regular PMCTs

Let G ⇒M be a regular proper Lie groupoid. For p ∈M , we consider G◦
p , the connected component of the

isotropy group Gp containing the identity, and form

T (G) =
⊔
p∈M

G◦
p . (3.2)

One can show that this is a Lie subgroupoid and thus that the quotient

B(G) := G/T (G) (3.3)

is a Lie groupoid. Moreover, since G is proper, this groupoid will be Hausdorff and also proper. Of course,

by construction B(G) is a foliation groupoid and has the same leaf space as G, meaning that it defines an

orbifold structure on the leaf space B.

Now suppose that (G,Ω) ⇒ (M,π) is a regular s-connected proper symplectic groupoid. We write Fπ for

the induced symplectic foliation. In this case, there is an induced integral affine structure on the leaf space,

obtained as follows. For p ∈M :

(i) the isotropy Lie algebra gp is abelian (Lemma 2.5), and thus we obtain a lattice ker(exp : gp → Gp);

(ii) the isomorphism σΩ : gp ∼= ν∗(Fπ) (see equation 2.11) allows us to transport it to a lattice Λp ⊂ ν∗(Fπ).

One can show that together these form a transverse integral affine structure Λ ⊂ ν∗(Fπ), and thus an integral

affine structure on the leaf space [3, Section 3].

3.6 The linear variation theorem

We describe here another major result concerning regular PMCTs: the linear variation theorem [3, Sections

4-5]. This is a generalisation of the classical result of Duistermaat & Heckman [16].
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Let (G,Ω) ⇒ (M,π) be regular and source proper. We also assume that the leaves of (M,π) are 1-

connected, so that the leaf space is smooth. Denoting the symplectic leaf corresponding to b ∈ B by (Sb, ωb),

we form the vector bundle

H2 :=
⊔
b∈B

H2(Sb,R) → B

and the lattice

H2
Z :=

⊔
b∈B

im
(
H2(Sb,Z) → H2(Sb,R)

)
inside it. Associated to this we have the Gauss-Manin connection ∇ on H2, uniquely determined by requiring

the sections of H2
Z to be parallel. Note that π gives us a section ϖ ∈ Γ(H2), b 7→ [ωb].

The Gauss-Manin connection allows us to study the variation of ϖ: parallel transport makes H2 into a

Π1(B)-representation and we define the variation map varϖ : Π1(B) → H2 to be

[γ] 7→ γ∗(ϖγ(0)) ∈ H2
γ(1).

On the other hand, we also have the linear variation map varlinϖ : TB → H2 given by

v 7→ ∇vϖ

and the affine variation map varaffϖ := ϖ + varlinϖ .

The linear variation theorem relates the variation and affine variation maps by means of the developing

map associated to the integral affine manifold (B,Λ). Associated to the lattice Λ∗ ⊂ TB we have a canonical

flat connection on TB (not to be confused with ∇ above). This makes TB into a TB-representation, and

since the connection is torsion-free the identity map TB → TB is an algebroid cocycle. The developing map

is defined to be the groupoid cocycle dev : Π1(B) → TB integrating it.

Remark 3.23. One can show that after fixing b ∈ B and a basis of Λb this boils down to the classical notion

of developing map defined on the universal covering space (see [3, Section 4.2]):

devb : B̃ → TbB ≃ Rq.

We can now state the linear variation theorem as follows.

Theorem 3.24 ([3, Theorem 4.4.2]). One has a commutative diagram

Π1(B) H2

TB

varϖ

dev varaffϖ

This rather abstract formulation can locally be made explicit. Let b0 ∈ B and choose an integral affine

chart (U,φ) centered at b0 such that φ(U) is convex and such that M → B trivialises over U . This induces a

trivialisation Φ : H2|U ∼= U ×H2(Sb0 ,R). The chart induces an identification Tb0B
∼= Rq and allows us to

consider “straight line” paths from b ∈ U to b0. Restricting to such paths the above diagram becomes
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U H2(Sb0 ,R)

Rq

b 7→ Φ([ωb])

φ
v 7→ [ωb0 ] +

∑
i vici

where ci ∈ H2(Sb0 ,Z) are the Chern classes of the torus bundle s−1(x) → Sb0 , where x ∈ Sb0 (see [3, Corollary

4.4.4]). This local formulation is reminiscent of the linear variation theorem from [16]. In other words,

Theorem 3.24 can be viewed as a global formulation and generalisation of the classical Duistermaat-Heckman

theorem.
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Chapter 4

Poisson manifolds of strong compact

type over 2-tori

In this chapter we prove Main Theorem 1. In Section 4.1 we explain a general strategy for constructing

PMSCTs inspired by the linear variation theorem (see Section 3.6) and in Section 4.2 we go over the basic

theory of K3 surfaces and use it to endow a universal family with a regular Poisson structure. In Section 4.3

we put these two sections together to contruct the examples that prove the theorem.

4.1 General construction of PMSCTs

The construction we give below is based on two results on PMCTs:

(a) the leaf space carries an integral affine orbifold structure (Section 3.5), and

(b) the linear variation theorem (Section 3.6).

Here we only need to consider the case of 1-connected leaves. In this case the leaf space is smooth, since

this assumption implies that the monodromy groupoid of the symplectic foliation is proper and has trivial

isotropy groups. This means that the transverse integral affine structure on the symplectic foliation descends

to an honest integral affine structure on the leaf space.

The construction we describe in this section yields a PMSCT with 1-connected symplectic leaves, whose

leaf space is a complete integral affine manifold. This means that the leaf space is a quotient of Rq by a free

and proper action of a discrete group of integral affine transformations. Note that if the Markus conjecture

holds true, then in fact every compact integral affine manifold is of this type (see [25, Section 8.6]). This

allows us to give an explicit formulation of the linear variation, similar to the discussion following Theorem

3.24. The setup is as follows.

Let E → Rq be a fibre bundle with typical fibre S, a compact 1-connected manifold, and assume that E

admits a Poisson structure πE whose symplectic leaves are precisely the fibres of this bundle. As in Section 3.6

we have (i) the vector bundle H2 → Rq whose fibers are the degree two cohomology groups of the symplectic

leaves, (ii) the lattice H2
Z ⊂ H2 of integral cohomology, (iii) the associated Gauss-Manin connection ∇ and

(iv) the section ϖ ∈ Γ(H2) induced by πE .

Next, let Γ ⊂ AffZ(Rq) = {x 7→ Ax + v | A ∈ GL(q,Z), v ∈ Rq} be a discrete group of integral affine

transformations acting freely and properly on Rq, and assume that there is a Poisson action of Γ on (E, πE)
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making the projection E → Rq equivariant. Then setting M := E/Γ and B := Rq/Γ, we get a (smooth) fibre

bundle pr :M → B, again with typical fibre S, and a Poisson structure π on M whose leaves are the fibres

of pr. In other words, (M,π) is a regular Poisson manifold with leaf space B. Note also that B, being a

quotient Rq/Γ, naturally inherits an integral affine structure.

We can now state the general method of constructing PMSCTs. It is a reformulation of [3, Proposition

4.4.6].

