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ABSTRACT. We survey the problem of non-formal deformation quanti-
zation of Poisson manifolds. This survey is a written version of the talk
given by the second author at the Bahia meeting and includes ongoing,
unpublished work, by the authors.

1. INTRODUCTION

Heuristically, the term quantization refers to a variety of procedures in
which one aims to associate to a classical system the data underlying a quan-
tum system. In particular, to classical observables described by functions
on a Poisson manifold (see Section 2) one aims to associate quantum ob-
servables consisting of operators on a Hilbert space. This correspondence,
denoted

f 7→ Qh̄( f ),

depends on Planck’s constant h̄, which maybe interpreted as a scale or a
deformation parameter. The notion of deformation quantization arises from
considering a star product structure ?h̄ defined by the relation

Qh̄( f1)◦Qh̄( f2) = Qh̄( f1 ?h̄ f2).

In paradigmatic cases, the star product ?h̄ defines a family of associative
algebras (Ah̄,?h̄), depending on the parameter h̄, and admitting embeddings
C∞(M) ↪→ Ah̄.

Thinking of h̄ as a deformation parameter, one can interpret (Ah̄,?h̄) as
a (non-commutative) deformation of the usual (commutative) algebra of
functions (C∞(M), ·). At this point one may forget about the original quan-
tization functor Qh̄ and look for any such deformation with the property
that

(1) { f ,g}= lim
h̄→0

1
h̄
( f ?h̄ g−g?h̄ f ) .

This equation is known as the classical correspondence principle and one
says that ?h̄ is a deformation of the usual product in the direction of the
Poisson bracket {·, ·}.
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One way to make this heuristic discussion precise is to consider formal
star products deforming {·, ·} which are given by formal power series

f1 ?h̄ f2 :=
∞

∑
k=0

Bk( f1, f2)h̄k,

and satisfy a set of axioms (see Section 3). The formality conjecture stated
and proved by Kontsevich [20] implies that every Poisson bracket admits a
a formal star product and that they can be classified.

While formal deformation quantization, after Kontsevich’s work, is a re-
markably successful theory, it only partially captures the original features
that were intended to be made mathematically precise in the transition from
classical to quantum mechanics. For example, Kontsevich noted in [20],
”It is not clear whether ’deformation quantization’ is natural for quantum
mechanics (...) A topological open string theory seems to be more rele-
vant.” Additionally, Gukov and Witten in [16] emphasize that ”(formal)
deformation quantization is not quantization.” Consequently, there is a sig-
nificant interest in non-formal deformation quantization, of which much
less is known.

A particular case of such non-formal quantizations uses C∗-algebras and
is called strict deformation quantizations (see, e.g., [25] for a precise for-
mulation). An analogue of Kontsevich’s result for strict deformation quan-
tization is not known and Rieffel in [26] poses the following questions.

Fundamental Problem. When does a Poisson manifold admit a strict de-
formation quantization? In particular, what cohomological obstructions
are there to having a strict deformation quantization?

There are several variations on the notion of non-formal deformation
quantization – see, e.g., [27] for a recent survey. In recent unpublished
work we propose a new approach to non-formal star products ?h̄. We con-
sider star products given by the sort of semi-classical Fourier integral op-
erators (SCFIO) studied in semi-classical analysis – see, e.g., [15, 21, 33].
Two reasons for this approach are:

(i) the need to consider products ?h̄ defined on h̄-dependent families of
smooth functions that may become singular as h̄→ 0, such as highly
oscillatory functions e

i
h̄ 〈·,ξ0〉 and

(ii) several successful quantization schemes, such as the Weyl quantiza-
tion of cotangent bundles [15] or Rieffel’s quantization of linear Pois-
son brackets [25], can be expressed in terms of semi-classical Fourier
integral operators.

The use of semi-classical analysis then suggests that the axioms of a star
product should only hold microlocally. These ideas have many precedents
(see [19, 30, 7] and references therein). Also, oscillatory integrals have been
considered in the study of strict deformation quantization (see, e.g., [2, 22]
and the survey [27]) but, as far as the authors know, ours is the first sys-
tematic treatment which incorporates all the semi-classical and microlocal
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features into play and establishes a detailed relation to the Lie theory of the
underlying Poisson manifold.

In this note we sketch our work in this direction, including a provisional
definition of non-formal deformation quantization. We describe some con-
jectural results, attempting to extend results valid in the formal setting to
the non-formal setting. We will explain why we believe in the following:

Motto. If a Poisson manifold (M,{·, ·}) admits an associative non-formal
quantization, then it must be integrable by a symplectic groupoid.

This note is organized as follows. In Section 2, we recall some basic
facts about Poisson manifolds and symplectic groupoids. In Section 3, we
review formal deformation quantization. In Section 4, we give a tentative
definition of non-formal deformation quantization, using SCFIOs, we state
some conjectural results and we explain what led us to our motto above.

