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Abstract. We extend the Abreu-Guillemin theory of invariant Kähler metrics

from toric symplectic manifolds to any symplectic manifold admitting a toric
action of a symplectic torus bundle. We show that these are precisely the sym-

plectic manifolds admitting a Lagrangian fibration with elliptic singularities.

The base of such a toric Lagrangian fibration is a codimension 0 submanifold
with corners of an integral affine manifold, called a Delzant subspace. This

concept generalizes the Delzant polytope associated with a compact symplectic

toric manifold. Given a Delzant subspace of finite type, we provide a Delzant-
type construction of a Lagrangian fibration with the moment image being the

specified Delzant subspace. We establish a 1:1 correspondence between invari-

ant Kähler metrics and a pair consisting of an elliptic connection on the total
space of the fibration and a hybrid b-metric on the base Delzant subspace,

both with specified residues over the facets. Finally, we characterize extremal

invariant Kähler metrics as those whose scalar curvature descends to an affine
function on the base integral affine manifold. We show that this provides a

method for finding and constructing extremal Kähler metrics.
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1. Introduction

In the late 1990s, Guillemin [24] and Abreu [1] described all invariant, compat-
ible Kähler metrics for a compact symplectic toric manifold, in terms of singular
Hessian metrics in the associated Delzant polytope. Abreu’s work also encompasses
a fourth-order nonlinear PDE expressing the condition for an invariant Kähler met-
ric to be extremal in the sense of Calabi. Subsequently, Donaldson [16] developed
the analysis of Abreu’s equation and formulated K-stability for polytopes, sparking
a series of subsequent research works in the search for extremal Kähler metrics
(see, e.g., the recent survey [27]). The main aim of this work is to extend the
Abreu-Guillemin theory to a wider class of symplectic manifolds.

The class of symplectic manifolds we consider here have a type of symmetry
which is described by an action of a symplectic torus bundle (T ,Ω). This type
of action includes as a special case the ordinary Hamiltonian torus actions but
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also, e.g., torus actions with cylinder valued moment maps or even examples with
no globally defined Hamiltonian torus action. More precisely, we consider toric
actions of symplectic torus bundles (T ,Ω) (see Definition 4.1). These can be char-
acterized in terms of their moment maps as toric Lagrangian fibrations, i.e., singular
Lagrangian fibrations admitting only elliptic-type singularities (see Theorem 4.4):

Theorem. Every toric Hamiltonian T -space is a toric Lagrangian fibration. Con-
versely, every toric Lagrangian fibration admits a toric Hamiltonian action of a
symplectic torus bundle (T ,Ω).

We picture a toric Hamiltonian T -space as in the following diagram

(T ,Ω)

p

��

(S, ω)�

µ

��
M

where M is an integral affine manifold, p : (T ,Ω) → M is the corresponding
symplectic torus bundle, (S, ω) is a symplectic manifold and T acts on S along the
moment map µ.

Delzant’s classification of toric symplectic manifolds [15] has been extended to a
classification of toric T -spaces in terms of their moment map image ∆ = µ(S) [28]
(see also Section 4). The space ∆ is now a codimension 0 submanifold with cor-
ners of the integral affine manifold M , called a Delzant subspace. A particular case
of these are the principal Hamiltonian T -spaces, which correspond to Lagrangian
fibrations without singularities, where the classification reduces to Duistermaat’s
result in [19] (see also Section 3). The classical symplectic toric manifolds, both
compact and non-compact (see [26]), also fit into this framework and can be char-
acterized as the toric T -spaces whose associated Delzant space has trivial affine
holonomy (see Theorem 4.16). This last result is one instance of the fact that the
integral affine geometry of M plays a crucial role in the theory of toric T -spaces.
This is also a well-known feature of the theory of integrable systems (see, e.g.,
[20, 32]).

Given an integral affine manifold M and a Delzant subspace ∆ ⊂M , the classi-
fication mentioned above requires the construction of a toric T -space

µ : (S, ω)→M

with µ(S) = ∆. This is done for general Delzant subspaces in [28]. Here, for a large
class of Delzant subspaces, we give another construction in the spirit of Delzant’s
original construction. This is the content of the following theorem (see Section 5
for details).