Proposition 4.1. Let (M = E/Γ, π) be constructed as above. Assume that there exists a ∇-flat section

s ∈ Γ(H2) and linearly independent sections c1, . . . , cq ∈ Γ(H2
Z) such that

ϖ = s+

q∑
i=1

pri · ci, (4.1)

where pri : Rq → R denotes projection onto the i-th coordinate. Then (M,π) is of strong s-proper type and

the induced integral affine structure on B agrees with the one coming from the quotient Rq/Γ. In particular,

if B is compact then (M,π) is a PMSCT.

Proof. Pulling back the integral affine structure on B along pr :M → B yields a transverse integral affine

structure on the symplectic foliation Fπ, i.e. a lattice in its conormal bundle. We denote this lattice by

Λ̃ ⊂ ν∗(Fπ). The main point is that for all p ∈M , the monodromy group Np(M,π) is equal to the lattice

Λ̃p. In fact, using the description of the monodromy groups for regular Poisson manifolds as the variation of

symplectic areas (see Section 3.1.1) this follows directly from equation (4.1). The integrability criteria for

Poisson manifolds then imply that (M,π) is integrable. Furthermore, since S has trivial fundamental group,

the isotropy groups of the Weinstein groupoid Σ(M,π) fit into the exact sequence

· · · → π2(S, p)
∂p−→ ν∗p(Fπ) → Σp(M,π) → 0,

where ∂p is the monodromy map at p. Therefore, from our previous discussion, it follows that Σp(M,π) ≃
ν∗p(Fπ)/Λ̃p, i.e. that the isotropy group at p is compact. Since this holds for all p ∈M and since S is also

compact, this shows that the Weinstein groupoid is s-proper.

Finally, since Λ̃ ⊂ ν∗(Fπ) is closed, Hausdorffness of the Weinstein groupoid follows from [26, Theorem

1.1].

4.2 Background on K3 surfaces and the Poisson structure on the

universal family

We start by listing some definitions and results concerning K3 surfaces, after which we describe the moduli

spaces and universal families for K3 surfaces. These results can be found in [27]. Finally, following [4], we use

the Calabi-Yau theorem to turn the universal family into a Poisson manifold and the strong Torelli theorem

to establish a Poisson action on it, setting us up to apply our construction.

Definition 4.2. A K3 surface is a compact, 1-connected complex surface with trivial canonical bundle. ♢

Every K3 surface is Kähler (see [28]). All K3 surfaces have the same underlying smooth manifold S

(see [27, Corollary VIII.8.6]); this will be the model fibre used in Proposition 4.1. The intersection form on

H2(S,Z) turns it into a lattice and this lattice is isomorphic to the aptly named K3 lattice, which we denote
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by (L, (·, ·)). It is the unique even, unimodular lattice of signature (3, 19) (see [27, Proposition VIII.3.2 (ii)]).

Explicitly, we have L = U⊕3 ⊕ (−E8)
⊕2, where U = Z⊕2 with form given by

(
0 1

1 0

)
and E8 = Z⊕8 with

form given by the Cartan matrix of E8; it is important for us that this form is positive definite. We also set

LR := L⊗ R and LC := L⊗ C; note that these are models for the real and complex cohomology, respectively.

4.2.1 The Torelli theorem

Definition 4.3. Let X,X ′ be K3 surfaces. A Z-module isomorphism H2(X ′,Z) → H2(X,Z) is a Hodge

isometry if

(i) it preserves the intersection form;

(ii) its C-linear extension preserves the Hodge decomposition.

A Hodge isometry is called effective if its R-linear extension maps some Kähler class of X ′ to one of X. ♢

Effectiveness of a Hodge isometry is equivalent to requiring it to map the Kähler cone of X ′ to that of X

(see [27, Proposition VIII.3.10]).

Theorem 4.4 (Torelli [27, Corollary VIII.11.4]). Let X,X ′ be K3 surfaces. Then for any effective Hodge

isometry φ : H2(X ′,Z) → H2(X,Z) there exists a unique biholomorphism f : X → X ′ such that f∗ = φ.

This result is ultimately used to obtain the action in Proposition 4.1.

4.2.2 Moduli spaces and universal families

There are two moduli spaces and corresponding families for K3 surfaces: one takes into account the Kähler

structure and the other only considers the complex structure. We start now with the latter.

Definition 4.5. A marked K3 surface is a pair (X,φ) consisting of a K3 surface X and a marking φ, i.e. an

isometry φ : H2(X,Z) → L. Two marked K3 surfaces are equivalent if there is a bihomolorphism between

them intertwining the markings. The moduli space of marked K3 surfaces is the set of equivalence classes:

M1 := {(X,φ)}/ ∼ . ♢

It follows immediately from the definition that any K3 surface admits, up to scalar multiplication, a

unique nowhere vanishing holomorphic 2-form. In fact, one can show that, again up to scalar multiplication,

there is a bijection between complex structures on S and closed, complex 2-forms σ ∈ Ω2(S,C) satisfying
σ ∧ σ = 0 and σ ∧ σ̄ > 0. This motivates the following definitions. We will use the same letter to denote a

marking φ : H2(X,Z) → L and the induced maps φ : H2(X,R) → LR and φ : H2(X,C) → LC.

Definition 4.6. The period domain is given by

Ω := {[σ] ∈ P(LC) | (σ, σ) = 0, (σ, σ̄) > 0}.

We define the period map τ1 :M1 → Ω by

[(X,φ)] 7→ [φ(σX)],

where σX is a nowhere vanishing holomorphic 2-form on X. ♢
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Theorem 4.7 ([27, Theorem VIII.12.1]). The moduli space M1 admits the structure of a 20-dimensional com-

plex manifold such that the period map τ1 :M1 → Ω becomes a surjective local biholomorphism. Furthermore,

there exists a universal family U →M1 of marked K3 surfaces.

Remark 4.8. Recall that a family is universal if any other family is locally the pullback of it by a unique

map (see [27, Section I.10]). The fibre of the universal family U → M1 over any t ∈ M1 is a marked K3

surface (Xt, φt) such that [(Xt, φt)] = t. Furthermore, these markings vary smoothly in the sense that they

induce local trivialisations of the bundle ∪t∈M1H
2(Xt,R).

There are still some inconveniences present here. It can be shown that M1 is not Hausdorff, and that

the period map τ1 is not injective (see [27, Remark VIII.12.2]). These problems disappear when taking into

account the Kähler structure.

Definition 4.9. We define M2 to be the subset of the bundle⊔
t∈M1

H2(Xt,C)

consisting of all Kähler classes. ♢

It can be shown that M2 is a real-analytic manifold of dimension 60 (see [27, Lemma VIII.9.3] and its

proof). One should think of a point in M2 as an equivalence class of marked K3 surfaces together with a

specified Kähler class. Note that there is a projection map pr :M2 →M1.

Inspired by some analysis of the Kähler cone of K3 surfaces (see [27, Section VIII.3 and VIII.9]) one

makes the following definitions.

Definition 4.10. Set

KΩ := {(k, [σ]) ∈ LR × Ω | (k, k) > 0, (k, σ) = 0}.