2. POISSON GEOMETRY

The geometry underlying many fundamental classical physical systems is
Poisson geometry, whose objects of study are Poisson manifolds, i.e., mani-
folds equipped with a Poisson bracket. On a Poisson manifold, a choice of a
function – the so-called hamiltonian – determines the Hamiltonian dynam-
ics and mechanical observables are also given by functions. Therefore, the
ultimate goal is to quantize a Poisson manifold together with all functions of
interest. In this section we provide a brief sketch of Poisson geometry and
we refer to the monograph [13] for a in-depth introduction to the subject.

2.1. Poisson manifolds. A Poisson bracket on a manifold M is a Lie
bracket on the vector space of smooth functions

{ , } : C∞(M)×C∞(M)→C∞(M),

which satisfies the Leibniz type identity

(2) { f , f1 f2}= { f , f1} f2 + f1{ f , f2}.
The pair (M,{·, ·}) is called a Poisson manifold.

On a Poisson manifold (M,{·, ·}), to each function h∈C∞(M) is assigned
a vector field Xh on M by setting

Xh( f ) := {h, f}.
One calls h a hamiltonian function and Xh the associated hamiltonian
vector field.

In the language of classical mechanics, the Poisson manifold (M,{·, ·})
is identified with the phase space (or ”state space”) and the equations for
the trajectories of the hamiltonian vector field Xh are called the Hamil-
ton’s equations of the motion. In local coordinates (x1, . . . ,xm), the Poisson
bracket can be written has

(3) { f1, f2}(x) =
n

∑
i, j=1

π
i j(x)∂ f1

∂xi
∂ f2
∂xi ,
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and a hamiltonian vector field Xh has the expression

Xh =
n

∑
i, j=1

π
i j ∂h

∂xi
∂

∂xi .

Hamilton’s equations are then

(4) ẋk = {h,xk}=
n

∑
i=1

π
ik ∂h

∂xi , (k = 1, . . . ,m).

Let us illustrate this with several examples.

2.2. Symplectic Poisson brackets. The motion of a particle q(t) ∈ Rd

with mass m subject to a conservative force with potential V : Rd → R is
described by Newton’s equations

mq̈k(t) =− ∂V
∂qk , (k = 1, . . . ,d),

which can be rewritten as the first order system

(5)

{
q̇k = pk

mk

ṗk =− ∂V
∂qk

, (k = 1, . . . ,d).

To interpret it in the language of Poisson geometry, we consider M = R2d

with coordinates (qk, pk) and a Poisson bracket defined by

(6) { f1, f2} :=
d

∑
k=1

(
∂ f1
∂ pk

∂ f2
∂qk − ∂ f1

∂qk
∂ f2
∂ pk

)
.

Given any function h : R2n → R, the corresponding Hamilton’s equations
(4) become {

q̇k = ∂h
∂ pk

ṗk =− ∂h
∂qk

, (k = 1, . . . ,d).

If we let

h =
d

∑
k=1

p2
k

2mk
+V (q),

Hamilton’s equations reduce to Newton’s equations in the form (5).
The Poisson bracket in this example belongs to an important class of

Poisson brackets, called symplectic. In general, a symplectic form on a
manifold M of even dimension n = 2d is a 2-form ω ∈Ω2(M) satisfying

dω = 0, ω ∧·· ·∧ω︸ ︷︷ ︸
d-times

6= 0

Given a symplectic form, each choice of a function f ∈C∞(M) determines
a vector field X f by

iX f ω = d f .
It is easy to check that the expression

{ f ,g}ω := ω(X f ,Xg)



NON-FORMAL DEFORMATION QUANTIZATION 5

defines a Poisson bracket on M. Any Poisson bracket arising in this way is
called a symplectic Poisson bracket.

The previous example is symplectic because it arises from the symplectic
form on R2d given by

ω =
d

∑
k=1

dqk∧dpk.

Symplectic Poisson brackets can be characterized as follows

Lemma 1. A Poisson bracket {·, ·} on M is symplectic if for any choice of
local coordinates (x1, . . . ,xm) the matrix π i j = {xi,x j} is invertible.

2.3. Linear Poisson brackets. The motion of a rigid body around its cen-
ter of gravity with moments of inertia I1, I2 and I3 is described by Euler’s
equations

(7)


ẋ1 = I2−I3

I2I3
x2x3

ẋ2 = I3−I1
I3I1

x3x1,

ẋ3 = I1−I2
I1I2

x1x2.

One can interpret it in the language of Poisson geometry by introducing a
Poisson bracket on R3 defined by

{ f ,g}(x) := (∇ f (x)×∇g(x)) · x.
and considering the hamiltonian function

h =
3

∑
i=1

(xi)2

2Ii
.