Theorem. Let ∆ ⊂M be a finite type Delzant subspace with d facets. Every toric
T -space with moment map image ∆ can be realized as a symplectic quotient(

(P × Cd) // (Γ n Td), ωred

)
, (1.1)

with P a principal Hamiltonian p∗T -space, where p : M̃ → M is the universal
covering space. When the Lagrangian-Chern class vanishes one can take P = p∗T .

As we explain in Section 2, in spite of the fact that an element of a symplectic
torus bundle only acts on a single fiber of the moment map, one can still make
sense of T -invariant objects. In particular, one can consider T -invariant metrics
and complex structures. Using this we extend the Abreu-Guillemin theory to toric
T -spaces. Our main result is the following (see Section 7).
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Theorem. Let µ : (S, ω) → M be a toric T -space, with Delzant subspace ∆ :=
µ(S) ⊂ M . There is a 1-1 correspondence between invariant Kähler metrics on S
compatible with ω and the following data.

(i) A flat Lagrangian elliptic connection for µ : S → M with zero radial residue
over the open facets of ∆.

(ii) A Hessian hybrid b-metric on ∆ with residues at the open facets given by the
primitive outward-pointing normals multiplied by 1

4π .

Moreover, an invariant Kähler metric G is extremal if and only if its scalar curva-
ture SG, viewed as function on ∆, is affine.

Elliptic connections and hybrid b-metrics are tensors with specified singularities
over the boundary of ∆, introduced in Sections 4.5 and 7.1, respectively. These are
defined in a coordinate-free way using the elliptic tangent bundle of µ [9, 10, 11, 12]
and the b-tangent bundle of ∆ [29].

When ∆ ⊂M is a finite type Delzant subspace and M carries a Hessian metric,
our Delzant type construction above allows one to apply Kähler reduction, leading
to the following result (see Section 7).

Corollary. Let (M, g) be a connected integral affine Hessian manifold and ∆ ⊂M a
Delzant subspace of finite type with primitive boundary defining functions `1, . . . , `d.
The reduced Kähler metric on the symplectic quotient (1.1) induces the Hessian
hybrid b-metric on ∆ given by

g∆ = g + HessΛ(φ),

where φ is the smooth function on ∆̊ given by

φ = − 1

4π

d∑
i=1

`i log |`i|. (1.2)

The relationship between our Delzant type construction and the standard Delzant
construction will be explained in the main body of the paper. Here, we only point
out that the metrics obtained by Kähler reduction via the two constructions do not
quite coincide.

Our main theorem above provides an effective way of constructing (extremal)
Kähler metrics in many examples, some of which have been obtained through much
more elaborate means. In this paper, we only discuss a few illustrative examples,
although we do show how to recover, by our techniques, the extremal Kähler metrics
for a complex ruled surface over an elliptic curve that appears in the work of
Apostolov et al. [2] – see Example 7.12. More elaborate examples will appear in
an upcoming joint paper with Miguel Abreu. We are further working on extensions
of the theory developed here to contact structures, generalized complex structures
and the non-commutative setting, i.e., multiplicity-free actions of proper symplectic
groupoids.

Acknowledgments. We would like to express our gratitude to Marius Crainic,
Eugene Lerman, David Mart́ınez Torres, Ioan Marcut, Daniele Sepe and Aldo Witte
for the many inspiring discussions that contributed to shaping the ideas presented in
this paper. Special thanks are extended to Miguel Abreu, who provided invaluable
advice on this project and has become a collaborator. We also acknowledge the
generous support of the Max Planck Institute for Mathematics in Bonn and the
University of Illinois Urbana-Champaign at various stages of this project.

Conventions and notations. In this paper, for manifolds with corners we
follow the conventions and terminology from [28]. For further background on man-
ifolds with corners see, e.g., [30].
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2. Hamiltonian T -spaces

In this sections we introduce Hamiltonian actions of symplectic torus bundles
and discuss some basic properties.

2.1. Symplectic torus bundles. In this paper, by a torus bundle we mean a
fiber bundle p : T →M where:

• each fiber is a Lie group isomorphic to a torus;
• the fiberwise multiplication m : T ×M T → T , inversion i : T → T and

unit u : M → T are smooth maps.