The refined period domain is then given by

KΩ0 := {(k, [σ]) ∈ KΩ | (k, d) ̸= 0 for all d ∈ L such that (d, d) = −2 and (d, σ) = 0}.

The refined period map τ2 :M2 → KΩ0 is defined as

(t, k) 7→ (φt(k), τ1(t)). ♢

Theorem 4.11 ([27, Theorem VIII.12.3 and VIII.14.1]). The refined period map is a diffeomorphism.

We set KU := (pr ◦ τ−1
2 )∗U . This is a real-analytic family (i.e. fibre bundle) over KΩ0 with extra data

attached: the fibre over (k, [σ]) is a triple (X,φ, ω) consisting of a K3 surface X, a marking φ : H2(X,Z) → L

and a Kähler class ω ∈ H2(X,R) such that φ(ω) = k. These markings vary smoothly in the same sense as

before, and hence so do the Kähler classes.

The family KU → KΩ0 is universal for real-analytic “marked Kähler K3 families”, i.e. real-analytic

families of K3 surfaces equipped with smoothly varying markings and Kähler classes.

4.2.3 The Poisson structure

Recall the following special version of the Calabi-Yau theorem (see e.g. [27, Theorem I.15.1]).
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Theorem 4.12. Let X be a compact complex manifold with vanishing first Chern class. Then for any Kähler

class ω ∈ H2(X,R) there exists a unique Ricci flat Kähler metric whose Kähler form belongs to ω.

This theorem applies in particular to K3 surfaces, and thus we can use it to endow the fibres of KU → KΩ0

with smoothly varying Kähler forms, turning it into a Poisson manifold (see also [4, Secion 2.1.3]).

Corollary 4.13. The family KU admits a regular Poisson structure πKU whose symplectic leaves are the

fibres of KU → KΩ0. Moreover the symplectic form on the fibre X over (k, [σ]) with marking φ is the Kähler

form associated to the unique Ricci flat Kähler metric on X with Kähler class φ−1(k).

4.2.4 The action

We will construct an action on KU by the group O(L) of isometries of the K3 lattice. Note that there is an

obvious induced action of O(L) on KΩ0.

Proposition 4.14. There is a Poisson action of O(L) on (KU , πKU ) with respect to which the projection

KU → KΩ0 is equivariant.

Proof. Fix γ ∈ O(L) and p ∈ KΩ0. Using the notation from above, denote the triple over p by (Xp, φp, ωp)

and similarly for γ(p). It is easy to see that

φ−1
p ◦ γ−1 ◦ φγ(p) : H2(Xγ(p),Z) → H2(Xp,Z)

is an effective Hodge isometry, so that by Theorem 4.4 we obtain a biholomorphism fpγ : Xp → Xγ(p). The

universality of the family then gives neighbourhoods U and V of p and of γ(p) respectively and an isomorphism

(Ψ, ψ) : KU|U → KU|V extending fpγ : through the biholomorphism fpγ , KU becomes a deformation of Xp at

two basepoints, p and γ(p). Since KU is universal, these two deformations are locally isomorphic. Writing

Ψq : Xq → Xψ(q) for the fiberwise maps, it then follows that for all q ∈ U we have that

Ψ∗
q = φ−1

q ◦ γ−1 ◦ φψ(q) : H2(Xψ(q),Z) → H2(Xq,Z).

This implies first of all that ψ = γ|U , from which it follows that Ψq = fqγ , since biholomorphisms of

K3 surfaces are uniquely determined by their induced maps on degree 2 integral cohomology (see [27,

Proposition VIII.11.3]). Thus these fibrewise biholomorphisms fpγ , p ∈ KΩ0, together form an automorphism

Fγ : KU → KU . It is immediate from the above construction that Fid = id, and from the uniqueness part of

Theorem 4.4 it follows that Fγ◦γ′ = Fγ ◦ Fγ′ for all γ, γ′ ∈ O(L), meaning that we have an action of O(L) on

KU . This action makes KU → KΩ0 equivariant by construction. Finally, from the uniqueness part of the

Calabi-Yau theorem it follows that each fpγ preserves the symplectic forms on the fibres, meaning that the

action is by Poisson maps.

4.3 The examples

From our work in Section 4.2 we have a Poisson manifold (KU , πKU ) with leaf space KΩ0 such that:

(i) the cohomology classes of the symplectic forms on the leaves are described in terms of the leaf space

KΩ0 (Corollary 4.13);

(ii) the natural action of O(L) on KΩ0 lifts to a Poisson action on (KU , πKU ) (Proposition 4.14).
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In order to apply the construction described in Section 4.1, we need to find a suitable embedding Rq ↪→ KΩ0

and a suitable subgroup Γ ⊂ O(L). We rephrase Proposition 4.1 in the current setting in order to make this

more precise. For a different version of this result see also [4, Theorem 1].

Corollary 4.15. Assume that we have an embedding f : Rq → KΩ0 and a subgroup Γ ⊂ O(L) such that

(i) there exist a ∈ LR and linearly independent a1, . . . , aq ∈ L such that the LR-component of f has the

form

(x1, . . . , xq) 7→ a+

q∑
i=1

xiai;

(ii) the action of Γ on KΩ0 preserves the image of f ;

(iii) the induced action on Rq is free, proper and by integral affine maps.

Then M := f∗KU/Γ with the Poisson structure induced from πKU is a Poisson manifold of strong s-proper

type with leaf space B := Rq/Γ. If B is compact, M is a PMSCT.

Remark 4.16. We can now explain why our construction leads to PMSCTs with strongly integral affine

leaf spaces. On the one hand, because of Theorem 3.24, we are forced to consider embeddings with integral

variation, i.e. the ai must lie in the integral lattice L. On the other hand, to apply Theorem 4.4 we need

to consider isometries of integral cohomology, i.e. we need to act by elements of O(L). These two technical

limitations together only allow for strongly integral affine leaf spaces in the examples.

Remark 4.17. At the level of the symplectic groupoid, one can see that the leaf space being strongly integral

affine implies that the restriction of the symplectic form to the identity component of the isotropy (a torus

bundle) lies in the integral cohomology. See [8, Remark 5.10].

We now recall the classification of strongly integral affine structures for S1 and T2.

Theorem 4.18. The strongly integral affine circles are, up to isomorphism, the quotients R/Z where the

Z-action is generated by x 7→ x+ p, for a fixed p ∈ Z≥1.

Proof. It is easy to see that all integral affine circles are complete. Hence, it suffices to classify, up to

conjugation, embeddings Z → AffZ(R) inducing free and proper actions. These are precisely the actions

generated by x 7→ x+ a with a > 0. Restricting to strongly integral affine circles yields the result.

Theorem 4.19. The strongly integral affine 2-tori, up to isomorphism, are quotients R2/Z2, where the

Z2-actions fall into one of the following types:

(I) an action generated by (x, y) 7→ (x+ p, y) and (x, y) 7→ (x, y + q), where p, q ∈ Z≥1 and p|q;

(II) an action generated generated by (x, y) 7→ (x+ p, y) and (x, y) 7→ (x+ ny, y + q), where n, p, q ∈ Z≥1.