Then Euler’s equations (7) can be written in Hamiltonian form

ẋk = {h,xk}, (k = 1,2,3).

In general, given a Lie algebra g the dual vector space M = g∗ has a
Poisson bracket defined by

{ f ,g}(ξ ) = 〈[dξ f ,dξ g]g,ξ 〉.
One recovers the Poisson bracket in the previous example by letting g =
so(3,R), so that

M = so(3,R)∗ ' R3.

These type of Poisson brackets can be characterized as follows.

Lemma 2. A Poisson bracket {·, ·} on a vector space V is of the form
g∗ if and only for any pair of linear functions f1 and f2, their Poisson
bracket { f1, f2} is a linear function. Equivalently, if in linear coordinates
(x1, . . . ,xn) the bracket is linear:

π
i j(x) = {xi,x j}(x) = ∑

k
ci j

k xk.

Notice that for a linear Poisson bracket one has π i j(0) = 0, so it is never
symplectic.
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2.4. Quadratic Poisson structures. The time evolution of m species in
a closed ecological system can often be described by the Lotka-Volterra
equations

(8) ẋi = ε
ixi +

m

∑
j=1

ai jxix j, (i = 1, . . . ,m).

for some matrix (ai j) and vector ε i. One calls the system conservative if
(ai j) is skew-symmetric and there exists a solution q = (q1, . . . ,qn) of the
linear system

n

∑
j=1

a jiq j = ε
i.

A conservative Lotka-Volterra system can be described as a hamiltonian
system as follows. On Rm consider the Poisson bracket

{ f1, f2}(x) :=
m

∑
i< j

ai jxix j ∂ f1
∂xi

∂ f2
∂x j .

Then the hamiltonian function

h =
m

∑
i=1

(
qi logxi− xi) ,

defines a hamiltonian vector field and the corresponding Hamilton’s equa-
tions become the Lotka-Volterra equations (8).

The Poisson bracket in this example is quadratic. In general, a Poisson
bracket on a vector space V is called homogeneous of degree d if for any
linear coordinate system (x1, . . . ,xn) the functions π i j(x) = {xi,x j}(x) are
homogeneous of degree d.

For example, any quadratic Poisson bracket {·, ·}Rn+1 on Rn+1 deter-
mines a unique Poisson bracket {·, ·}Pn on projective space Pn for which
the projection π : Rn+1 \{0}→ Pn is a Poisson map, i.e., satisfies

{ f1, f2}Pn ◦π = { f1 ◦π, f2 ◦π}Rn+1 ,

for any pair of functions f1, f2 on Pn.

2.5. The symplectic foliation. The geometry underlying a Poisson bracket
on a manifold M has the following three distinct, but intertwined, aspects:

• M inherits an underlying (possibly singular) foliation F , i.e., a par-
tition into submanifolds. These submanifolds, called leaves, are the
equivalence classes for the equivalence relation on M obtained by
declaring two points equivalent if there exists some hamiltonian
function h for which the vector field Xh has a trajectory passing
through those two points.
• Each leaf L has a unique Poisson structure {·, ·}L for which the in-

clusion i : L→M is a Poisson map. Moreover, {·, ·}L is symplectic,
so F is a foliation by symplectic leaves.
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• For each x0 ∈M there are coordinates such that Xxi(x0) = 0 and the
leaf through x0 is given by {x1 = · · · = xd = 0} . Then one has the
isotropy Lie algebra at x0 with basis {e1, . . . ,ed}, and bracket

[ei,e j] :=
d

∑
k=1

∂π i j

∂xk ek,

where the π i j are the coefficients of the Poisson bracket, as in (3).
Let us look back at the examples we saw before.

Example 3. The (connected) symplectic manifolds are precisely the Pois-
son manifolds whose symplectic foliation consists of a single leaf. For this
reason, the isotropy Lie group/algebra at any point is trivial.

Example 4. A linear Poisson structure on the dual of a Lie algebra g∗ has
symplectic foliation consisting of the coadjoint orbits. These are obtained
as the orbits of a canonical (linear) action on g∗ of the 1-connected Lie
group G whose Lie algebra is g (the coadjoint action/representation). The
isotropy/Lie algebras of g∗ are the ones obtained from this action.

Example 5. The symplectic foliation of a quadratic Poisson structure on
a vector space V depends heavily on the quadratic homogeneous functions
π i j. Consider for example the quadratic Poisson structure on R3 with Pois-
son bracket defined by

{x,y}= xy, {x,z}= 0, {y,z}= yz,

has symplectic leaves the connected components of the surfaces yz = c, for
c 6= {0} and the points (zero dimensional leaves) belonging to the union of
the planes y = 0 and z = 0. On the other hand, the quadratic Poisson bracket
defined by

{x,y}= x2 + y2, {x,z}= {y,z}= 0,
has symplectic leaves the cylinders x2 + y2 = c, with c > 0, and the points
in the z-axis. For a quadratic Poisson bracket the isotropy Lie algebras are
all abelian.