On the other hand, an equivalence of torus bundles is a diffeomorphism

T1
Ψ //

p1

��

T2

p2

��
M

Id
M

which restricts to a Lie group homomorphism on each fiber.
We will be specially interested in torus bundles carrying a symplectic form:

Definition 2.1. A symplectic torus bundle is a torus bundle p : T → M with
a symplectic form Ω ∈ Ω2(T ) which is multiplicative, i.e., such that

m∗Ω = pr∗1 Ω + pr∗2 Ω,

where m,pr1,pr2 : T ×M T → T are the fiberwise multiplication and the projections
onto each factor, respectively. An equivalence of symplectic torus bundles is an
equivalence of torus bundles preserving the symplectic forms.

The multiplicative condition forces the fibers of p : T →M and the unit section
u : M → T to be Lagrangian submanifolds, so dim T = 2 dimM .

Example 2.2. The simplest example of a symplectic torus bundle is

pr : Tn × Rn → Rn, Ω =

n∑
i=1

dθi ∧ dxi,

where (θ1, . . . , θn) denote the angle coordinates on Tn := Rn/Zn.

Remark 2.3 (Symplectic groupoids). The reader familiar with the groupoid lan-
guage will recognize that a (symplectic) torus bundle is just a source-connected (sym-
plectic) groupoid where the source and target maps coincide and multiplication is
abelian.

Many of our results extend to the more general setting of symplectic groupoids.
We will discuss this in future work. For now, we will sometimes use the lan-
guage of symplectic groupoids in an auxiliary manner, but keeping the exposition
self-contained. The curious reader can consult [13] for the basics of (symplectic)
groupoids.

Given a symplectic torus bundle p : (T ,Ω) → M , the symplectic form allows
to identify the Lie algebras of the fibers with the fibers of T ∗M . Using this iden-
tification, the fiberwise exponential maps assembles to a surjective, symplectic,
submersion

exp : T ∗M → T , exp∗ Ω = Ωcan.

Since the identity section is Lagrangian, it follows that its preimage

Λ := exp−1(M) ⊂ T ∗M,

satisfies the two properties in the following definition.
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Definition 2.4. A integral affine structure on a manifold M is a closed sub-
manifold Λ ⊂ T ∗M satisfying:

(i) Λ is a Lagrangian submanifold of (T ∗M,Ωcan);
(ii) Λx := Λ ∩ T ∗xM is a full rank lattice for all x ∈M .

Remark 2.5. One usually defines an integrable affine structure on a manifold M
as a maximal atlas for which the coordinate changes are (restrictions of) maps of
the form

x 7→ Ax+ b, A ∈ GLm(Z), b ∈ R.

Such atlas are in bijective correpondence with submanifolds Λ ⊂ T ∗M as in Defini-
tion 2.4. Given Λ one defines the integral affine charts to be any chart (U, x1, . . . , xn)
such that

Λ|U = Zdx1 + · · ·+ Zdxn.

Conversely, given such an integrable affine atlas the last expression defines Λ.
Henceforth, we shall make use of this correspondence with no further notice. We
refer to [14, 4, 23] for details on integral affine structures.

Hence, a symplectic torus bundle p : (T ,Ω)→M determines a canonical integral
affine structure Λ on M and the exponential map induces an equivalence

T ∗M/Λ ∼−→ T .

This diffeomorphism pulls back Ω to the unique symplectic form ΩΛ ∈ Ω2(T ∗M/Λ)
such that

q∗ΩΛ = Ωcan,

where q : T ∗M → T ∗M/Λ is the projection.
Conversely, given any integral affine structure Λ on a manifold M , we obtain a

symplectic torus bundle (TΛ,ΩΛ) where

TΛ := T ∗M/Λ, q∗ΩΛ = Ωcan,

and the projection q : T ∗M → TΛ becomes the exponential map. It follows that
there is a 1:1 correspondence:symplectic torus bundles

over M
up to equivalence

 ←̃→

integral affine structures
Λ ⊂ T ∗M


Example 2.6. On Rn we have the standard integral affine structure

Λst = Z{dx1, . . . ,dxn},

which corresponds to the trivial symplectic torus bundle

pr2 : Tn × Rn → Rn, Ωst =

n∑
i=1

dθi ∧ dxi.