Proof. The classification of all integral affine structures on 2-tori is given in [6, Theorem A]. Restricting

to strongly integral affine structures and using the Smith normal form for matrices with integer entries to

simplify the possibilities from type (I) yields the above classification.

Remark 4.20. The integral affine 2-tori of type (I) are (isomorphic to) products of integral affine circles.

Thus to find examples of PMSCTs with leaf space of this type one can simply take products of PMSCTs

with leaf space S1, constructed in Section 4.3.1. This yields Poisson manifolds of dimension 10 whose leaves

are products of K3 surfaces. However, the examples we construct in Section 4.3.2 are six-dimensional Poisson

manifolds with K3 surfaces as symplectic leaves and thus result in “smaller” examples.
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Remark 4.21. Continuing the previous remark, note that by taking products we can also realise some

higher dimensional integral affine tori as the leaf space of a PMSCT, namely those that are isomorphic to a

product of some of the integral affine circles and 2-tori classified above.

Before we move on to the examples, we establish some notation. Recall that L = U⊕3 ⊕ (−E8)
⊕2. We

denote the standard bases of the three copies of U by {u, v}, {x, y} and {z, t}, so that (u, v) = (x, y) = (z, t) = 1

with all other combinations yielding zero. Recall also that −E8 is even and negative definite. Finally, let

{e1, . . . , e8} be a set of real numbers such that the set

{1, e1, . . . , e8, e21, e1e2, . . . , e27, e7e8, e28}

consisting of 1, e1, . . . , e8 and their pairwise products is linearly independent over the integers, or equivalently

the rationals. The existence of such a set is guaranteed by [29]. We then set e := (e1, . . . , e8) ∈ (−E8)R,

scaling if necessary such that |(e, e)| ≤ 1
2 , and we set a := (0, e), b := (e, 0) ∈ (−E8)

⊕2
R ⊂ LR.

Let us outline the strategy for the examples below. In each case, we start by defining f and Γ. It is fairly

straightforward to check items ((ii)) and ((iii)) from Corollary 4.15 and that the image of f is contained in

KΩ. It then remains to show that it is actually contained in KΩ0. This is the more involved part of the

computations.

4.3.1 The PMSCTs with leaf space the circle

We will construct a PMSCT whose leaf space is a strongly integral affine circle, i.e. we want the action of Z
on R generated by x 7→ x+ p with p ∈ Z≥1. The case p = 1 is the one treated in [4] and the computations

carried out below for general p are an obvious generalisation of the computations there.

Consider the map f : R → LR × P(LC) defined by

s 7→ (2u+ v + sy, [x− su+ 2y + a+ i(z + 2t+ b)])

and the map φ : L→ L defined by u 7→ u, v 7→ v + py, x 7→ x− pu, y 7→ y on the first two copies of U and as

the identity on the other summands of L. It is easily checked that φ is an isometry and that

φ · f(s) = f(s+ p).

This implies that the image of f is invariant under the action of Γ := ⟨φ⟩, and also that the induced action

on R is the one we need.

To show that the image of f is contained inKΩ, let s ∈ R. Setting f1(s) = 2u+v+sy, f2(s) = x−su+2y+a
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and f3(s) = z + 2t+ b, we see that

(f2(s), f2(s)) = (x− su+ 2y + a, x− su+ 2y + a)

= 4(x, y) + (a, a)

= 4 + (e, e) ≥ 3
1

2
> 0,

(f3(s), f3(s)) = (z + 2t+ b, z + 2t+ b)

= 4(z, t) + (b, b)

= 4 + (e, e) ≥ 3
1

2
> 0,

(f2(s), f3(s)) = (x− su+ 2y + a, z + 2t+ b)

= 0.

These computations imply that [f2(s) + if3(s)] ∈ Ω. Since

(f1(s), f1(s)) = (2u+ v + sy, 2u+ v + sy) = (2u, v) + (v, 2u) = 4 > 0,

(f1(s), f2(s)) = (2u+ v + sy, x− su+ 2y + a) = −s(v, u) + s(y, x) = −s+ s = 0,

(f1(s), f3(s)) = (2u+ v + sy, z + 2t+ b) = 0,

we see that f(s) ∈ KΩ.

It remains to check that f(s) ∈ KΩ0 for all s ∈ R.

Proof. Assume that we have d ∈ L such that (d, d) = −2 and (d, f1(s)) = (d, f2(s)) = (d, f3(s)) = 0. We

need to find a contradiction. Let us write

d = Au+Bv + Cx+Dy + Ez + Ft+ d1 + d2,

with A, . . . , F ∈ Z and di in the i-th copy of −E8. Since E8 is even and positive definite, we can write

(di, di) = −2ni, for ni ∈ Z≥0. The above conditions then translate into three equations:

AB + CD + EF = n1 + n2 − 1, (4.2)

2B +A+ Cs = 0, (4.3)

D −Bs+ 2C + (d2, e) = 0, (4.4)

F + 2E + (d1, e) = 0. (4.5)

This is where the seemingly strange choice of e comes in. There exist k1, . . . , k8 ∈ Z such that (d1, e) =∑
i kiei and since {1, e1, . . . , e8} is linearly independent over the integers by choice of e, it follows from (4.5)

that we must have F + 2E = k1 = · · · = k8 = 0. Since the bilinear form on −E8 is nondegenerate, it follows

that d1 = 0 and thus that n1 = 0.

Case C = 0: Equation (4.3) yields 2B +A = 0, and (4.2) becomes

2B2 + 2E2 = 1− n2.
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This implies that B = E = 0 and n2 = 1. But then d2 ̸= 0 and (4.4) becomes

D + (d2, e) = 0,

which together with d2 ̸= 0 contradicts the “linear independence” assumption on e.

Case C ̸= 0: From (4.3) we get

s = −2B +A

C
,

and substituting this into (4.4) yields

AB + CD = −2C2 − 2B2 − (d2, e).

Combining this with (4.2) gives

2B2 + 2C2 + 2E2 + C(d2, e) = 1− n2.

From the properties of e we get Cd2 = 0, implying that d2 = 0 and thus also that n2 = 0, so that we are left

with

2B2 + 2C2 + 2E2 = 1,

which is absurd since B,C,E ∈ Z.

4.3.2 The PMSCTs with leaf space a torus of type (I)

Here we construct a PMSCT with leaf space the torus T2 with an integral affine structure of type (I). This

means that we want the action of Z2 on R2 generated by (x, y) 7→ (x+ p, y) and (x, y) 7→ (x, y + q), with

p, q ∈ Z≥1.

Consider the map f : R2 → LR × P(LC) defined by

(s, r) 7→ (2u+ v + sy + rt, [x− su+ 2y + a+ i(z − ru+ 2t+ b)]),

the map φ : L→ L as in the previous example and the map ψ : L→ L defined by u 7→ u, v 7→ v + qt, x 7→ x,

y 7→ y, z 7→ z − qu, t 7→ t on two copies of U and as the identity on the other summands of L. It is easily

checked that these are isometries and that

φ · f(s, r) = f(s+ p, r),

ψ · f(s, r) = f(s, r + q).