2.6. Symplectic groupoids. The interaction between Poisson geometry,
foliation theory and Lie group theory actually goes much deeper, once Lie
algebroids/groupoids are brought into the picture.

Recall that groups typically arise as the symmetries of some given object.
The concept of a groupoid allows for more general symmetries, acting on
a collection of objects M rather than just a single one. An element in a
groupoid g ∈ G may be pictured as an arrow from a source object s(g) ∈M
to a target object t(g) ∈M

•
t(g)

•
s(g)

{{
.

Two such arrows g,h ∈ G can be composed to produce a new arrow gh ∈ G
if and only if the second arrow starts where the first arrow ends, and their
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product source s(h) and target t(h)

•
t(gh)=t(g)

•
s(g)=t(h)

g
yy

•
s(h)=s(gh)

h
xx

gh

��

For each object one has a unit 1x, which is an arrow from x to itself

•
x

1x

��

and for every arrow there is an inverse arrow

•
g−1

66
•

g
vv

These must satisfy the usual axioms
(i) Associativity: (gh)k = g(hk);

(ii) Identity: 1t(g)g = g1s(g) = g;
(iii) Inverse: g−1g = 1s(g), gg−1 = 1t(g).
Using categorical language, one can describe a groupoid simply as a cate-
gory where every arrow has an inverse.

Just as Lie groups – introduced by Lie in the late XIX century – describe
smooth symmetries of an object, Lie groupoids – introduced by Ehresmann
in the late 1950’s – describe smooth symmetries of a smooth family of ob-
jects. That is, the collection of arrows is a manifold G , the set of objects is a
manifold M, and all the structure maps of the groupoid, namely source, tar-
get, multiplication, identity and inverse, are smooth. We denote a groupoid
by G ⇒M.

Given a Lie groupoid G ⇒M, one has that
• M is partitioned by orbits of G , where two objects in M belong to the

same orbit if there is an arrow connecting them. The path-connected
components of the orbits form a foliation of M;
• the arrows with source and target the same object x ∈M form a Lie

group Gx, called the isotropy group at x.
The groupoids that arise in Poisson geometry are symplectic groupoids,

i.e., they possess a symplectic form Ω on the space of arrows which is
compatible with the groupoid multiplication. One says that a symplectic
groupoid (G ,Ω)⇒M integrates a Poisson manifold (M,{·, ·}) it the target
map t : (G ,{·, ·}Ω)→ (M,{·, ·}) is a Poisson map. When this happens, the
symplectic leaves and the isotropy Lie algebras of (M,{·, ·}) coincide, re-
spectively, with the connected components of the orbits and the Lie algebras
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of the isotropy groups of G . We refer the reader to [13] for details, and look
at the examples above.

Example 6. Given a manifold M the pair groupoid M×M⇒M has arrows
the pairs (x,y). Such a pair has source x and target x and the multiplication
of two arrows (x,y) and (z,w) can be performed when y = z, the resulting
arrow being (x,z) · (z,w) = (z,w). When (M,ω) is a symplectic manifold,
the pair groupoid inherits a symplectic form, namely Ω := pr∗1 ω − pr∗2 ω .
This form is compatible with multiplication and the resulting symplectic
groupoid integrates the Poisson manifold (M,{·, ·}ω).

Example 7. Given an action of a Lie group G on a manifold M one can
form the action groupoid G×M⇒M, where a pair (g,m) is viewed as an
arrow from m to gm. The multiplication of arrows is given by

(h,m′) · (g,m) = (hg,m), provided m′ = gm.

The linear Poisson structure on g∗ can be integrated by the action groupoid
G×g∗⇒ g∗ associated with the coadjoint action of G on g∗. The symplectic
form is obtained from the canonical identification T ∗G' G×g∗, since any
cotangent bundle has a natural symplectic form.

Example 8. Quadratic Poisson brackets also admit integrating symplectic
groupoids. The formulas are more complicated, so we consider only the
simplest example of the quadratic Poisson bracket on R2 given by

{x,y}= xy.

Then one finds a symplectic groupoid (R4,Ω)⇒ R2, where the source and
target maps are

s(x,y,u,v) = (x,y), t(x,y,u,v) = (xeyv,ye−xu),

and the multiplication is given by the formula

(x′,y′,u′,v′) · (x,y,u,v) = (x,y,u+ eyvu′,v+ e−xuv′).

The relevant symplectic form is:

Ω =−d(xu)∧d(yv)+dx∧du+dy∧dv.

Given a Poisson manifold (M,{·, ·}) one may ask if there is some sym-
plectic groupoid integrating (M,{·, ·}). In the three examples above the
Poisson manifolds are all integrable, but this does not need to be the case.
The obstructions to integrability are well understood – see [10, 11, 12].