Similarly, on the torus Tn = Rn/Zn we have the integral affine structure

Λst := Z{dx1, . . . ,dxn},

where now xi are standard coordinates on the torus (so defined mod Z). The cor-
responding symplectic torus bundle is

pr2 : Tn × Tn → Tn, Ωst =

n∑
i=1

dθi ∧ dxi.
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Remark 2.7. Every symplectic torus p : (T ,Ω) → M is locally equivalent to the
standard one (Tn ×Rn,Ωst)→ Rn. Indeed, an integral affine chart (U, xi) induces
an isomorphism

T |U ' Tn × U,
which identifies Ω and Ωst.

Example 2.8. When n = 2 we have an exotic integral affine structure on T2

defined by

Λex = Z{dx1,dx2 − x1dx1}.
The corresponding symplectic torus bundle can be described as follows. Consider
the discrete subgroup Γ ⊂ AffZ(R4) generated by the translations

γ1(θ1, θ2, x
1, x2) = (θ1, θ2, x

1 + 1, x2), γ2(θ1, θ2, x
1, x2) = (θ1, θ2, x

1, x2 + 1),

γ3(θ1, θ2, x
1, x2) = (θ1 + 1, θ2, x

1, x2),

and by the element

γ4(θ1, θ2, x
1, x2) = (θ1 − x1, θ2 + 1, x1, x2).

This group acts proper and free, by symplectic transformations of the canonical
symplectic form

Ωcan = dθ1 ∧ dx1 + dθ2 ∧ dx2.

The sought after symplectic torus bundle has total space T := R4/Γ, with symplectic
form Ω induced by Ωcan, and projection

p : T → T2, [θ1, θ2, x
1, x2] 7→ [x1, x2].

Indeed, this map has Lagrangian fibers and admits the Lagrangian section

s(x1, x2) = [0, 0, x1, x2].

This is the zero section for the multiplication

m([θ1, θ2, x
1, x2], [θ̄1, θ̄2, x

1, x2]) = [θ1 + θ̄1, θ2 + θ̄2, x
1, x2].

Note that (T ,Ω) is the Kodaira-Thurston symplectic manifold.

Let p : (T ,Ω) → M be a symplectic torus bundle inducing an integral affine
structure Λ ⊂ T ∗M . Then M carries a canonical flat connection ∇, namely the
unique torsion free connection satisfying

∇∂xi∂xj = 0,

for any integral affine chart (U, xi). We will denote by the same symbol ∇ the
dual connection on T ∗M : it is the unique linear connection for which every local
section of Λ is flat. The corresponding horizontal distribution will be denoted
by H∇ ⊂ T (T ∗M).

At the level of the torus bundle T → M the existence of this flat connection is
reflected in the existence of a Lagrangian foliation transverse to the fibers.

Proposition 2.9. Let p : (T ,Ω) → M be a symplectic torus bundle inducing an
integral affine structure Λ ⊂ T ∗M . Then

H := (d exp)(H∇) ⊂ T (T ) (2.1)

is a flat Ehresmann connection by Lagrangian subspaces, hence defines a Lagrangian
foliation transverse to the fibers of p : T →M .
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Proof. Under the local trivialization induced by an integral affine chart (see Remark
(2.7)), the exponential map exp : T ∗M → T is just the projection

exp : Rn × U → Tn × U,
and we find

H = (d exp)(H∇) =

n⋂
i=1

ker(dθi).

The statement now follows by observing that the forms dθi are multiplicative. �

Definition 2.10. The distribution H ⊂ T (T ) given by (2.1) is called the canonical
horizontal distribution of the symplectic torus bundle.

Remark 2.11. The distribution H is an example of a multiplicative Ehresmann
connection. In general, a distribution in a Lie groupoid G is called multiplicative
if it is a subgroupoid of the tangent groupoid T (G). We refer to [21, 22] for more
details on multiplicative Ehresmann connections.

2.2. Morphisms of symplectic torus bundles. We will make use of the follow-
ing notion of morphism of symplectic torus bundles.