This implies that the image of f is invariant under the action of Γ := ⟨φ,ψ⟩, and also that the induced action

on R2 is as desired.

To show that the image of f is contained in KΩ, let f1, f2, f3 be the three “components” of f , as before,
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and let (s, r) ∈ R2. We compute

(f2(s, r), f2(s, r)) = (x− su+ 2y + a, x− su+ 2y + a)

= 4(x, y) + (a, a)

= 4 + (e, e) ≥ 3
1

2
> 0,

(f3(s, r), f3(s, r)) = (z − ru+ 2t+ b, z − ru+ 2t+ b)

= 4(z, t) + (b, b)

= 4 + (e, e) ≥ 3
1

2
> 0,

(f2(s, r), f3(s, r)) = (x− su+ 2y + a, z − ru+ 2t+ b)

= 0

and conclude that [f2(s, r) + if3(s, r)] ∈ Ω. Also,

(f1(s, r), f1(s, r)) = (2u+ v + sy + rt, 2u+ v + sy + rt) = (2u, v) + (v, 2u) = 4 > 0,

(f1(s, r), f2(s, r)) = (2u+ v + sy + rt, x− su+ 2y + a) = −s(u, v) + s(x, y) = −s+ s = 0,

(f1(s, r), f3(s, r)) = (2u+ v + sy + rt, z − ru+ 2t+ b) = −r(u, v) + r(z, t) = −r + r = 0

implies that f(s, r) ∈ KΩ.

It remains to check that f(s, r) ∈ KΩ0 for all (s, r) ∈ R2.

Proof. Let d ∈ L such that (d, d) = −2 and (d, f1(s, r)) = (d, f2(s, r)) = (d, f3(s, r)) = 0 and as before write

d = Au+Bv + Cx+Dy + Ez + Ft+ d1 + d2,

and (di, di) = −2ni for ni ∈ Z≥0. We need to find a contradiction. The relevant equations now become

AB + CD + EF = n1 + n2 − 1, (4.6)

2B +A+ Cs+ Er = 0, (4.7)

D −Bs+ 2C + (d2, e) = 0, (4.8)

F −Br + 2E + (d1, e) = 0. (4.9)

Case B = 0: The assumptions on e, together with (4.8) and (4.9), imply that D + 2C = F + 2E = 0 and

d1 = d2 = 0, so that n1 = n2 = 0. But then (4.6) becomes

2C2 + 2E2 = 1,

which is impossible.

Case B ̸= 0: From (4.8) and (4.9) we get

s =
D + 2C + (d2, e)

B
, r =

F + 2E + (d1, e)

B
.
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Substituting this into (4.7) gives

AB + CD + EF = −2B2 − 2C2 − 2E2 − C(d2, e)− E(d1, e),

and combining this with (4.6) we obtain

2B2 + 2C2 + 2E2 + C(d2, e) + E(d1, e) = 1− n1 − n2.

The assumptions on e imply that Cd2 + Ed1 = 0, so that this becomes

2B2 + 2C2 + 2E2 = 1− n1 − n2.

This is impossible under the assumption B ̸= 0, since ni ∈ Z≥0.

4.3.3 The PMSCTs with leaf space a torus of type (II)

In this example we will construct a PMSCT whose leaf space is a torus with an induced integral affine

structure of type (II), namely one induced by the action of Z2 on R2 generated by (x, y) 7→ (x+ p, y) and

(x, y) 7→ (x+ ny, y + q), where n, p, q ∈ Z≥1.

Consider the map f : R2 → LR × P(LC) defined by

(s, r) 7→ (2u+ v + sy + rt, [qx+ (nr2 − qs)u− nrz + 2qy + a+ i(z − ru+ 2q2t+ 2nqry + b)]),

the map φ : L → L defined as before and the map ψ : L → L defined by u 7→ u, v 7→ v + qt, x 7→
x− nz + qnu, y 7→ y, z 7→ z − qu, t 7→ t+ ny on the copies of U and the identity on the other summands of L.

It is easily checked that these are isometries and that

φ · f(s, r) = f(s+ p, r),

ψ · f(s, r) = f(s+ nr, r + q).

This implies that the image of f is invariant under the action of Γ := ⟨φ,ψ⟩, and also that the induced action

on R2 is the desired one. To show that the image of f is contained in KΩ, denote once more by f1, f2, f3 the

“components” of f , and let (s, r) ∈ R2. Since

(f2(s, r), f2(s, r)) = (qx+ (nr2 − qs)u− nrz + 2qy + a, qx+ (nr2 − qs)u− nrz + 2qy + a)

= 4q2(x, y) + (a, a)

= 4q2 + (e, e) ≥ 3
1

2
> 0,

(f3(s, r), f3(s, r)) = (z − ru+ 2q2t+ 2nqry + b, z − ru+ 2q2t+ 2nqry + b)

= 4q2(z, t) + (b, b)

= 4q2 + (e, e) ≥ 3
1

2
> 0,

(f2(s, r), f3(s, r)) = (qx+ (nr2 − qs)u− nrz + 2qy + a, z − ru+ 2q2t+ 2nqry + b)

= 2nq2r(x, y)− 2nq2r(z, t) = 2nq2r − 2nq2r = 0.
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we get that [f2(s, r) + if3(s, r)] ∈ Ω. The computations

(f1(s, r), f1(s, r)) = (2u+ v + sy + rt, 2u+ v + sy + rt) = (2u, v) + (v, 2u) = 4 > 0,

(f1(s, r), f2(s, r)) = (2u+ v + sy + rt, qx+ (nr2 − qs)u− nrz + 2qy + a)

= (nr2 − qs)(u, v) + qs(x, y)− nr2(z, t) = nr2 − qs+ qs− nr2 = 0,

(f1(s, r), f3(s, r)) = (2u+ v + sy + rt, z − ru+ 2q2t+ 2nqry + b)

= −r(u, v) + r(z, t) = −r + r = 0

show that f(s, r) ∈ KΩ.

It remains to show that f(s, r) ∈ KΩ0 for all (s, r) ∈ R2.

Proof. Let d ∈ L such that (d, d) = −2 and (d, f1(s)) = (d, f2(s)) = (d, f3(s)) = 0. Like before we write

d = Au+Bv + Cx+Dy + Ez + Ft+ d1 + d2,

and we set (di, di) = −2ni with ni ∈ Z≥0. The goal is to find a contradiction. The main equations are now

AB + CD + EF = n1 + n2 − 1, (4.10)

2B +A+ Cs+ Er = 0, (4.11)

Dq +B(nr2 − qs)− Fnr + 2Cq + (d2, e) = 0, (4.12)

F −Br + 2Eq2 + 2Cnqr + (d1, e) = 0. (4.13)

Case B − 2Cnq = 0: Equation (4.13) tells us that d1 = 0 and F + 2Eq2 = 0.

Subcase C = 0: This implies that B = 0, so that (4.10) becomes

2E2q2 = 1− n2.