In order to study global properties of Poisson manifolds and their sym-
plectic foliations, one must pay attention to their integrating symplectic
groupoids. We will see that symplectic groupoids are also central ingre-
dients in quantization schemes for Poisson manifolds, both at formal and
non-formal levels [3, 17, 18] and naturally arise in connection with topo-
logical field theories (the Poisson sigma model) [8].
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3. FORMAL DEFORMATION QUANTIZATION

From now it is convenient to work with C-valued functions, so C∞(M)
will denote the space of C-valued smooth functions and we consider Pois-
son brackets on such functions.

3.1. Formal star products. A formal star product for a general Pois-
son manifold (M,{·, ·}) is a binary operation on the space of formal power
series C∞(M)[[h̄]], defined for a pair of functions f1, f2 ∈C∞(M) by an ex-
pression of the form

(9) f1 ?h̄ f2 :=
∞

∑
k=0

Bk( f1, f2)h̄k,

and extended to the space of formal power series by requiring C[[h̄]]-linearity.
On also imposes the following axioms:
(A1) Deformation of usual product. For every f1, f2 ∈C∞(M),

f1 ?h̄ f2 = f1 f2 +O(h̄);

(A2) Correspondence principle. For every f1, f2 ∈C∞(M),

{ f1, f2}=
1
ih̄
( f1 ?h̄ f2− f2 ?h̄ f1)+O(h);

(A3) Associativity. For every f1, f2, f3 ∈C∞(M)[[h̄]],

( f1 ?h̄ f2)?h̄ f3 = f1 ?h̄ ( f2 ?h̄ f3);

(A4) Identity. For every f ∈C∞(M)[[h̄]],

1?h̄ f = f = f ?h̄ 1.

One calls ?h̄ natural if the Bk are bidifferential operators of order ≤ k in
each entry.

The formality conjecture stated and proved by Kontsevich [20] yields the
following fundamental result.

Theorem 9 (Kontsevich). Every Poisson manifold admits a natural formal
star product.

Kontsevich actually gives a classification of star products for a given
Poisson manifold and a beautiful explicit formula to construct a star product
for any Poisson structure in Rn.

3.2. Examples of formal star products. In general, in spite of Kontsevich
formula, it is hard to give explicit examples of star products deforming a
given Poisson bracket. Still, in some cases, explicit formulas can be given
and we list here a few examples.

Example 10. On M = Rm any constant skew-symmetric matrix (π i j) de-
fines a constant Poisson structure

{xi,x j} := π
i j.
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A formal star product deforming this Poisson bracket is given by the Moyal
product

f1 ?h̄ f2 : = exp
(

ih̄
2

π
i j ∂

∂xi
∂

∂y j

)
f1(x) f2(y)

∣∣∣∣
y=x

(10)

=
∞

∑
k=0

1
k!

(
ih̄
2

)k

π
i1 j1 · · ·π ik jk ∂ k f1

∂xi1 · · ·∂xik

∂ k f2

∂x j1 · · ·∂x jk
,

For example, this formula gives a formal star product deforming the sym-
plectic Poisson bracket on R2d defined by (6).

Example 11. Let M = g∗ with its linear Poisson structure. To obtain a star
product deforming it one can use the Poincaré-Birkoff-Witt isomorphism
between the symmetric and the universal enveloping algebras of g

q : S(g)→U(g).

The symmetric algebra S(g) is naturally isomorphic to the algebra of poly-
nomial functions on g∗. Then one defines a ?h̄-product on polynomials by
first defining it on homogeneous polynomials f1 ∈ Sk(g) and f2 ∈ Sl(g) by
the formula

f1 ?h̄ f2 :=
k+l

∑
n=0

(ih̄)n prk+l−n(q
−1(q( f1) ·q( f2))),

where prk : S(g)→ Sk(g) denotes the projection onto the homogenous de-
gree k polynomials and · denotes the product in U(g). The C[[h̄]]-extension
of this map defines a star product on S(g)[[h̄]].

This star product is given by a series of the form (9) where the Bk are
bidifferential operators, so it also defines a star product on C∞(g∗)[[h̄]]. Note
that if {x1, . . . ,xm} ⊂ g= S1(g) is a basis then the formula above yields

xi ?h̄ x j = xix j +
ih̄
2
[xi,x j].

so this star product deforms the linear Poisson structure on g∗.

