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Abstract

This thesis discusses abelianization of Lie algebroids and groupoids in different

categories. In Chapter 2 we find a sufficient and necessary condition for a Lie

algebroid to admit an abelianization and give several examps and applications.

In Chapter 3 we prove that every (locally subductive) diffeological groupoid

has a (locally subductive) abelianization. We also find a sufficient condition

for a Lie groupoid to admit a smooth abelianization and study the smoothness

of the genus-integration, the set-theoretical abelianization of the Weinstein

groupoid.
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Introduction

Lie groupoids and Lie algebroids are a generalization of Lie groups and Lie

algebras. The “Lie philosophy” of Lie groups and Lie algebras also makes

sense in this more general setting: for any Lie groupoid there is an associated

Lie algebroid and one can wonder when a given Lie algebroid comes from a

Lie groupoid, in which case we say the Lie algebroid is integrable.

The integration problem of Lie algebras has a long history culminating

in Lie’s third theorem, stating that every finite dimensional Lie algebra

integrates to a Lie group. There are various proofs of the theorem, including

an algebraic proof in [1] and a geometric proof in [2] and [3]. Combining with

the Lie’s first and second theorem, one obtains a one-to-one correspondence

between the categories of finite dimensional Lie algebras and simply-connected

Lie groups. Lie’s third theorem does not hold for Lie algebroids and the

integration problem for Lie algebroids was solved in [4]. There, the authors

introduced a construction called the Weinstein groupoid which, when smooth,

is the unique source 1-connected Lie groupoid integrating the Lie algebroid.

They also gave a neccessary and sufficient condition for the smoothness of the

Weinstein groupoid. In particular, for the cotangent Lie algebroid coming

from a Poisson structure, the integrability is equivalent to the integrability of

the Poisson structure as shown in [5], and the monodromy groups in this case

can be defined as in [6] using only the Poisson structure and are invariants

of the Poisson manifold.

In [7], a modification of this process gives rise to a new groupoid called

the genus-integration, which is the abelianization of the Weinstein groupoid

in the category of sets. While the genus-integration itself is worthy of study,

the abelianization, which can be thought of as the “maximal abelian part”

of a groupoid or Lie algebroid, is also quite interesting. The existence is not

guaranteed and it does not always “commute” with the integration.

In [8], crucial constructions for the integration of Lie algebroids were
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introduced in the setting of Lie-Rinehart algebras, allowing the generalization

of many interesting problem to these objects. A generalized functor from

“singular Lie groupoids” to Lie algebroids was discussed in [9], allowing us

to consider integrating Lie algebroids to not only Lie groupoids, but certain

diffeological groupoids. They showed that Lie’s third theorem holds in this

generalized setting.

In this thesis we study the abelianization of groupoids and Lie algebroids.

We consider groupoids internal to several different categories, since the results

differ in different settings.

Abelianization of Lie algebroids

A Lie algebroid is called abelian if its isotropy Lie algebras are all abelian.

Given any Lie algebroid A, one can wonder whether there exists an abelian

Lie algebroid Aab
satisfying the universal property of an abelian object.

We refer to Aab
as the abelianization of A (see Chapter 2 for the precise

definition).

The notion of abelianization was first introduced in [7] in connection with

the so-called genus integration of A. The authors of [7] observed that for a

transitive Lie algebroid, the abelianization always exists. They also provide

examples of non-transitive Lie algebroids for which the abelianization exists,

as well as examples for which it does not exist.

In this thesis we propose a new sheaf-theoretical definition of abelianiza-

tion, which has better behavior than the one in [7].

Recall that for any Lie algebroid A → M , the kernel of the anchor at

x ∈M ,

gx := ker ρx ⊂ Ax,

forms a Lie algebra known as the isotropy Lie algebra at x. We denote the

bundle of isotropy Lie algebras as

gM :=
⋃
x∈M

gx ⊂ A.

Note that, in general, the dimensions of the isotropy Lie algebras gx vary

with x, so gM is not a vector subbundle. One can also define the commutator
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or derived bundle

[gM , gM ] :=
⋃
x∈M

[gx, gx] ⊂ A.

which, again, may fail to be a vector subbundle. One of our main results can

be stated as follows.

Theorem 1. A Lie algebroid A has an abelianization if and only if the

closure [gM , gM ] ⊂ A is a vector subbundle.

Abelianization of groupoids

A groupoid is called abelian if its isotropy groups are all abelian. As before,

we define the abelianization of a groupoid to be an abelian groupoid satisfying

the universal peoperty of an abelian object (see Chapter 3 for the precise

definition). We study the existence and properties of this construction.

The abelianization of a groupoid depends on the category. In general, a

Lie groupoid might not admit an abelianization in the smooth category. And

when it does, the smooth abelianization might differ from the set-theoretical

abelianization.

Just as for Lie algebroids, the abelianization of groupoids is closely related

to its isotropies, but it is more complicated as the commutator bundle can

behave very differently. For example, the commutator of a Lie group can

already fail to be closed.

We study the abelianization of groupoids in the category of smooth

manifolds and obtained the following result.

Proposition 1. Given a Lie groupoid G, if the fiberwise closure (G,G)
s
is a

closed submanifold, then G has abelianization G/(G,G)
s
.

Diffeologies provide a more flexible setup to study differential geometry of

singular spaces. For example, it has been used in solving integration problems

of Lie algebroids as in [9], of singular Lie subalgebroids as in [10] and of

singular foliations as in [11]. We study the abelianization of groupoids in the

category of diffeological spaces and prove the following result for diffeological

groupoids and locally subductive diffeological groupoids.

Proposition 2. A (locally subductive) diffeological groupoid G has (locally

subductive) abelianization G/(G,G).
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Another interesting construction related to abelianization of groupoids is

the genus-integration Gg(A) of a Lie algebroid A. In [7], it is constructed

using a similar idea as the construction of the Weinstein groupoid G(A) and

is proved to be the set-theretical abelianization of the Weinstein groupoid.

The kernel of the quotient map q : G(A) → Gg(A) is studied in [7] for

the integrable case, and we show that this integrability assumption can be

removed.

4



Chapter 1

Backgrounds

In this chapter, we will recal some basic definitions and properties we will be

using in the thesis.

1.1 Lie groupoids

Definition 1. A groupoid G is a small category in which every arrow is

invertible. To be more specific, it consist of the following data:

• a set of arrows G1;

• a set of objects G0;

• the source and target maps s, t : G1 → G0;

• the multiplication m : G2 → G1, (g, h) 7→ gh, where

G2 := {(g, h) ∈ G1 × G1 : s(g) = t(h)}

is the set of composable arrows;

• the inverse map i : G1 → G1, g 7→ g−1;

• the unit map u : G0 → G1, x 7→ 1x,

satisfying the following axioms:

• for g, h such that t(h) = s(g), s(gh) = s(h) and t(gh) = t(g);

• for g, h, k such that t(k) = s(h), t(h) = s(g), (gh)k = g(hk);
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• for x
g←− y, gg−1 = 1x and g−1g = 1y;

• for x
g←− y, 1xg = g1y = g.

Definition 2. A Lie groupoid is a groupoid where G1 and G0 are smooth

manifolds, all the structure maps are smooth and the source and target maps

are submersions.

For a groupoid G, when it does not cause confusion, we will denote the

set of arrows by G and the set of objects by M .

For x ∈M we have the isotropy group at x, defined by Gx = s−1(x)∩t−1(x).

For a Lie groupoid, this is in fact a Lie group. There is also the orbit through

x, defined by Ox = t(s−1(x)). For a Lie groupoid, this is an immersed

submanifold of M . The smooth structure is induced by the principal bundle

Gx ⟳ s−1(x)
t−→ Ox. When the dimension of the orbits is constant we call the

groupoid regular. When there is only a single orbit, we say the groupoid is

transitive. We call a Lie groupoid source connected if the source fibres are

connected, and we call it source 1-connected if they are in addition simply

connected.

Example 1. A Lie group is a Lie groupoid over a point.

Example 2. Let a group G act on a set M . We can define the action

groupoid G ⋉M as follows. We set G1 = G ×M , G0 = M and define the

source and target by s(g, x) = x and t(g, x) = g · x. The multiplication is

given by (h, g · x)(g, x) = (hg, x). Of course, this example makes sense in the

smooth category as well.

Definition 3. A (Lie) subgroupoid of G is a (Lie) groupoid H with an

injective (smooth) groupoid morphism. i : H → G.