This is only possible if E = 0 and n2 = 1, but then also F = 0 and (4.12) becomes

Dq + (d2, e) = 0,

which would imply that d2 = 0, contradicting n2 = 1.

Subcase C ̸= 0: Equation (4.11) tells us that

s = −2B +A+ Er

C
,

and with (4.12) we obtain

2Cn2qr2 − 2Fnr + 2Anq2 + C(8n2q3 + 2q) +Dq + (d2, e) = 0.

Since C, n, q ̸= 0 and r ∈ R, we must have that

F 2 ≥ 2Cq
[
2Anq2 + C(8n2q3 + 2q) +Dq + (d2, e)

]
.
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But F = −2Eq2 and B = 2Cnq, so combining this with (4.10) yields

q(1− n2) ≥ C2(8n2q3 + 2q) + C(d2, e).

Since C ̸= 0, this is certainly impossible when C and (d2, e) have the same parity. So let us assume that they

have opposite parity, so that the equation becomes

q(1− n2) ≥ C2(8n2q3 + 2q)− |C| · |(d2, e)|. (4.14)

Now both d2 and e lie in the same copy of −E8, and since (·, ·) is negative definite on −E8 we can use the

Cauchy-Schwarz inequality to obtain

|(d2, e)| ≤
√
|(d2, d2)| · |(e, e)| =

√
2 · |(e, e)|n2 ≤

√
n2,

using that we chose e such that |(e, e)| ≤ 1
2 . Now, in order for (4.14) to hold we certainly must have

C2(8n2q3 + 2q)−
√
n2 · |C|+ qn2 − q ≤ 0

and it is easily seen that this is not possible for 0 ̸= C ∈ Z.

Case B − 2Cnq ̸= 0: We immediately distinguish two cases: B = 0 and B ̸= 0.

Subcase B = 0: We claim that F ̸= 0. Indeed, if we had F = 0, (4.12) would become

Dq + 2Cq + (d2, e) = 0,

meaning that d2 = 0, so n2 = 0, and D + 2C = 0. But then (4.10) becomes

2C2 = 1− n1,

which can only hold if C = 0 and n1 = 1. But then (4.13) becomes

2Eq2 + (d1, e) = 0,

which implies d1 = 0, contradicting n1 = 1. So we see indeed that F ̸= 0. But then (4.12) and (4.13) yield

r = −F + 2Eq2 + (d1, e)

2Cnq
=
Dq + 2Cq + (d2, e)

Fn
.

This becomes

2CDnq2 + 4C2nq2 + 2Cnq(d2, e) + F 2n+ 2EFnq2 + Fn(d1, e) = 0,

and the assumptions on e imply that 2Cqd2 + Fd1 = 0 and

2CDnq2 + 4C2nq2 + F 2n+ 2EFnq2 = 0.

Since B = 0, combining this with (4.10) we obtain

4C2nq2 + F 2n = 2nq2(1− n1 − n2).
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Both C and F are nonzero, meaning that this is impossible.

Subcase B ̸= 0: We can write

r =
F + 2Eq2 + (d1, e)

B − 2Cnq
, s =

Dq +Bnr2 − Fnr + 2Cq + (d2, e)

Bq
.

This yields

s =
(B − 2Cnq)2(2Cq +Dq + (d2, e)) +Bn(F + 2Eq2 + (d1, e))

2

Bq(B − 2Cnq)2

− Fn(B − 2Cnq)(F + 2Eq2 + (d1, e))

Bq(B − 2Cnq)2

and substituting this into (4.11) and using the assumptions on e (actually, finally using them to their full

potential), this reduces to

0 = 2B2q(B − 2Cnq)2 +ABq(B − 2Cnq)2

+ C
(
(B − 2Cnq)2(2Cq +Dq) +Bn(F + 2Eq2)2 − Fn(B − 2Cnq)(F + 2Eq2)

)
+BEq(B − 2Cnq)(F + 2Eq2).

Some rewriting turns this into

0 = q(B − 2Cnq)2
(
2B2 + 2C2 +AB + CD

)
+BCn(F + 2Eq2)2 − CFn(B − 2Cnq)(F + 2Eq2) +BEq(B − 2Cnq)(F + 2Eq2),

and some easy computations show that the second line is equal to

EFq(B − 2Cnq)2 + 2q(BEq + CFn)2,

so that altogether we obtain

q(B − 2Cnq)2
(
2B2 + 2C2 +AB + CD + EF

)
+ 2q(BEq + CFn)2 = 0.

Combining this with (4.10) we get

2
(
(B − 2Cnq)2(B2 + C2) + (BEq + CFn)2

)
= (B − 2Cnq)2(1− n1 − n2).

But this is impossible, since B − 2Cnq ̸= 0, B ̸= 0 and n1, n2 ≥ 0, giving us the desired contradiction.
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Chapter 5

Duistermaat-Heckman measures

In this chapter we prove Main Theorem 2. In Section 5.1 we explain some general theory regarding measures

on leaf spaces and in Section 5.2 we apply this theory to define both the affine measure and the Duistermaat-

Heckman measure associated to Hamiltonian actions of symplectic groupoids. In Section 5.3 we state our

main result and in Section 5.4 we give its proof.

5.1 Measures on leaf spaces

A theory of measures on differentiable stacks is laid out in [20]. We present a selection of the results in the

specific case of measures on leaf spaces of source proper, regular groupoids, for which the theory simplifies

significantly.

5.1.1 Measures on manifolds

Let us first make precise what we mean by “measures” in the context of smooth manifolds.

Definition 5.1. Let X be a smooth manifold. A measure µ on X is a linear functional µ : C∞
c (X) → R

satisfying µ(f) ≥ 0 for all 0 ≤ f ∈ C∞
c (X). ♢

Remark 5.2. This is essentially the definition of a Radon measure, which makes sense for any locally

compact, Hausdorff space (replacing C∞
c (X) by Cc(X)). For manifolds, the two definitions are equivalent.

A special class of measures consists of those arising from densities. Measures of this type are often called

geometric measures. Recall that a density on a manifold X is a section of the density bundle DTX . We

denote the set of densities by D(X). Any differential form α ∈ Ωtop(X) induces a density |α| ∈ D(X). There

is a canonical integration map ∫
X

: D(X) → R

and this integration generalises that of differential forms. Any positive density ρ ∈ D(X) induces a measure

µρ, defined by

µρ(f) :=

∫
X

f · ρ, f ∈ C∞
c (M).

Geometric measures can be pushed forward along proper submersions using fiber integration. For

q : X → Y a proper submersion and ρ ∈ D(X), the pushforward of ρ along q is denoted q!(ρ) ∈ D(Y ).
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General measures, even between locally compact, Hausdorff spaces, can be pushed forward along any proper

map and we use similar notation. For geometric measures, these two notions of pushforward are compatible.

5.1.2 Measures on leaf spaces

We now fix a source proper, regular groupoid G ⇒ X. We write B for its leaf space, q : X → B for the

quotient map and B = B(G) for the underlying orbifold groupoid. Since B is locally compact and Hausdorff,

we have the notion of Radon measure on it. However, it turns out that, similar to the case of manifolds, it is

equivalent to define a measure as a positive linear functional on

C∞
c (B) := {f ∈ Cc(B) | f ◦ q ∈ C∞(X)}.