Example 12. On M = Rm any skew-symmetric matrix (ai j) defines a “di-
agonal” quadratic Poisson bracket by

{xi,x j} := ai jxix j,

A star product deforming this Poisson bracket is also given by a Moyal
type formula (10) where now π i j = ai jxix j is not constant anymore. One
explanation for this coincidence is that the change of coordinates ui = logxi

transforms this Poisson structure into a constant Poisson structure (but note
this is only valid in the domain xi > 0). If one considers a non-diagonal
Poisson structure, such as the second Poisson bracket in Example 5, their
star products take a more complicated form.
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3.3. Formal symplectic groupoid. Given a Poisson manifold, a symplec-
tic groupoid integrating it can be thought of as a first step towards the quanti-
zation of the Poisson bracket. In fact, symplectic groupoids were introduced
by Karasev [19], Weinstein [28] and Zakrzewski [31, 32] precisely with the
aim of quantizing Poisson manifolds. This quantization program was never
completed. However, in the formal setting Cattaneo-Dherin-Felder [3] and
Karabegov [18] found the following precise connection between groupoids
and quantization.

Theorem 13. A natural formal ?h̄-product deforming a Poisson manifold
(M,{·, ·}) determines a formal symplectic groupoid structure on a formal
neighborhood of the zero section of T ∗M which integrates the Poisson bracket.

Let us briefly explained the concepts from formal geometry used in the
statement of this result. Given a closed submanifold M ⊂ N, denote by
I(M)⊂C∞(N) the ideal formed by the functions that vanish on M. Letting
I∞(M) =

⋂
∞
k=1 I(M)k, the quotient algebra

C∞
M(N) :=C∞(N)/I∞(M)

is viewed as the algebra of functions on a formal neighborhood of M in N.
In order to define a groupoid structure on a formal neighborhood of the

zero section of T ∗M, one reinterprets the structure maps in a groupoid G ⇒
M as pullback maps. For example, pullback by source and target are algebra
maps s∗, t∗ : C∞(M)→C∞(G ), and so in the formal setting they are replaced
by algebras maps

s∗, t∗ : C∞(M)→C∞
M(T ∗M).

Similarly, in the formal setting, the inverse map is replaced by the algebra
map

i∗ : C∞
M(T ∗M)→C∞

M(T ∗M),

while the unit map u : M→ G becomes the evaluation map

u∗ : C∞
M(T ∗M)→C∞(M).

In order to define the multiplication observe that for a groupoid this is a map
m : G (2)→ G where the domain is the space of composable arrows

G (2) := {(g,h) ∈ G ×G : s(g) = t(h)}.

One can identify the formal neighborhood of the diagonal ∆M ⊂ G (2) using
the short exact sequence of algebras

0 // I2 // C∞
M×M(G ×G ) // C∞

∆M
(G (2)) // 0

where I2 is the ideal generated by the image of the map

(id⊗ s∗− t∗⊗ id) : C∞(M)→C∞
M×M(G ×G ).

Hence, in the formal setting, multiplication is defined as an algebra map

m∗ : C∞
M(T ∗M)(2)→C∞

M(T ∗M),



NON-FORMAL DEFORMATION QUANTIZATION 13

where by definition

C∞
M(T ∗M)(2) :=C∞

M×M(T ∗M×T ∗M)/I2.

Similarly, one translates the axioms that the structure maps must satisfy in
terms of pullback diagrams – see [18].

Finally, the ideal I∞(M) is also a Poisson ideal for the Poisson bracket
{·, ·}can associated with the canonical symplectic form ωcan on T ∗M. Hence,
one obtains a Poisson bracket on the algebra of formal functions C∞

M(T ∗M).
The algebra C∞

M(T ∗M)(2) also inherits a Poisson bracket, and so one defines
a formal symplectic groupoid integrating a Poisson manifold (M,{·, ·}),
to consist of:

• a formal groupoid structure in the formal neighborhood of the zero
section 0⊂ T ∗M, such that
• multiplication m∗ : (C∞

M(T ∗M)(2),{·, ·}can)→ (C∞(T ∗M,M,{·, ·}can)
and target t∗ : (C∞(M),{·, ·})→ (C∞

M(T ∗M),{·, ·}can) are Poisson
maps.

Given a Poisson manifold there always exist a local symplectic groupoid
integrating it. This is a classical result due to Coste, Dazord and Weinstein
[9]. From this it follows also that there exists always a formal symplec-
tic groupoid integrating the Poisson manifold. This can also be seen from
quantization via Theorem 13 since, by Kontsevich, any Poisson manifold
admits a formal deformation quantization.

4. NON-FORMAL DEFORMATION QUANTIZATION

4.1. Definition and first examples. We propose to study non-formal star
products ?h̄ given by the sort of semi-classical Fourier integral operators
(SCFIO) studied in semi-classical analysis. In this approach a tentative
definition go as follows, where we assume for simplicity that M is compact.

A non-formal deformation quantization of a Poisson manifold (M,{·, ·})
consists of a bilinear operation ?h̄ of the form

f1 ?h̄ f2 := Fh̄( f1⊗ f2),

where Fh̄ is a SCFIO of order k = dimM
4 , satisfying the following axioms:

(A1) Deformation of usual product: For any f1, f2 ∈C∞(M):

f1 ?h̄ f2− f1 f2 = O(h̄).