When the subgroupoid has the same space of objects, we say it is a wide

subgroupoid. In this thesis, when we deal with a subgroupoid, we assume it

is wide unless otherwise specified.

Proposition 3. Let G be a Lie groupoid. If H is a closed normal Lie

subgroupoid of G, then G/H is a Lie groupoid.

As is well known, the tangent space at the identity of a Lie group has the

structure of a Lie algebra and this Lie algebra captures a lot of information
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about the Lie group. The situation for Lie groupoids is similar: there is a

vector bundle over the space of objects with extra structure, in the form of a

Lie bracket on its space of sections and an anchor map to the tangent bundle

of the space of objects. This data forms what is called a Lie algebroid (see

Section 1.2). Let us know describe the “Lie functor” in this new context.

Given a Lie groupoid G ⇒M , its Lie algebroid Lie(G) is a vector bundle

A whose fiber at x is the tangent space of s−1(x) at 1x, i.e. Lie(G) := T sG|M .

To define the bracket on Γ(A), we will look at the right invariant vector

fields of G:

Xs
inv(G) = {X ∈ Γ(T s(G)) : Xhg = Rg(Xh)},

where Rg : T shG → T sghG is induced by the right multiplication by g. Similar

to Lie algebras of Lie groups, there is a natural way to extend each section

α ∈ Γ(A) to a right invariant vector field α̃ on G defined by α̃g := Rg(αt(g)).

This assignment α 7→ α̃ actually induced an isomorphism Γ(A) ∼= Xs
inv(G)

and since Xs
inv(G) is a Lie subalgebra of X(G), we can use the bracket on

X(G) to obtain the Lie bracket on Γ(A). The anchor map ρ : A → TM

is simply defined as the (restriction of the) differential of the target map

t : G →M .

As the name implies, the Lie functor also applies to morphisms. Given

a morphism Φ : G → H, dΦ restricted to Lie(G) induces a morphism

Φ∗ : Lie(G)→ Lie(H).

1.2 Lie algebroids

Let us now turn to the general definition of Lie algebroids.

Definition 4. A Lie algebroid over a manifold M is a vector bundle A
over M equipped with a Lie bracket [−,−]A on Γ(A) and an anchor map

ρA : A → TM such that the Leibniz identity is satisfied for all α, β ∈ Γ(A)

and all f ∈ C∞(M):

[α, fβ]A = f [α, β]A + LρA(α)(f)β.

Equivalently, one can define a Lie algebroid by requiring the sheaf of

local sections to have the structure of a sheaf of Lie algebras, as opposed

to requiring a bracket on the space of global sections. This point of view is
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beneficial in certain cases when studying Lie algebroids. For example, when

defining Lie algebroids in the holomorphic category, one is forced to use this

approach since sections exist only locally.

A natural question is whether every Lie algebroid comes from some Lie

groupoid. We turn to this question in Section 1.3.

We often denote a Lie algebroid by A or A → M . For x ∈ M , the

isotropy Lie algebra is defined by gx = ker(ρx), where the Lie bracket is

induced by the Lie bracket on Γ(A). We write

gM =
⋃
x∈M

gx ⊂ A

for the bundle of isotropy Lie algebras. Note that, in general, this is not

a subbundle since it might not have constant rank. The image of ρ is an

integral distribution TF ⊂ TM , although it is not regular in general. The

(singular) foliation integrating this distribution is called the foliation induced

by A and we call the leaves of the foliation the leaves of A. When ρ(A) has

constant rank, we say that A is regular. Note that in this case, the induced

foliation is in fact a regular foliation. When ρ(A) = TM , we say that A is

transitive. When ρ = 0, we call A a bundle of Lie algebras.

Note that when A = Lie(G), the terminology we introduced for Lie

groupoids and Lie algebroids is compatible. The Lie algebras of the isotropy

groups Gx are precisely the isotropy Lie algebras gx, the leaves of A are the

connected components of the orbits of G, and if G is regular then so is A.

Example 3. Given an action ρ : g → X(M) of a Lie algebra g on M , we

can define the action Lie algebroid g⋉M as follows. We set A = M × g and

define the anchor as ρA(α) = ρ(α)x for (x, α) ∈M × g. The Lie bracket is

defined for constant sections by the Lie bracket on g, and then generalized to

arbitrary sections by requiring the Leibniz identity.

Let A →M and B → N be Lie algebroids, and consider a bundle map

A B

M N

F

f

If f is a diffeomorphism, then one has an induced map at the level of sections

F : Γ(A)→ Γ(B) and one says that ϕ = (F, f) is a Lie algebroid morphism
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if for any sections s, s′ ∈ Γ(A) one has:

(i) df(ρA(s)) = ρB(F (s));

(ii) F ([s, s′]A) = [F (s), F (s′)]B.

For a general bundle map there is no induced map at the level of sections,

and one replaces (ii) by the following condition:

(ii)’ for any sections s, s′ ∈ Γ(A) such that F (s) =
∑

i aif
∗si and F (s′) =∑

j bjf
∗sj, one has

F ([s, s′]A) =
∑
i,j

aibif
∗[si, sj]B+

∑
j

(Lieρ(s)bi)f
∗(sj)+

∑
i

(Lieρ(s′)ai)f
∗(si).

An alternative way to define algebroid morphisms is by using the algebroid

de Rham differential on A-forms. One defines k-forms to be the sections

Ωk(A) := Γ(∧kA∗) and defines

dA : Ωk(A)→ Ωk+1(A)

by

dAω(s0, . . . , sk) :=
∑
i

(−1)iLieρ(si)ω(s0, . . . , ŝi, . . . , sk)+∑
i<j

ω([si, sj], s0, . . . , ŝi, . . . , ŝj, . . . , sk).

A bundle map ϕ : A → B, as above, induces a pull-back map between such

forms, and it is a Lie algebroid morphism if and only if

ϕ∗dB = dAϕ
∗.

1.3 Integrating Lie algebroids

Definition 5. We say that a Lie groupoid G ⇒M integrates a Lie algebroid

A →M if Lie(G) ∼= A. We say a Lie algebroid is integrable if there is a Lie

groupoid integrating it.

The integration problem for Lie algebroids has been studied extensively

in pursuit of the classical results for Lie groups and Lie algebras. As it turns
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out, for Lie groupoids and Lie algebroids, we still have Lie’s first and Lie’s

second theorems.

Theorem 2 (Lie’s first theorem). Given a Lie groupoid G, there exists a

unique source 1-connected Lie groupoid G̃ such that Lie(G̃) = Lie(G).

Theorem 3 (Lie’s second theorem). Given a Lie groupoid G and H, where G
is source 1-connected. For any morphism ϕ : Lie(G)→ Lie(H), there exists

a unique Lie groupoid morphism Φ : G → H such that Φ∗ = ϕ.

However, Lie’s third theorem does not hold anymore: it turns out that

there exist Lie algebroids that cannot be integrated by any Lie groupoid. The

integration problem for Lie algebroids was solved in [4], where a necessary

and sufficient condition was found for integrability of Lie algebroids in terms

of certain objects called the monodromy groups. We now explain this result

in some detail.

1.3.1 The Weinstein groupoid

Given a Lie algebroid, one can construct a “candidate integration”, called

the Weinstein groupoid, as follows.

Definition 6. Given a Lie algebroid A, an A-path is a pair (a, γ) consisting

of a path a : I → A and a path γ : I →M such that:

• p ◦ A = γ, where p : A →M is the vector bundle projection;

• ρ(a(t)) =
dγ

dt
(t), for all t ∈ I.

We denote the set of A-paths by P (A).

Definition 7. Given two A-paths a0 and a1, we say a0 is A-homotopic to

a1 if there is a Lie algebroid morphism

T (I × I) A

I × I M

a(t,ϵ)dt+b(t,ϵ)dϵ

γ(t,ϵ)

satisfying the boundary conditions γ(i, ϵ) = xi, a(t, i) = ai(t), b(i, ϵ) = 0 for

i = 0, 1. We denote the equivalence relation on P (A) defined by A-homotopy

by ∼.
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Definition 8. The Weinstein groupoid is defined as G(A) = P (A)/ ∼.

The groupoid structure on G(A) is as follows. The source and target

maps are given by the start and end points of the base path, multiplication is

given by “concatenation” of A-paths, inversion is reversal of the orientation

of an A-path, and the unit map is given by constant zero paths. We refer to

[4] for the details.