We will describe two ways of obtaining measures on B. The first is simple: since q is a proper map, we can

push measures on X forward to B. The second way is more complicated: it describes measures induced by

transverse densities.

Let us write A = Lie(G) for the Lie algebroid of G, g ⊂ A for the isotropy subbundle, TF ⊂ TX for the

foliation induced by G and ν(F) for the associated normal bundle. Note that g and ν(F) are G-representations.

Definition 5.3. A transverse density on G is a G-invariant positive density ρν ∈ Γ(Dν(F)). ♢

To see how this induces a measure on B, we need to choose a strictly positive density ρF ∈ Γ(DTF ). We

then set ρX := ρF ⊗ ρν ∈ D(X) and we can define a measure µρν on B by the formula∫
B

f(b) dµρν (b) :=

∫
X

f(q(x))

ι(x) · vol(Ox, ρF )
dµρX (x), f ∈ C∞

c (B). (5.1)

Here Ox denotes the orbit of G through x ∈ X, vol(Ox, ρF ) is its volume with respect to the density ρF

(restricted to the orbit) and ι(x) is the number of connected components of the isotropy group Gx. This

definition does not depend on the choice of ρF . We also have the “fiber integration formula”∫
X

f(x) dµρX (x) :=

∫
B

ι(b) ·
(∫

Ob

f(x) dµρF (x)

)
dµρν (x), f ∈ C∞

c (X). (5.2)

Here Ob = q−1(b) is the orbit associated to b ∈ B and ι : B → Z≥1 is defined as above.

Remark 5.4. As mentioned before, these definitions only work in the specific case of source proper, regular

groupoids. For the more general theory, and for a detailed account on how it reduces to the above in our

case, see [20].

5.2 Measures associated to Hamiltonian actions

For the remainder of this chapter, let

(G,Ω) (X,ω)

(M,π)

µ
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be a locally free, effective Hamiltonian action of a source connected, source proper, regular symplectic

groupoid and assume that µ is proper and has connected fibres. We denote the leaf space by B, the projection

by q :M → B and the symplectic foliation by Fπ. With these assumptions we can assume without loss of

generality that the moment map is surjective.

5.2.1 The affine measure

From Section 3.4 we get the lattice Λ ⊂ ν∗(Fπ), which induces a transverse density (Definition 5.3) as follows.

Pick any local frame {λ1, . . . , λq} of Λ, and define (locally)

ρν := |λ1 ∧ · · · ∧ λq|.

It is easily checked that this gives a well-defined transverse density ρν ∈ Γ(Dν(Fπ)). As described in Section

5.1.2 we obtain an induced measure on B, which we call the affine measure and denote by µaff .

In this context, there is a nice candidate for the foliated density ρFπ
. Since the leaves of the foliation are

equipped with symplectic forms, we have a “foliated Liouville form”

ρFπ
:=

∣∣∣∣∣ω
top
Fπ

top!

∣∣∣∣∣ .
The density on M that we work with in computations becomes

ρM :=

∣∣∣∣∣ω
top
Fπ

top!

∣∣∣∣∣⊗ ρν .

5.2.2 The Duistermaat-Heckman measure

Definition 5.5. The Duistermaat-Heckman measure is defined as the pushforward of the Liouville measure

on X:

µDH := (q ◦ µ)∗
(
ωtop

top!

)
. ♢

We can describe this measure in an alternate way, which gives us an opportunity to analyse the quotient

X/G in some more detail as well. Since the action is locally free, X/G is an orbifold with atlas G ⋉X ⇒ X.

In fact, one can view it as a “Poisson orbifold”, the Poisson structure appearing on the level of X as the

(regular) Dirac structure

Lω = {v + w + iwω | v ∈ G · TX,w ∈ ker(dµ)}.

The leaf space of this Dirac structure can be thought of as the leaf space of X/G. We could also define the

Duistermaat-Heckman measure as the pushforward of the Liouville measure to this leaf space. These two

definitions are compatible, as we now explain.

The pullback groupoid µ∗G = X ×µ t G ×s µ X equipped with the 2-form ω ⊕−Ω⊕−ω is a presymplectic

groupoid integrating Lω and the standard Morita equivalence µ∗G ∼= G establishes an isomorphism between the

leaf space of X/G and B. Clearly, this isomorphism interwines the two definitions of the Duistermaat-Heckman

measure.

Remark 5.6. The presymplectic integration of Lω also induces a transverse integral affine structure and thus

we get an “affine measure” on the leaf space of X/G in the same way as before (see Section 5.2.1). Since the
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isomorphism induced by µ∗G ∼= G preserves the integral affine structure on the leaf spaces, it also intertwines

the two affine measures. All in all, there are no issues working solely on the leaf space B.

5.2.3 The volume of the reduced spaces

For Hamiltonian groupoid actions, there is still the notion of reduced spaces. For p ∈M , Gp acts on µ−1(p)

and in our case this action is locally free and proper, meaning that the quotient µ−1(p)/Gp inherits an orbifold

structure. In fact, it is a symplectic orbifold, the symplectic structure ωred being induced by presymplectic

form ω|µ−1(p). Of course, the same holds true when we just consider the action of G0
p , the connected component

of the identity of Gp. It is this action that we will consider now.

Using the theory from Section 5.1.2 there is a well-defined volume associated to these reduced spaces.

Taking the top (nonzero) power of ω|µ−1(p) yields a transverse measure (see Definition 5.3) and combining

this with the Haar measure on G0
p , transported by the action to X as a foliated density, gives the formula

vol(µ−1(p)/G0
p , ωred) =

∫
µ−1(p)

ρHaar ⊗

∣∣∣∣∣
(
ω|µ−1(p)

)top
top!

∣∣∣∣∣ . (5.3)

Here ρHaar is normalised according to G0
p .

Remark 5.7. Strictly speaking, the integrand in equation (5.3) needs to be modified by a function similar

to ι, associating to x ∈ µ−1(p) the number of connected components of the isotropy group of the action of G0
p .

However, this function is only not equal to 1 on a set of measure zero (see Section 5.4.2) so the equation still

holds in the above form.

5.3 The result

Before we state the theorem, we need one more bit of notation. Recall that we have a function ι : B → Z≥1

associating to some b ∈ B the number of connected components of Gp for any p ∈ Ob. We denote by

vol : B → R the function

b 7→ ι(b) · vol(Ob, ωFπ
).

Similarly, we denote by volred : B → R the function

b 7→ vol(µ−1(p)/G0
p , ωred).

Here we take any p ∈ Ob and vol(µ−1(p)/G0
p , ωred) is the volume of the reduced space as described in Section

5.2.2.

Theorem 5.8. The Duistermaat-Heckman measure is related to the affine measure by the formula

µDH = vol · volred · µaff . (5.4)

Moreover, vol and volred are polynomial functions on the leaf space.