(A2) Correspondence principle: For any f1, f2 ∈C∞(M):

{ f1, f2}−
1
ih̄
( f1 ?h̄ f2− f2 ?h̄ f1) = O(h̄).

(A3) Associativity: For any h-dependent families f1, f2 and f3, one has

( f1 ?h̄ f2)?h̄ f3− f1 ?h̄ ( f2 ?h̄ f3) = O(h̄∞).

(A4) Identity: For any h-dependent family f :

(1?h̄ f − f ) = O(h̄), ( f ?h̄ 1− f )|U = O(h̄).
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Note that the notation O(h̄) in the previous axioms has a different mean-
ing from the same notation used in the formal case, in Section 3.1. Here
O(h̄) and O(h̄∞) should be taken for norms in appropriate function spaces.
Also, in the last two axioms the equality holds microlocally in a neighbor-
hood of the zero section.

We will say that such non-formal deformation quantization is natural
when the left and right translation operators, L f (g) := f ?h̄ g and R f (g) :=
g?h̄ f , are (semi-classical) pseudo-differential operators of order zero on M,
microlocally near the zero section. Our assumption about the order of the
SCFIO Fh̄ in the definition above is necessary for L f and R f to have order
0. We shall only consider non-formal deformation quantizations which are
natural.

Underlying any SCFIO Fh̄, and hence also a non-formal deformation
quantization, one has canonical relation Λ : M×M 99KM, i.e., a Lagrangian
submanifold

Λ⊂ T ∗M×T ∗M×T ∗M.

Let us give two paradigmatic examples.

Example 14. The very first example arises, of course, from the Weyl quan-
tization of the canonical Poisson bracket on M = R2n. The corresponding
star products can be expressed as SCFIO by

f1 ?h̄ f2(x, p) :=
1

(π h̄)2d

∫
α1,α2∈R2d

f1(α1) f2(α2)e
i
h̄ S dα1dα2

where α = (x, p) and

S(α,α1,α2) :=
∫

∆(α,α1,α2)
4ωcan.

with ∆(α,α1,α2)⊂ R2d the euclidean triangle with vertices α , α1 and α2.

Example 15. A more instructive example, where one already sees the need
to work microlocally, is given by the linear Poisson structure on the dual of
a Lie algebra M = g∗. Following an idea of Rieffel [24], one can proceed
as follows. Let 0 ∈U ⊂ g be an open set where the exponential map exp :
g→ G restricts to a diffeomorphism onto its image, so U becomes a local
Lie group with product denoted •. We then choose open balls D ( D′ ⊂U
centered at 0 such that D3 ⊂U , (D′)2 ⊂U . Also, we choose a Haar density
on G and transport it to a density µ on U using the exponential map. After
a possible rescaling, one find that:

µ(p) = det
(

I−e−adp

adp

)
dp,

where dp denotes the Lebesgue density on g. Then we set:

f1 ?h̄ f2 := 1
(2π h̄)n/2 F−1

h̄ [(ρFh̄( f1)) ·U (ρFh̄( f2))]
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where Fh̄ denotes the semi-classical Fourier transform, ρ ∈C∞
c (U) is a cut-

off function with ρ|D ≡ 1, and ·U denotes the convolution in the local group
U with respect to µ . Explicitly, we find the oscillatory integral expression

f1?h̄ f2(x)= 1
(2π h̄)n/2

∫
x1,x2

∫
p,p̃∈U

f1(x1) f2(x2)e
i
h̄ S

ρ(p̃)ρ(p̃−1• p)µ(p̃)dx1dx2,

where:
S(p,x,x1,x2) := px− p̃x1− (p̃−1 • p)x2.

If these expressions did not include a cutoff function ρ , we would need the
functions fi to have Fourier transform Fh̄( fi) with support contained in D
so the expressions make sense. This would allow to have the axioms for
?h̄ be satisfied on the nose, but would greatly limit the domain of ?h̄. The
above choice which includes the cutoff makes the domain bigger while the
axioms for ?h̄ only hold microlocally.

There are other examples of Poisson manifolds that admit these type of
star products. In general, the question of which Poisson maniifolds admit
such non-formal deformation quantization is widely open.

Our first main (conjectural) result concerns the Lagrangian submanifold
Λ ⊂ T ∗(M×M×M) underlying the SCFIO defining ?h̄ in the definition
above.

Theorem 16 (conjecture). If ?h̄ is a non-formal star product deforming a
Poisson manifold (M,π) then Λ is the graph of multiplication of a local
symplectic groupoid integrating (M,π).

This result is the non-formal analogue of Theorem 13. The proof should
use the calculus of semi-classical wavefront sets as developed in [1] and the
symbol calculus for semi-classical pseudo-differential operators (see, e.g.,
[15]) applied to the left and right translation operators, L f and R f .