As mentioned above, G(A) is not always a Lie groupoid. However, it does

always have the structure of a topological groupoid. This follows from the

fact that P (A) has the structure of a Banach manifold. It turns out that

smoothness of G(A) is equivalent to integrability of A, but there is a more

useful way of determining integrability in terms of objects intrinsic to the

Lie algebroid itself, which we now introduce.

1.3.2 (Ordinary) Monodromy groups

Let A → M be a Lie algebroid and let x ∈ M . The monodromy group

at x is a certain subgroup of G(gx), the Lie group integrating the isotropy

Lie algebra at x. The monodromy groups of A determine its integrability.

Writing L for the leaf of A containing x, the monodromy group is defined in

terms of the monodromy map, which is a homomorphism from the second

homotopy group of L to G(gx). We will define this map in its full generality,

referring to [4] for the details.

Definition 9. The (ordinary) monodromy group Nx is the image of

∂x : π2(L, x)→ G(gx).

Theorem 4 ([4] Crainic & Fernandes). For a Lie algebroid A, the following

statements are equivalent:

1. A is integrable.

2. G(A) is smooth.

3. the monodromy groups Nx(A) are locally uniformly discrete.

Moreover, in this case, G(A) is the unique source 1-connected Lie groupoid

integrating A.
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In general, the monodromy groups are hard to compute directly from

the definition. Fortunately, there are more convenient ways to compute it in

certain cases.

As above, let x ∈ M and let L be the leaf of A through x. There is a

short exact sequence

0 gL AL TL 0
ρ

σ

for which we choose a splitting σ : TL → AL. Associated to this splitting

there is the curvature Ω ∈ Ω2(L, gL) defined by Ω(X, Y ) = σ([X, Y ]) −
[σ(X), σ(Y )]. When this curvature 2-form takes values in the center Z(gL) ⊂
gL, the monodromy map is given by

∂x([γ]) = exp

(∫
γ

Ω

)
.

1.4 Cotangent Lie algebroid of a Poisson Man-

ifold

Definition 10. A Poisson manifold is a pair (M,π) consisting of a smooth

manifold M and a bivector π ∈ X2(M) satisfying [π, π] = 0.

A Poisson structure can also be defined as a Lie bracket on the space

of smooth functions which is also a biderivation. However, the bivector

perspective is more convenient for our purpose.

Example 4 (Linear poisson structure). Let g be a Lie algebra with basis

ei and g∗ its dual with basis σi. Suppose the bracket on g is defined by

[ei, ej] =
∑
i,j,k

cijk ek. Then (g∗, πg is a Poisson manifold, where πg is defined

by:

πg =
1

2

∑
i,j,k

cijk σk
∂

∂σi
∧ ∂

∂σj

Given a Poisson manifold (M,π), its cotangent bundle has an induced

Lie algebroid structure, which we now describe. The anchor is given by the

contraction map π# : T ∗M → TM,α 7→ iαπ and the Lie bracket on the

space of one forms Ω1(M) is given by:

[α, β]π := Lπ♯α(β)− Lπ♯β(α)− d(π(α, β)).
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We call (T ∗M, [·, ·]π, π#) the cotangent Lie algebroid associated to (M,π).

Thus the objects associated to Lie algebroids also appear for Poisson

manifolds. In particular, im(π#) ⊂ TM integrates to a singular foliation,

and for any x ∈M there is the isotropy Lie algebra ker(ρx) ⊂ T ∗
xM . When

(M,π) is regular, meaning that the cotangent Lie algebroid is regular, the

isotropy Lie algebra is exactly the conormal space to the foliation.

Lemma 1. For a regular Poisson manifold, the isotropy Lie algebras are

abelian.

1.5 Diffeology

As mentioned in the introduction, diffeology has many applications in the

study of Lie algebroids. We are particularly interested in diffeology because

it allows us to study singular quotients of Lie groupoids and its potential

infinitesimal version(s). In this section we give a brief introduction to diffe-

ologies. We explain in Example 7 how diffeological spaces provide a useful

middle ground between topological spaces and smooth manifolds.

A parametrization of a set X is a map from any open U ⊂ Rn to X.

Definition 11. A diffeological space is a non-empty set X together with a

set D of parametrizations p : U → X, such that:

• For all x ∈ X and U ⊂ Rn, the constant parametrization x : U →
X, r 7→ x is in D.

• If P : U → X is a parametrization and for any r ∈ U there exists open

neighborhood V of r such that P |V ∈ D, then U ∈ D.

• For any smooth parametrization P : U → X in D and smooth map

F ∈ C∞(V, U), P ◦ F is in D.

We call the elements of D the plots of the diffeological space.

A map f : X → X ′ is smooth if for each plot P of X, f ◦P is a plot of X ′.

Example 5. 1. Given a set X, the set of all parametrizations form a

diffeology, called the course or trivial diffeology.
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2. Given a set X, the set of all locally constant parametrizations form a

diffeology, called the fine or discrete diffeology. For a plot P : U → X,

it is locally constant if for any r ∈ U , P |V is constant for some open

neighborhood of r.

3. Given a smooth manifold M , the set of all smooth parametrizations

C∞(U,M) is a diffeology. This is called the standard diffeology on a

manifold.

Definition 12. For a diffeological space (X,D), its D-topology TD is the

finest topology making all the plots continuous, i.e.:

TD := {O ⊂ X : P−1(O) is open,∀P ∈ D}.

Example 6. It is easy to see the D-topology for the diffeological space in

example 5 are the trivial topology, discrete topology and the usual topology on

manifolds respectively.

For two diffeologies D and D′ on X, we say D is finer than D′ if D ⊂ D′.

It is easy to see that when if D is finer than D′ then TD ⊃ TD′ . In other

words, a finer diffeology has a finer D-topology. However, the converse is

not true. We will turn to this in Example 7 after introducing the quotient

diffeology.

Definition 13. Let (X ′,D′) be a diffeological space and f : X → X ′ a map.

The pullback diffeology f ∗(D′) on X consists of all the parametrizations of X

such that f ◦ P is a plot of X ′.

The pull back diffeology is the coursest diffeology on X such that f is

smooth.

Definition 14. Given a family of diffeological spaces {(Xi,Di)}i∈I, the

product diffeology of the product space
∏
i∈I

Xi is defined as D =
⋂
i∈I

π∗(Di).

The product diffeology is the finest diffeology making the projections

smooth.

Definition 15. Let (X,D) be a diffeological space and f : X → X ′ a map.

The pushforward diffeology f∗(D) on X is defined as follows: P ∈ f∗(D) if

and only if for any r ∈ U there exists an open neighborhood V of r such that

either P |V is constant or P |V = f ◦Q for some Q ∈ D.
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The pushforward diffeology is the finest diffeology making f smooth.

Definition 16. Given a diffeological space (X,D) and a quotient map q :

X → X̃, the quotient diffeology on X̃ is the pushforward of D by p.

Proposition 4. Given quotient map q : X → X ′, the D-topology on X ′ is

the same as the quotient topology of the D-topology on X, i.e. Tq∗D = q∗TD.

The following example shows that diffeology can be studied on non-smooth

spaces and carries more information than topology.

Example 7. [12]) Consider the quotient R/Q, where R is equipped with

the standard diffeology. The D-topology is the usual topology. It is easy to

see that the quotient topology is trivial. However, the quotient diffeology is

strictly finer than the course diffeology on S1. Thus we have that TD0 is the

same as (thus finer than) Tq∗D, but (S1,D0) is not finer than (S1, q∗(D))

Definition 17. A diffeological group is a group equipped with a diffeology

such that the multiplication and the inversion are smooth.

Any subgroup of a diffeological group is a diffeological subgroup (with the

subspace diffeology). Given a diffeological group G and a normal subgroup

H, the quotien G/H is a diffeological group with the quotient diffeology.

Definition 18. A diffeological groupoid is a groupoid G where the set of

morphisms G1 and objects G0 are equipped with diffeology such that all the

structure maps are smooth.
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Chapter 2

Abelianization of Lie algebroids

2.1 Definition

We call a Lie algebroid abelian if all the isotropy Lie algebras are abelian.

Definition 19. An abelianization of a Lie algebroid A →M consists of

1. an abelian Lie algebroid Aab →M , and

2. a surjective morphism p : A → Aab
covering the identity,

such that for any open subset U ⊂M , any abelian Lie algebroid B → N and

morphism ϕ : A|U → B, there is a unique morphism ϕ̃ such that the following

diagram commutes:

A|U B.