Remark 5.9. The notion of a polynomial function makes sense on integral affine manifolds (and orbifolds):

since integral affine maps preserve polynomials, one can simply require the function to be polynomial in every

integral affine (foliation) chart.
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Remark 5.10. Suppose (G,Ω) ⇒ (M,π) is a source connected, source proper, regular symplectic groupoid

acting effectively on a symplectic manifold (X,ω) with proper moment map µ : X →M having connected

fibers. If the isotropy groups of G are connected, then it follows from the reasoning in Section 5.4.2 that

the action is actually free on an invariant, open dense subset O ⊂ X. Indeed, since the action of T (G) is
locally just a classical Hamiltonian torus action, this follows directly from [16, Lemma 3.1]. Since µ|O is

a submersion, µ(O) ⊂ M is open and invariant and we can apply Theorem 5.8 to the restricted action of

(G|µ(O),Ω) ⇒ (µ(O), π) on (O,ω).

Example 5.11 (The classical case). Consider a locally free Hamiltonian torus action T ⟳ (X,ω) with proper

moment map µ : X → t∗. The groupoid is now a bundle of tori T ⋉ t∗ ⇒ t∗ and thus B = t∗ is smooth. The

affine measure is Lebesgue measure on t∗ ∼= Rq and the Duistermaat-Heckman measure is the classical one

as in [16]. The function vol has constant value 1 and volred gives the volume of the reduced spaces. Thus

Theorem 5.8 reduces to the classical Duistermaat-Heckman theorem in this case. △

Example 5.12 (The free case). If the action is free, the situation simplifies significantly. In this case, the

quotient Xred := X/G is a smooth manifold endowed with a Poisson structure πred induced from ω. In fact,

(Xred, πred) is again a Poisson manifold of source proper type: the gauge groupoid
(
(X ×µ µ X)/G, ω ⊕−ω

)
provides a source connected, source proper symplectic integration. Moreover, (X,ω) gives a symplectic Morita

equivalence with (G,Ω) ⇒ (M,π). It is not hard to show that for any symplectic Morita equivalence

(G1,Ω1) (X,ω) (G2,Ω2)

(M1, π1) (M2, π2)

B

µ1 µ2

q1 q2

between regular, source connected, source proper symplectic groupoids we have the formula

µDH = vol1 · vol2 · µaff , (5.5)

where voli is the vol-function associated to (Gi,Ωi) ⇒ (Mi, πi). (Note that µDH and µaff can be defined using

either side of the diagram without change.) In the free case vol2 is just the function volred and thus Theorem

5.8 reduces to (5.5). △

Example 5.13. Consider the special case of G acting on itself by left translation. This brings us to the

situation in Example 5.12, where the quotient is just (M,π) and the integration is (G,Ω) (with the same

groupoid structure). The Duistermaat-Heckman measure is now the one as defined in [3, Section 6.3] and

equation (5.5) becomes

µDH = vol2 · µaff

which is exactly [3, Theorem 6.3.1]. △

5.4 The proof

We first prove equation (5.4) and then the polynomial nature of vol and volred.
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5.4.1 Proof of equation (5.4)

From the definitions of the affine and Duistermaat-Heckman measures (see Sections 5.2.1 and 5.2.2 respectively)

and equations (5.2) and (5.3) it follows that we need to prove the formula

∣∣∣∣ωtop

top!

∣∣∣∣ = ρHaar ⊗

∣∣∣∣∣
(
ω|µ−1(p)

)top
top!

∣∣∣∣∣⊗ µ∗

(∣∣∣∣∣ω
top
Fπ

top!

∣∣∣∣∣⊗ |λ1 ∧ · · · ∧ λq|

)
. (5.6)

To prove (5.6), let us fix x ∈ X and choose a convenient basis of TxX. We write m = dim(M) and

n = dim(X). Recall also that q = dim(Gp). Let {α1, . . . , αq} be the basis of gµ(x) that, through the

identifications of Section 3.4, is dual to {λ1, . . . , λq}, and complete it to a basis {α1, . . . , αm} of Aµ(x). The

infinitesimal action gives us associated vectors {αXi }i which form a basis of G·TxX. Next, let {v1, . . . , vn−m−q}
be a basis for a complement of Gp · TxX in ker(dxµ). Finally, let {w1, . . . , wq} be dual to {µ∗λ1, . . . , µ

∗λq}.
Let us write

V1 = span{αX1 , . . . , αXq },

V2 = span{v1, . . . , vn−m−q},

V3 = span{αXq+1, . . . , α
X
m},

V4 = span{w1, . . . , wq}

consistent with the decomposition in equation (5.6).

Note that V1 ⊕ V2 = ker(dxµ) and V1 ⊕ V3 = G · TxX. Since ker(dxµ)
ω = G · TxX, it follows that for any

1 ≤ i ≤ q the 1-form iαX
i
ω is automatically zero on V1 ⊕ V2 ⊕ V3. We now compute

ωx(α
X
i , wj) = (µ∗λi)(wj) = δij

using the moment map condition (2.16). Note also that by definition of the Haar measure we have

ρHaar(α
X
1 , . . . , α

X
q ) = 1.

Next, let us analyse ω|V3
. We compute

ωx(α
X
q+i, α

X
q+j) = −Ω1µ(x)

(αq+i, dxµ(α
X
q+j))

= −Ω1µ(x)
(αq+i, d1µ(x)

s(αq+j))

= −Ω1µ(x)
(αq+i, αq+j),

where we use that the s- and t-fibers are Ω-orthogonal. On the other hand, we have

(µ∗ωFπ
)x(α

X
q+i, α

X
q+j) = (ωFπ

)µ(x)(dxµ(α
X
q+i), dxµ(α

X
q+j))

= (ωFπ
)µ(x)(d1µ(x)

s(αq+i), d1µ(x)
s(αq+j))

= Ω1µ(x)
(αq+i, αq+j)

so that we can conclude that

ωx(α
X
q+i, α

X
q+j) = −(µ∗ωFπ

)x(α
X
q+i, α

X
q+j).
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Combining the above equations and doing the necessary combinatorics we arrive precisely at equation

(5.6).

Remark 5.14. In [30] a local model is given for Hamiltonian actions of proper symplectic groupoids, which

can be used to give an alternate proof of equation (5.6).

5.4.2 Proof of polynomial nature

The polynomial nature of vol is well-known (see [3, Theorem 6.3.1]), so it remains to show that volred is a

polynomial. To this end, let us study the what the action of T (G) looks like locally.

Fix a transverse integral affine chart (U,φ) and let T = φ−1({0} ×Rq) be the associated transversal. The

chart trivialises the conormal bundle and the lattice Λ ⊂ ν∗(Fπ) inside, and thus also the bundle T (G)|T . Thus
we can consider it as a single torus T acting on µ−1(T ). The latter is a symplectic submanifold of (X,ω) and

the map µ̃ := φ ◦ µ : µ−1(T ) → Rq is easily verified to make the resulting data T ⟳ (µ−1(T ), ω|µ−1(T ))
µ̃−→ Rq

into a classical Hamiltonian torus action. It then follows from [16, Corollary 3.3] that the volumes of the

associated reduced spaces vary in a polynomial way. These volumes precisly form the function volred, meaning

that the latter is a polynomial.
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