Our main motivation to propose this semi-classical approach is that it is
general enough to properly quantize many Poisson manifolds. Still, we also
expect it to be related to formal deformation quantization as follows.

Theorem 17 (conjecture). Let ?h̄ is a non-formal star product deforming a
Poisson manifold (M,π). For every x0 ∈ M and every f ,g ∈ C∞

c (M) with
small enough support around x0, f ?h̄ g extends smoothly to h̄ = 0 and its
Taylor series at h̄ = 0

(11) Tε( f ?h̄ g(x0)) = ∑
n≥0

ε
n Bn( f ,g)|x0

defines a natural formal star product ?ε on C∞(M)[[ε]] quantizing (M,π).

The proof of this result should follow by using the calculus of wavefront
sets and the law of composition of SCFIOs, to conclude that f ?h̄ g is of
degree 0 and hence extends smoothly to h̄ = 0. The axioms (A1)-(A4) in
definition will then imply that (11) satisfies the axioms of a formal start
product.



16 ALEJANDRO CABRERA AND RUI LOJA FERNANDES

The definition of non-formal start product ?h̄ above also yields a partial
algebra (AW ,?h̄), where W ⊂ T ∗M is a neighborhood of 0M and

AW :=
{

f : WFh̄( f )⊂W
}
/O(h̄∞).

Here WFh̄( f ) denotes the semi-classical wave front set of the h̄-dependent
family f (see [33]). We abuse notation and we still use the symbol ?h̄ for
multiplication of equivalence classes in AW . Appealing to a microlocal
continuity property, it is a partially defined product with domain:

Dom(AW ,?h̄) := {( f ,g) : WFh̄( f ?h̄ g)⊂W}.

We say that ?h̄ is a strict non-formal star product if there exists W for which
AW embeds in an algebra. Our third main (conjectural) result is the fol-
lowing theorem relating existence of strict deformation quantizations and
integrability of a Poisson structure:

Theorem 18 (conjectural). If (M,π) admits a strict non-formal deformation
quantization then it is integrable by a symplectic groupoid.

In order to explain why this should hold, recall that in a partial algebra
the associativity property reads:

a1 · (a2 ·a3) = (a1 ·a2) ·a3, provided both sides are defined.

This does not imply that higher associativities hold. For example, consider
all possible products of 4 elements:

(a1a2)(a3a4)

((a1a2)a3)a4 a1(a2(a3a4))

(a1(a2a3))a4 a1((a2a3)a4)

Each edge represents a move that uses only the 3-associativity property. In
an algebra all vertices of the pentagon are defined and the 3-associativity
implies 4-associativity. In a partial algebra it is possible that, for exam-
ple, (a1a2)(a3a4) and (a1(a2a3))a4 are defined but none of the other ver-
tices are defined, and then 3-associativity does not allow one to conclude
that 4-associativity holds. For a partial algebra to embed in an algebra n-
associativity must hold for all n, in which case one says that the algebra is
globally associative.

A similar situation happens with local Lie groups and local Lie groupoids.
A classical theorem of Mal’cev essentially says that a local Lie group em-
bedds in a global Lie group if and only if the multiplication is globally
associative (see [23]). This results was generalized to Lie groupoids in [14]
and for the proof of Theorem 18 one needs to show that if ?h̄ is a strict non-
formal star product, then the local symplectic groupoid given by Theorem
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16 is globally associative. In [14] the precise relationship between the fail-
ure of n-associativity and the obstructions to integrability found in [10, 11]
is also established. From it, one should also be able to obtain the following
answer to Rieffel’s question mentioned in the Introduction:

Conjecture: If (M,π) admits a strict deformation quantization, then
it must be integrable by a symplectic groupoid. In particular, the
obstruction theory of [10, 11] applies.

Since Rieffel’s strict deformation quantization is by C∗-algebras, one needs
to investigate the relationship with the notion of non-formal deformation
quantization above.

Our tentative results also place our theory right at the cross paths of
older attempts by Maslov & Karasëv [19], Weinstein [29] and Zakrzewski
[31, 32], to construct non-formal deformation quantizations by using sym-
plectic groupoids. In this direction, Hawkins [17] proposed that a Poisson
manifold may be quantized by a twisted polarized convolution C∗-algebra
of a symplectic groupoid. The most important remaining problem is, as
already, mentioned

Open Problem: How can one construct a non-formal deformation quan-
tization of an integrable Poisson manifold by a star product of SC-
FIO type?

In a series of works, Cattaneo, Dherin and Weinstein [4, 5, 6, 7] also use
a semi-classical approach, albeit different from ours (e.g., in [7, Sec. 5.7],
the domain of ?h̄ does not include oscillatory functions and the canonical
relations underlying SCFIOs must satisfy extra properties from the outset).
Their techniques should be very helpful to make progress in this problem.
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