Aab|U

ϕ

p
∃!ϕ̃

Clearly, if the abelianization of A exists, it is unique up to isomorphism.

We will call Aab the abelianization of A when it does not cause confusion.

We will denote the anchor of Aab by ρab and its bracket by [·, ·]ab. We will

use (gab)x to denote the isotropy Lie algebras of Aab and gabx to denote the

abelianization of the isotropy Lie algebras gx. In general, these two Lie

algebras are different.

Example 8 (Lie algebras). Let A = g be a Lie algebra. Then its abelianiza-

tion is

gab = g/[g, g].
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Example 9 (Transitive Lie algebroids [7]). Let A →M be a transitive Lie

algebroid. Its isotropy bundle gM is then a vector subbundle of A and in

fact an ideal. It is proved in [7] that the abelianization of A is the quotient

algebroid

Aab = A/[gM , gM ].

In particular, ker ρabx ≃ gabx and [gx, gx] ⊂ ker(px), where p : A → Aab is the
quotient map.

Remark 1. Our definition of abelianization has a sheaf flavor and hence

differs from the one in [7]. For example, we can restrict A to any open set

O ⊂M and we obviously have

(A|O)ab = (Aab)|O.

This is in line with the fact that one sometimes needs to think of Lie algebroids

as sheaf-like objects. For instance, in the holomorphic category, where the

bracket is only defined on the sheaf of holomorphic sections of A, our definition
still makes sense, while the one from [7] does not. However, for transitive

(smooth) Lie algebroids, the two definitions are equivalent, so all the results

in [7] still hold for our definition.

In the next sections we aim to investigate the existence of abelianization

of general Lie algebroids, beginning with bundles of Lie algebras, progressing

to the regular ones and finally the general case.

2.2 Bundle of Lie algebras

Bundles of Lie algebras, even when admitting an abelianization, can already

have different properties from the transitive case.

Example 10 ([7]). Consider A = R2 × R→ R equipped with the bracket

[e1, e2]x = xe1,

where e1 and e2 denote the constant sections x 7→ (1, 0, x) and x 7→ (0, 1, x).

This bundle of Lie algebras has abelianization the bundle of abelian Lie

algebras

Aab = R× R→ R,

17



Notice that at x = 0, the isotropy of A is g0 = gab0 ≃ R2, so abelian, but Aab

has smaller isotropy, namely (gab)0 = R.

In general, a bundle of Lie algebras may not admit an abilianization.

Before looking at more examples, let us first take a look at some basic

properties of abelianizations. The following lemma was proved in [7], but it

is easily seen to hold also for our definition of abelianization.

Lemma 2. If Aab is the abelianization of A, then I(ρ) = I(ρab) and

[gM , gM ] ⊂ ker p.

Hence, A and Aab have the same foliation. Also, since p : A → Aab has

closed kernel, we also deduce that:

Corollary 1. If Aab is the abelianization of A, then [gM , gM ] ⊂ ker p.

Example 11 (Bundles of Lie algebras with no abelianization). Let us replace

the bracket in Example 10 by

[e1, e2]x := f(x)e1,

where f vanishes on an open interval I = (a, b) ⊊ R. Then the resulting

bundle no longer admits an abelianization. Indeed, a potential abelianization

Aab must have rank(ker p) ≥ 1. But then

(Aab)I ⊊ (AI)ab ≃ R2 × I,

a contradiction (cf. Remark 1).

One can also consider the bundle of Lie algebras A = R2 × R2 → R2

equipped with the bracket

[e1, e2](x,y) := xe1 + ye2.

Although [gx, gx] = 0 at origin and R otherwise, one actually has [gM , gM ]0 ≃
R2. An argument using the rank, similar to the previous example, shows that

this bundle does not admit an abelianization.

The previous example can be summarized by saying that if on an open

set O ⊊M the rank of [gM , gM ] is lower than the highest rank of [gM , gM ],

18



then the abelianization cannot exists since one would obtain

(Aab)|O ⊊ (A|O)ab.

This lead us to the following characterization of the bundles of Lie algebras

that admit an abelianization:

Proposition 5. A bundle of Lie algebras gM has an abelianization if and

only if [gM , gM ] is a subbundle of gM . In this case,

(gM)
ab

= gM/[gM , gM ].

Proof.

(⇐) Let gM be a bundle of Lie algebras. If [gM , gM ] is a subbundle of

gM , then clearly gM/[gM , gM ] is an abelian bundle of Lie algebras. Since

the quotient map is a surjective morphism covering the identity, we only

need to show that it satisfies the universal property. So let U ⊂ M be

an open set, B → N an abelian Lie algebroid and ϕ : (gM)|U → B some

morphism. Since kerϕ is closed in (gM)|U and [gM , gM ]|U ⊂ kerϕ, we must

have [gM , gM ]|U ⊂ ker(ϕ). It follows that the universal property holds.

(⇒) Suppose [gM , gM ] is not a subbundle and gM has an abelianization

p : gM → (gM)ab. Then [gM , gM ] ⊂ ker p and if we let n be the rank of ker p

we claim that:

• there exists an open O ⊂M such that ([gM , gM ])|O has constant rank

k < n.

Indeed, on the one hand, the set

{x ∈M : rankx[gM , gM ] = n} = {x ∈M : [gM , gM ]x = ker px}

is closed. So its complement is a non-empty, open subset U ⊂ M . On the

other hand, the sets where rank [gM , gM ] is constant < n are finite and their

union is U , so they cannot all have empty interior.

Let B → O be a subbundle of (gM)|O complementary to ([gM , gM ])|O,

which we view as a trivial bundle of Lie algebras. The projection ϕ :

(gM)|O → B is a morphism of Lie algebroids which clearly does not factor

through p : gM → (gM)ab, contradicting the universal property of the

abelianization.
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Abelianization of a Lie algebroid is not preserved by quotients since sums

of ideals are not always a subbundle.

Example 12. Consider Lie algebra bundle gM over R with fiber g = R4

equipped with [e1, e2] = e3, [ei, ej] = 0 otherwise. Clearly gM has abelian-

ization where fibers are < e1, e2, e4 >. Now take the ideal generated by

h = f(x)e3 + (1− f(x))e4, where f(x) = 1 on some interval I but f(x) ̸= 1

outside. Then the quotient g/h is abelian on I but non-abelian outside. Thus

h does not admit an abelianization.

Before moving to more general cases, we prove the following technical

but important fact.

Lemma 3. If gM is a bundle of Lie algebras such that [gM , gM ] is a subbundle,

then there exist a dense, open, saturated subset O ⊂M such that [gM , gM ]|O =

[gM , gM ]|O.

Proof. Consider the sets

Sk = {x ∈M | dim([gM , gM ]x) = k}.

and let n = max{k | Sk ̸= ∅}. Then O := Sn is open in M and we have

[gM , gM ]|O = [gM , gM ]|O.

Also, since [gM , gM ] is a subbundle, it follows that n = rank[gM , gM ]. We

claim that O = M . Indeed, if this fails then we can repeat the argument

replacing M by M ′ = M − O. We obtain sets S ′
k, with k < n, and n′ =

max{k | S ′
k ̸= ∅} < n such that n′ = rank[gM , gM ], contradicting that

[gM , gM ] is a subbundle.

The fact that O is saturated follows from the fact that the sets Sk are

saturated. To see this, let x and y belong to the same leaf of A. One can

choose a compactly supported section s ∈ Γ(A) such that the time-1 flow of

the vector field ρ(s) satisfies

φ1
ρ(s)(x) = y.

Then the time-1 flow of the section s (see, e.g., [4]) is a Lie algebroid

automorphism which maps gx to gy and hence also [gM , gM ]x to [gM , gM ]y.

Hence, if x ∈ Sk we must have y ∈ Sk, so Sk is saturated.
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This already allows us to prove one half of Theorem 1.

Proposition 6. Let A be a Lie algebroid with isotropy gM and assume that

[gM , gM ] ⊂ A is a vector subbundle. Then A has abelianization the quotient

p : A → A/[gM , gM ].

Proof. We claim that [gM , gM ] is an ideal in A, i.e., that

s ∈ Γ(A), ξ ∈ Γ([gM , gM ]) =⇒ [s, ξ] ∈ Γ([gM , gM ]).

To see this, note that if ξ ∈ Γ([gM , gM ]) then over the open set O given by

Lemma 3 there are sections ξi ∈ Γ(gM |O) and real numbers aij such that

ξ|O =
∑
i<j

aij[ξi, ξj].

It follows that if s ∈ Γ(A), one has

[s, ξ]|O =
∑
i<j

aij ([[s, ξi], ξj] + [ξi, [s, ξj]]) ∈ [gM , gM ]|O.

Therefore, we must have [s, ξ] ∈ Γ([gM , gM ]), and the claim follows.

Since [gM , gM ] is an ideal in A, it follows that there is a unique Lie

algebroid structure such that quotient map

p : A → A/[gM , gM ]

is a morphism of Lie algebroids. Moreover, this quotient has abelian isotropy

gM/[gM , gM ], so we only need to check that the universal property holds.

Let U ⊂ M be an open subset, B → N an abelian algebroid and

ϕ : A|U → B an algebroid morphism. Applying Lemma 3 again, U ∩ O
is an open dense subset of U where

[gM , gM ]|O∩U = [gM , gM ]|O∩U .

It follows that [gM , gM ]|U ⊂ kerϕ, so there is a unique morphism ϕ̃ such that
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the following diagram commutes

A|U B.

Aab|U

ϕ

p
∃!ϕ̃

so the universal property holds.

2.3 Regular Lie algebroids

We now consider the existence of abelianizations for arbitrary regular Lie

algebroids. Note that a Lie algebroid A → M is regular if and only if its

isotropy gM ⊂ A is a subbundle. Therefore, in this case, if {s1, . . . , sn} is a

basis of local sections of gM over an open sen U , one has

[si, sj](x) = [si(x), sj(x)], ∀x ∈ U.

It follows also that [gM , gM ]x is generated by [si, sj](x).

2.3.1 The semi-direct product construction

In the sequel we will use the fact that one can recover a regular Lie algebroid

from its foliation and isotropy bundle. We recall briefly how this works and

refer, e.g., to [13] for details.

Let A be a regular Lie algebroid. A choice of a splitting of the short

exact sequence defined by the anchor

0 gM A TF 0
ρ

σ

allows to identify A with TF⊗gM so that the anchor becomes the projection

on TF . On the other hand, the Lie bracket becomes

[(X, ξ), (Y, η)]A = ([X, Y ], [ξ, η]gM +∇Xη −∇Y ξ + Ω(X, Y )), (2.1)

where
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• ∇ is the TF -connection on gM defined by

∇Xξ := [σ(X), ξ]A;

• Ω ∈ Ω2(TF , gM) is the curvature form of the splitting given by

Ω(X, Y ) := σ([X, Y ])− [σ(X), σ(Y )]A.

It is easy to check that under this isomorphism the Jacobi identity for [·, ·]A
amounts to the following set of identities:

∇X [ξ, η]gM = [∇Xξ, η]gM + [ξ,∇Xη]gM ,

[Ω(X, Y ), ξ]gM = ∇X∇Y ξ −∇Y∇Xξ −∇[X,Y ]ξ, (2.2)⊙
X,Y,Z

(
Ω([X, Y ], Z) +∇X(Ω(Y, Z))

)
= 0,

where ξ, η ∈ Γ(gM), X, Y, Z ∈ Γ(TF), and the symbol ⊙ denotes cyclic

summation.

The converse also holds. Given a foliation F of M , a bundle of Lie

algebras gm →M , a TF -connection ∇ and a gM -valued 2-form Ω satisfying

identities (2.2), then one obtains a Lie algebroid structure on TF ⊕ gM with

Lie bracket (2.1) and anchor ρ = prTF . We denote this Lie algebroid by

TF ⋉ gM . The previous discussion shows that one has the following simple

proposition.

Proposition 7. Any regular Lie algebroid is isomorphic to TF ⋉ gM for

some quadruple (gM , TF ,∇,Ω) satisfying (2.2).

We also use the following notation. Given a collection of subspaces

E =
⋃
x∈M

Ex ⊂ gM ,

which is not necessarily a subbundle (e.g., E = [gM , gM ]), we still denote the

subspace of sections which take values in E by

Γ(E) := {s ∈ Γ(gM) : s(x) ∈ Ex for all x ∈M}.

Also, given a TF -connection ∇ on gM we will say that ∇ preserves E if for
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every X ∈ Γ(TF) one has

s ∈ Γ(E) =⇒ ∇Xs ∈ Γ(E).

The following result will be useful in the sequel.

Lemma 4. Given a bundle of Lie algebras gM , any TF-connection ∇ on

gM satisfying (2.2), preserves [gM , gM ]. Moreover, ∇ also preserves [gM , gM ]

provided the latter is a subbundle.

Proof. For the first part, it is enough to show the result holds locally. Let

U ⊂M be any trivializing open of gM and let {si} be a local basis of sections.

Then

∇X [fsi, gsj] = LieX(fg)[si, sj] + fg[∇Xsi, sj] + fg[si,∇Xsj].

The second part follows immediately from Lemma 3.

2.3.2 Decomposition of morphisms

Consider a morphism of regular Lie algebroids ϕ : A1 → A2 covering the

identity. Then they share the same foliation F and we have a commutative

diagram with exact rows

0 g1M A1 TF 0

0 g2M A2 TF 0

ρ1

ρ2

ϕ|g ϕ Id
σ1

σ2

If we choose choose a splitting σ1 : TF → A1 of the anchor of A1, we obtain

a splitting σ2 := ϕ ◦ σ1 : TF → A2 of the anchor of A2. These splittings give

identifications

Ai ≃ TF ⋉ giM .

We conclude that to specify the morphism ϕ : A1 → A2 amounts to specifying

the following data:

• TF -connections ∇i on giM and 2-forms Ωi ∈ Ω2(M, giM ) satisfying (2.2);

• a morphism of Lie algebra bundles ϕ : g1M → g2M covering the identity
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compatible with ϕ, i.e., satisfying

ϕ ◦ ∇1 = ∇2 ◦ ϕ, ϕ ◦ Ω1 = Ω2. (2.3)

Proposition 8. Let ϕ : g1M → g2M be a surjective morphism of Lie algebra

bundles and let ∇1 and Ω1 be a TF-connection and 2-form on g1M satisfying

(2.3). If ∇1 preserves kerϕ then:

1. there exists a unique TF-connection ∇2 and a unique 2-form Ω2 on

g2M satisfying (2.3), and

2. ϕ extends to a surjective Lie algebroid morphism

(Id, ϕ) : TF ⋉ g1M → TF ⋉ g2M .

Proof. Let σ : g2M → g1M be a splitting of ϕ : g1M → g2M . Then the expression

∇2
Xξ := ϕ(∇1

X(σ ◦ ξ)),

defines a TF -connection on g2M . Since ∇1 preserves kerϕ, if one sets Ω2 :=

ϕ ◦ Ω1, one checks easily that the pair (∇2,Ω2) satisfies (2.2) and that (2.3)

holds. Both items should now be obvious.

This can also be restated as follows.

Corollary 2. Let ϕ : A1 → A2 be a surjective morphism, covering the

identity, between regular Lie algebroids. A choice of splitting of the anchor

of A1 determines isomorphisms Ai ≃ TF ⋉ giM , such that ϕ becomes

ϕ = (Id, ϕ|g) : TF ⋉ g1M → TF ⋉ g2M .

2.3.3 Existence of abelianizations for regular Lie alge-

broids

We are now ready to look into the abelianization of any regular Lie algebroid.

Proposition 9. Let A be a regular Lie algebroid with isotropy gM . Then

A has an abelianization if and only if [gM , gM ] ⊂ A is a vector subbundle.
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Moreover, if A ≃ TF ⋉ gM for a quadruple (gM , TF ,∇,Ω) then ∇ and Ω

induce a TF-connection and a 2-form on

g
ab

M := gM/[gM , gM ]

and

Aab ≃ TF ⋉ gabM .

Proof. Assume first that [gM , gM ] ⊂ A is a vector subbundle. From Proposi-

tion 6 we already know that A has abelianization

Aab = A/[gM , gM ].

If we assume that A ≃ TF ⋉ gM for a quadruple (gM .TF ,∇,Ω), it follows

from Lemma 4 that ∇ preserves [gM , gM ]. By Proposition 8, ∇ and Ω induce

a TF -connection and a 2-form on g
ab

M := gM/[gM , gM ] for which we have

Aab ≃ TF ⋉ gabM .

Conversely, suppose A has abelianization p : A → Aab
. We claim that

gM also admits an abelianization, so by Proposition 5 we conclude that

[gM , gM ] ⊂ A is a vector subbundle.

It remains to prove the claim. For that, observe that we have a commu-

tative diagram with exact rows

0 gM A TF 0

0 g
ab

M Aab
TF 0,

ρ

ρ
ab

pg p Id

where gabM is the isotropy bundle of Aab and pg = p|gM . If gM does not admit

an abelianization, then by Lemma 3, we know that [gM , gM ] does not have

constant rank. Furthermore, as we saw in the proof of Proposition 5, we can

find an open O ⊂M such that

rank([gM , gM ]|O) = k < n = max
x∈M

(
rank[gM , gM ]x

)
.

If we consider the Lie algebroid A|O, after choosing a splitting of its anchor,
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Corollary 2 yields a Lie algebroid morphism

ϕ : A|O → B := A|O/[gM , gM ]|O,

where B is an abelian Lie algebroid. Clearly ϕ cannot be factored by

p : A → Aab, which contradicts Aab being the abelianization of A. Thus gM

must have an abelianization, as claimed.

2.4 Main theorem

We consider now arbitrary, possibly non-regular, Lie algebroids. Observe that

the definition of the abelianization shows that if A →M has abelianization

Aab, then for any open set U ⊂ M the restriction A|U has abelianization

Aab|U . The following proposition gives a partial converse.

2.4.1 Locally regular Lie algebroids

Proposition 10. Let p : A → Aab be a surjective morphism of Lie algebroids

over the identity, where Aab is abelian. If there exists a dense open O ∈M
such that Aab|O is the abelianization of A|O, then Aab is the abelianization

of A.

Proof. Since p is surjective, ker(p) is a subbundle of A. Let ϕ : A|U → B be

a morphism, where B is abelian. Since Aab|O is the abelianization of A|O,

we have that ker(p|U∩O) ⊂ ker(ϕ|U∩O). It follows that

ker(p|U) = ker(p|U∩O) ⊂ ker(ϕ|U∩O) ⊂ ker(ϕ),

where we use that O is an open dense set and that ker(p) is a subbundle

(here the closures are in A|U). Thus there is a unique induced algebroid

morphism ϕ̃ : Aab|U → B such that ϕ̃ ◦ p = ϕ. So Aab is the abelianization of

A.

Given a Lie algebroid A →M , we consider the set of points where the

rank of the anchor is locally constant

Mreg := {x ∈M : ∃ open V ∋ x with rank(ρy) = rank(ρx), ∀y ∈ V }.

27



Since the rank takes only a finite number of values and it cannot drop locally,

i.e., every x ∈M has a neighborhood U such that

rank(ρx) ≤ rank(ρy), ∀y ∈ U,

it follows that Mreg ⊂M is an open dense set.

2.4.2 Main theorem

Theorem 5. . A Lie algebroid A has an abelianization if and only if

[gM , gM ] ⊂ A is a vector subbundle.

Proof. We already know that if [gM , gM ] ⊂ A is a vector subbundle then A
admits an abelianization (cf. Proposition 6).

For the converse, suppose A admits an abelianization p : A → Aab. Let O

be a connected components of Mreg. Since A|O is regular with abelianization

Aab|O, it follows from Proposition 9 and Lemma 3 that there is an open

dense subset O′ ⊂ O where

ker(px) = [gx, gx], ∀x ∈ O′.

The union of the sets O′, where O varies in the collection of all connected

components on Mreg, is an open dense set M ′ ⊂M where

ker(p|M ′) = [gM , gM ]|M ′ .

Since ker(p) is a subbundle, we must have [gM , gM ] = ker(p), so the result

follows.

2.5 Applications

2.5.1 Functoriality

Proposition 11. Let f : M → N be a submersion and A → N a Lie

algebroid with abelianization Aab. Then f !A admits an abelianization and

one has

(f !A)ab ≃ f !(Aab).
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Proof. Since the image of a submersion is an open set, we can restrict A to

f(M). Hence, without loss of generality, we can assume that f is surjective.

Let p : A → Aab be an abelianization of A. Then f !p : f !A → f !Aab is a

surjective morphism onto an abelian algebroid. Also, if gN is the isotropy

bundle of A, then the isotropy bundle of f !A is

gM := {(a, 0x) ∈ A× TM : ρ(a) = 0f(x)} = f ∗gN .

It follows that

[gM , gM ] = f ∗[gN , gN ].

By Lemma 3, there is an open dense set O ⊂ N where

ker(p)|O = [gN , gN ]|O.

Since f is a surjective submersion, O′ := f−1(O) is an open dense set in M

where we have

ker(f !p)|O′ = [gM , gM ]|O′ .

This implies that

[gM , gM ] = ker(f !p),

so [gM , gM ] ⊂ f !A is a vector subbundle. By Theorem ??, f !A has abelian-

ization

(f !A)ab = (f !A)/[gM , gM ] = f !(A/[gN , gN ]) = f !(Aab).

In the previous proof the assumption that f : M → N is a submersion

was used to guarantee that the preimage of a dense open subset O ⊂ f(M)

is an open dense subset of M . This property still holds if f : M → N is a

surjective map transverse to a (non-singular) foliation F of N and the open

dense set O ⊂M is saturated. Hence, for regular Lie algebroids we have the

following result.

Proposition 12. Let A → N be a regular Lie algebroid and let f : M → N

be a surjective map transverse to the anchor ρA. If A has an abelianization
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Aab, then f !A admits an abelianization and one has

(f !A)ab ≃ f !(Aab).

Proof. Since f is transverse to the anchor ρA, the pullback algebroid f !A
is well defined. The proof of the previous proposition holds word-by-word

if one can show that f−1(O) is open and dense in M where O ⊂ N is the

dense, saturated, open set given by Lemma 3.

To see this, cover M by foliated charts (Ui, ϕi) for TF = im(ρA). So

ϕi : Ui → Rq is a submersion such that the plaques of F in Ui are the level

sets ϕ−1
i (p). Since f : M → N is transverse to F , the composition

fi := ϕi ◦ f : f−1(Ui)→ Rq,

is a submersion. Since O is saturated, we see that

f−1(O ∩ Ui) = f−1
i (ϕi(O ∩ Ui))

is open and dense in f−1(Ui). Since f is surjective and N =
⋃
I Ui, it follows

that f−1(O) is open and dense in M , as claimed.

Example 13. Let M = T2 ≃ (R/2πZ)2 and consider the Lie algebroid

A → T2 with underlying bundle the trivial rank 3 vector bundle, anchor

ρ(e1) :=
∂

∂θ1
, ρ(e2) = ρ(e3) := 0,

and Lie bracket defined by

[e2, e3](θ1,θ2) := sin(θ2) e2, [e1, e2] = [e1, e3] := 0.

This is a regular Lie algebroid with isotropy bundle

gM = Re2 ⊕ Re3,

and commutator bundle

[gM , gM ](θ1,θ2) =

Re1, if θ2 ̸= 0

0, if θ2 = 0.
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This has closure [gM , gM ] = Re1, a vector subbundle of A, so the abelianiza-

tion Aab exists (and has rank 2).

Now consider the surjective map f : T2 → T2, f(θ1, θ2) = (s(θ1), θ2),

where s : S1 → S1 is a surjective map which equals 0 on some open interval

I ⊂ T. The map f is transverse to the anchor, so by Proposition 12 the

abelianization of f !A exists.

2.5.2 Cotangent Lie algebroid of a Poisson Structure

Proposition 13. Any non-abelian cotangent Lie algebroid of a Poisson

manifold does not admit an abelianization.

Proof. Let T ∗M a non-abelian cotangent Lie algebroid of a Poisson structure

(M,π), then there exist x ∈ M such that [gx, gx] ̸= 0. Now take locally

regular O ⊂M . On each connected componentOi of O, the Poisson stucture

Oi, πOi
is regular, thus T ∗Oi is abelian, i.e. [g, g] = 0 on Oi. Thus [g, g] is

not a subbundle and by Theorem 5, T ∗M admits no abelianization.

Example 14. Consider a linear Poisson structure (g∗, πg) corresponding to

a Lie algebra g. It is easy to see that if g is abelian, then the cotangent Lie

algebroid is abelian. If g is non-abelian, notice π♯ is trivial at 0, the isotropy

g0 is isomorphic to T ∗
0 g

∗ ≃ g, thus is not abelian. So by Propostion 13, it

has no abelianizaiton.
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Chapter 3

Abelianization of groupoids

3.1 Definition

A groupoid is called abelian if all the isotropy groups are abelian.

Definition 20. The abelianization of G ⇒M consists of:

• An abelian groupoid Gab ⇒M ;

• a surjective morphism p : G → Gab covering IdM ;

such that for any open subset U ⊂ M , any abelian groupoid H ⇒ N and

morphism ψ : G → H, we have:

G|U H

Gab|U

ψ

p
∃!ψ̃

.

Just as in the case of Lie algebroids, the abelianization is unique, if it

exists.

The abelianization of groupoids is heavily dependent on the category

we are working in. The existence of abelianizations differs greatly between

different categories, and even if it exists in two categories, the abelianiza-

tions themselves can be different. The following examples illustrate these

phenomena.

Example 15. A set-theoretical groupoid always has an abelianization Gab =

G/(GM ,GM). In particular, the set-theoretical abelianization of a group is

G/(G,G).
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Example 16. A Lie group always has an abelianization Gab = G/(G,G).

So we see that already for a group, the abelianizations can differ between

categories, since in general (G,G) ⊊ (G,G).

Example 17. [14] Consider G = ( ˜SL(2,R)× S1/)Z, where Z is embedded

as the covering group of ˜SL(2,R) as the universal cover of SL(2,R), and

as a non-discrete subgroup of S1. Note that since (SL(2,R), SL(2,R)) =

(SL(2,R)), the commutator (G,G) is actually dense in G, thus (G,G) =

G ̸= (G,G).

A Lie groupoid does not always admit a smooth abelianization.

Example 18. [7] Consider the action Lie groupoid G = SO(3)× R3 ⇒ R3

of SO(3) acting on R3 by rotation. The isotropy G0 at 0 is SO(3), and so is

its commutator (G0,G0). Any potential abelianization will need to quotient

out (G0,G0) and thus can not recover the natural map from this groupoid to

the pair groupoid R3 × R3 away from 0.

3.2 Abelianization in the diffeological cate-

gory

Proposition 14. A diffeological groupoid G has abelianization G/(G,G).

Proof. We just need to show that all the structure maps are smooth. The

identity map ũ = q ◦ u is clearly smooth. The rest follows from the following

commutative diagrams:

inverse:

G1 G1

G̃1 G̃1

i

q q

ĩ

, multiplication:

G2 G1

G̃2 G̃1

m

q×q q

m̃

,

source and target:

G

G̃1 G0

sq

s̃

,

G

G̃ G0

tq

t̃

We might want to consider a subcategory with stronger assumptions.

Definition 21. A smooth map f : X → X ′ is a subduction if the map is

surjective and the diffeology D′ on X ′ is the pushforward of the diffeology D
on X.
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The source and target maps of a diffeological groupoid are automatically

a subduction.

Definition 22. A smooth map f : X → X ′ is locally subductive at x ∈ X if

for any plot P of X ′ such that P (0) = f(x), there exist an open neighborhood

V of 0 and a plot Q : V → X of X such that Q(0) = x and f ◦ Q = P |V .
We call f a local subduction if it is locally subductive at all x ∈ X.

Example 19. Let f : R → R be such that f(0) = 1 and f vanishes when

|x| > 1. Then g : R2 → R = f(x)·y is a subduction but not a local subduction.

A diffeological groupoids is called locally subductive if the source and

target maps are local subductions.

Proposition 15. A locally subductive diffeological groupoid G has abelian-

ization Gab = G/(G,G).

Proof. Let [g] ∈ Gab1 and P be a plot of G0 = G̃0 such that P (0) = sab(g̃).

Then since s is locally subductive, we have open neighborhood V of 0 and

Q in plot of G1 such that Q(0) = g and s ◦Q = P |V . Now take Q̃ = q ◦Q,

which will be a plot of Gab1 . We have Q̃(0) = [g] and s̃ ◦ Q̃ = s ◦ Q = P |V .

Thus s̃ is a local subduction.

3.3 Abelianization in the smooth category

We already saw that a Lie groupoid does not always admit a smooth abelian-

ization. But for transitive Lie groupoids, we can always find an abelianization

as in the following proposition.

Proposition 16. [7] A transitive Lie groupoid has abelianization Gab =

G/(G,G).

Let (G,G) be the closure of the commutator (G,G) in G. Let (G,G)
s

=⋃
(Gx,Gx)

s
be the union of all “fiberwise closures” of (Gx,Gx). By “fiberwise

closure”, we mean that (Gx,Gx)
s

is the closure of the commutator of Gx in

the source fiber. In general, these two closures are not the same.

Example 20 ([7]). Let us look at the groupoid version of Example 10. There

(G,G) is the trivial line bundle over R, while (G,G)
s
is 0-dimensional at 0.
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It is immediate from Proposition 3 that if (G,G) is a normal Lie sub-

groupoid, then G/(G,G) is the abelianization of G.

Lemma 5. If (G,G) is a subgroupoid of G, then (G,G) is normal.

Proof. Consider l ◦ g ◦ l−1 where g ∈ (G,G) and l ∈ G such that s(l) = t(g).

Let gi ∈ (G,G) such that gi → g. We can pick li → l such that s(li) = t(gi).

Now we have li ◦ gi ◦ l−1
i → l ◦ g ◦ l−1. A simple computation shows that

li ◦ gi ◦ l−1
i ∈ (G,G), which implies that l ◦ g ◦ l−1 ∈ (G,G) and thus that

∈ (G,G) is normal.

Proposition 17. Given a Lie groupoid G, if (G,G)
s
is a closed submanifold,

then G has abelianization G/(G,G)
s
.

Proof. If (G,G)
s

is closed, then (G,G)
s

= (G,G). Since it is contained in the

isotropy and on each source fiber it is a subgroup, it is a subgroupoid. Thus

by lemma 5, it is a normal Lie subgroupoid. So the quotient G/(G,G)
s

is the

abelianization of G.

3.4 The genus-integration

3.4.1 A-homology

Recall that the Weinstein groupoid is the quotient of P (A) by A-homotopies.

If we generalize this idea and replace the equivelence relation by A-homology,

we can obtain another interesting construction.

Let us first recall that A-homotopy between two A-paths is a Lie algebroid

morphism from T (I × I) to A satisfying certain boundary conditions. We

can generalize this notion by allowing the unit square to be Σ, a square with

genus. To be more precise, a square with genus n is constructed as follows:

First we remove an open disk from the unit square and also from a compact

surface with genus n. This creates a boundary ∂D on both of the surface.

Gluing them together along the boundary gives us a square with genus n.

Since the boundary ∂Σ has a neighborhood diffeomorphic to a neighborhood

of ∂(I × I), the boundary condition for A-homotopy is well-defined on this

neighborhood.
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Definition 23. Given two A-paths a0 and a1, we say a0 is A-homologous to

a1 if there is a Lie algebroid morphism

T (Σ) A

Σ M

h

γ

.

satisfying the boundary conditions h|U = a(t,ϵ)dt+b(t,ϵ)dϵ, γ(i, ϵ) = xi, a(t, i) =

ai(t), b(i, ϵ) = 0 for i = 0, 1.

We denote the equivalence relation on P (A) defined by A-homology by ≈.

Figure 3.1: Square with genus

Now we can construct a new groupoid called the genus-integration.

Definition 24. The genus-integration of A is defined as Gg(A) = P (A)/ ≈.

The equivalence relation ≈ is courser than the relation ∼ defined by A-

homotopy and thus there is a natural quotient map G(A)→ Gg(A). Actually,

we have the following proposition:

Proposition 18. [7] The genus-integration is the abelianization of the We-

instein groupoid in the category of sets.

It is clear from the proposition 18 that if the genus-integration is smooth,

it will be the abelianization of the Weinstein groupoid in the smooth category.

In general, given a integrable Lie algebroid, its genus-integration does not

need to be smooth, i.e., smoothness of Weinstein groupoid does not imply

the smoothness of the genus-integration. The converse is also not true, but

we will come back to this after first looking into the obstructions to the

smoothness of the genus-integration.
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3.4.2 Extended monodromy groups

Given a Lie algebroid A → M , for any x ∈ M , take L to be the leaf

containing x. Since A restricted to this leaf has abelianization AabL , we have

the following short exact sequence:

0 gabL AabL TL 0.
ρ

σab

Choosing a splitting σab → AabL , we can define a closed 2-form ω ∈ Ω2(TL, gab)

by ωab := σab([X, Y ]) − [σab(X), σab(Y )]. We can also obtain a flat TL-

connection ∇ab on gab by ∇ab
Xs = [σab(X), s]. Letting q : L̃h → L denote the

holonomy cover of L relative to ∇ab, we can define the extended monodromy

as follows.

Definition 25. The extended monodromy group N ext
x of A at x ∈M is the

image of the extended monodromy homomorphism:

∂extx : H2(L̃
h,Z)→ G(gabx )

[γ] 7→ exp

(∫
γ

q∗Ωab

)
.

The extended monodromy groups and the ordinary monodromy groups

are related by the following proposition.

Proposition 19. [7] The extended and ordinary monodromy homomorphisms

of a Lie algebroid fit into a commutative diagram:

π2(L, x) G(gx)

H2(L̃
h,Z) G(gabx )

∂x

h2

∂extx

,

where h2 is the Hurewicz map.

Theorem 6. [7] Let A → M be a transitive Lie algebroid with trivial

holonomy. The following statements are equivalent:

(a) the extended monodromy groups are discrete;

(b) the genus integraton Gg(A) is smooth;
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(c) the abelianization Aab has an abelian integration.

If any of these hold then Gg(A) has Lie algebroid isomorphic to Aab.

Theorem 6 together with proposition 19 show that for a transitive abelian

Lie algebroid, the smoothness of genus integraion implies the smoothness of

Weinstein groupoid.

The following examples help understanding the relationship between

smoothness of the Weinstein groupoid and the genus-integration. For that,

recall from 2 that one can construct regular Lie algebroids from bundles of

Lie algebras, connections and 2-forms. In particular, given a Lie algebra g

and a two form ω ∈ Ω2
cl(M ;Z(g)), we can construct Aω = TM ⊕ g by taking

the connection to be the Lie derivative:

• ρ = prTM

• [(X, u)(Y, v)] = ([X, Y ], [u, v]g +  LX(v)−  LY (u) + ω(X, Y ))

In this case, we can compute Nx(A) and Nx(A) as follows:

Nx(A) = {exp

(∫
γ

ω

)
: γ ∈ π2(M,x)},

N ext
x (A) = {exp

(∫
γ

ω

)
: γ ∈ H2(M,Z)}.

Example 21. [7] Let g be a 4-dimensional vector space equipped with the

bracket: [e2, e3] = e1, [ei, ej ] = 0 otherwise. We have that [g, g] =< e1 >, and

the center is Z(g) =< e1, e4 > .

1. Let M = S2×S2 and ω = pr∗1ωS2e1 +λpr∗2ωS2e1. Here ωS2 is the volume

form on S2, pr1 and pr2 be the two projection respectively. We can

compute that:

Nx(A) = exp((n1 + λn2)e1), Nx(Aab) = N ext
x = {1}.

Thus we obtain a non-integrable Lie algebroid with smooth genus-

integration and whose abelianization is integrable.
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2. Change the form in the previous example and define ω = pr∗1ωS2(e1 +

e4) + λpr∗2ωS2(e1 − e4). We can compute that:

Nx(A) = exp(n1(e1 + e4) + λn2(e1 − e4),

Nx(Aab) = N ext
x = exp((n1 − λn2)e4)

Thus we have an integrable Lie algebroid whose abelianization is non-

integrable and whose genus-integration is not smooth.

3. Now replace the manifold by M = T2 × T2 and let the form be ω =

pr∗1ωT2(e1 + e4) + λpr∗2ωT2(e1 − e4), where ωT2 is the volume form on

T2. We can compute that

Nx(A) = Nx(Aab) = {1}, N ext
x = exp((n1 − λn2)e4).

Thus both this Lie algebroid and its abelianization are integrable, but

their genus-integraion is not smooth.

3.4.3 The kernel of the quotient map

As a quotient of the Weinstein groupoid, we already saw that the kernel of

the quotient map q : G(A)→ Gg(A) is (G(A),G(A)). We are still interested

in understanding this kernel using the structure of A.

Proposition 20. [7] Let A → L be an integrable abelian transitive Lie

algebroid. The kernel of the morphism ϕx : G(gx)→ Gg(A)0x is given by

Kerϕx =

{
exp

(∫
γ̃

Ω

)
: γ̃ a lift to L̃h of a compact surface γ in L

}
.

Adjusting the technique of the proof of propostion 5.2 in [7], we see that

the integrability assumption can be removed. Note that both the Weinstein

groupoid and the genus-integration in some sense respects the foliation of

the Lie algebroid. To be more precise, we have G(A)L = G(AL). Since Gg(A)

is the set-theoretical abelianization of the Weinstein groupoid, we also have

Gg(A)L = Gg(AL). Thus the kernel of this quotient is completely determined

by the structure on each leaf and we obtain the following proposition.

Proposition 21. Let A →M be an abelian Lie algebroid. Let L be the leaf
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containing x, the kernel of the morphism ϕx : G(gx)→ Gg(A)0x is given by

Kerϕx =

{
exp

(∫
γ̃

Ω

)
: γ̃ a lift to L̃h of a compact surface γ in L

}
.

Proof. Recall h = adt+ bdϵ is an A-homotopy if and only if

∂tb− ∂ϵa = T∇(⋆).

First note that for any transitive Lie algebroid A ≃ TL ⋉ gL over L, we

have q∗A ≃ TL̃⋉ gL̃, where q : L̃→ L is the holonomy cover of L. Let σ, σ̃

be the corresponding splitting, we have σ̃(Xx)(x) = σ(dxq(Xx))(q(x)). The

induced connection satisfies

∇σ̃
Xx
s(x) =

∑
∇σ
dxq(Xx)si(q(x)), ∀s =

∑
q∗si ∈ Γ(gL̃).

⇒ Now, suppose exp(v) ∈ Kerϕ, then v is A-homologous to 0x via some A-

homology with base map γ : Σ → L. Let {γi, ηi} be the generator of the

fundamental group of Σ. We can view the A-homology as an A-homotopy h

between A-paths over x and τ = Π(γi, ηi). Choosing a splitting σ : TL→ A

such that σ(dτ
dt

) = h|τ we can identify A with TL⋉ gL, where the bracket is

[(X, v), (Y,w)] = ([X, Y ], [v, w] +∇σ
X(w)−∇σ

Y (v)− Ω(X, Y )]).

Now the homotopy can be written as h(t, ϵ) = (dγ
dt
, φ)dt+ (dγ

dϵ
, ψ)dϵ.

We can also identify q∗A with TL̃⋉ gL̃ using σ̃, where the bracket is

[(X, v), (Y,w)] = ([X, Y ], [v, w] +∇σ̃
X(w)−∇σ̃

Y (v)− (q∗Ω)(X, Y )]).

Notice that γ is a compact surface since 0x and v have trivial base maps.

If we now lift γ to γ̃ on L̃ and let τ̃ be the corresponding lift of τ . We

get an q∗A-homotopy h̃(t, ϵ) = (dγ̃
dt
, q∗ϕ)dt + (dγ̃

dϵ
, q∗ψ)dϵ. Now let ∇L̃ be a

connection on L̃ then ∇ = (∇L̃,∇σ̃) is a connection on q∗A. Recall that g is

abelian, thus we can compute the torsion of ∇:

T∇((X, v), (Y,w)) = (T∇L̃(X, Y ), q∗Ω(X, Y )).

Integrating the equation ∂t(q
∗ψ)− ∂ϵ(q∗ϕ) = q∗Ω(dγ̃

dt
, dγ̃
dϵ

) twice and using the
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boundary conditions, we get v =
∫
γ̃
q∗Ω.

⇐ Now suppose we have some compact surface γ in L. We can cut along its

generators to get an ordinary homotopy between x and τ = Π(γi, ηi). Choose

a splitting σ : TL → A and define b(t, ϵ) = σ(dτ
dϵ

)(t, ϵ). Solving (⋆) with

initial condition a(t, 0) = 0, we get an A-homotopy h which can be viewed as

an A-homology between 0x and a(t, 1). If we identify A with TL⋉ gL using

σ and q∗A with TL̃⋉ gL̃ using σ̃, a similar argument as before shows that:∫ r

0

q∗a(t, 1)dt =

∫ r

0

∫ 1

0

q∗Ω(
dγ̃

dt
,
dγ̃

dϵ
).

Thus we get a q∗A homotopy h′ between q∗a(t, 1) and its average∫ 1

0

q∗a(t, 1)dt =

∫ 1

0

∫ 1

0

q∗Ω(
dγ̃

dt
,
dγ̃

dϵ
) =

∫
γ̃

q∗Ω.

Thus 0x ≈ a(t, 1)
h′◦q∼

∫
γ̃

q∗Ω.
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