Definition 2.12. A morphism of symplectic torus bundles

(φ,Φ) : (T1,Ω1) 99K (T2,Ω2)

consists of a map φ : M1 →M2 between the basis and a bundle map

φ∗T2
Φ //

pr

��

T1

p1

��
M1

Id
M1

satisfying:

(i) Φ restricts on each fiber to a group morphism;
(ii) Graph(Φ) ⊂ T1 × T2 is a Lagrangian submanifold.

The graph in the last item in the previous definition is the relation defined by:

Graph(Φ) := {(Φ(g, x), g) : (g, x) ∈ T2 ×M1
M1}.

The notation T means, as usual, the symplectic manifold T with the opposite
symplectic structure.

Remark 2.13. The notion of morphism in the previous definition is actually an
instance of the notion of a groupoid comorphism [8]. Since we do not consider
groupoid morphisms or other notions of morphism for torus bundles, we will use
the term “morphism”.

The notion of morphism of symplectic torus bundles is intimately related to the
concept of integral affine map which we now recall (see [14, 4, 23] for more details).

Definition 2.14. Let (M1,Λ1) and (M2,Λ2) be integral affine manifolds. A map

φ : (M1,Λ1)→ (M2,Λ2) (2.2)

is called an integral affine map if φ∗(Λ2) ⊂ Λ1. It is called a primitive integral
affine map if φ∗(Λ2) = Λ1.

Remark 2.15. A map φ : (M1,Λ1)→ (M2,Λ2) is integral affine if and only if in
integral affine charts (with connected domains) it is of the form

x 7→ Ax+ b,

for some linear integral affine map A : (Rm1 ,Zm1)→ (Rm2 ,Zm2) and some b ∈ R.
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The next proposition shows that the category IntAffMan of integral affine man-
ifolds is equivalent to the category SympTorBun.

Proposition 2.16. The assignment (M,Λ) 7→ (TΛ,ΩΛ) extends to a functor

IntAffMan→ SympTorBun

by assigning to an integral affine map φ as in (2.2) the morphism

(φ, φ∗) : (TΛ1 ,ΩΛ1) 99K (TΛ2 ,ΩΛ2), φ∗([α], x) = [(dxφ)∗α].

This functor is in fact an equivalence of categories.

Proof. By the remark above the map φ∗ is well-defined. It is readily verified that

(φ, φ∗) is a morphism, and that this construction defines a functor. To see that this
is an equivalence of categories, let (φ,Φ) : (T1,Ω1) 99K (T2,Ω2) be any morphism
between symplectic torus bundles. Then Φ has a unique lift to a vector bundle map

φ∗T ∗M2
Φ̃ //

Id×exp

��

T ∗M1

exp

��
φ∗T2

Φ
// T1

whose graph

Graph(Φ̃) ⊂ T ∗M1 × T ∗M2

is a Lagrangian submanifold. One checks (e.g., by working in local coordinates)
that this last condition implies that

Φ̃ = φ∗.

The commutativity of the diagram then forces

φ∗(Λ2) ⊂ Λ1,

where Λ1 and Λ2 are the integral affine structures induced by (T1,Ω1) and (T2,Ω2).
By the remark above, we conclude that φ is an integral affine map. �

2.3. Hamiltonian T -spaces. One of our main objects of study are Hamiltonian
spaces for symplectic torus bundles. An action of a torus bundle p : T →M on
map µ : S →M is given by a map

A : T ×M S → S, (g, p) 7→ g · p,

satisfying the usual properties:

(i) g · (h · p) = (gh) · p;
(ii) u(µ(p)) · p = p.

In other words, this is just a smooth varying fiberwise action.
Symplectic torus bundles act on maps whose domain is a symplectic manifold:

Definition 2.17. Let p : (T ,Ω)→M be a symplectic torus bundle. A Hamilton-
ian T -space consists of:

(i) a symplectic manifold (S, ω);
(ii) a map µ : S →M ;

(iii) an action A : T ×M S → S which is symplectic, i.e., that satisfies

A∗ω = pr∗T Ω + pr∗S ω.
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Since a Hamiltonian T -space consists fiberwise of ordinary abelian actions, we
obtain an infinitesimal action of the bundle of abelian Lie algebras T ∗M → M
on µ : S →M . In other words, we have a linear map a : Ω1(M)→ X(S) satisfying

µ∗(a(α)) = 0, [a(α),a(β)] = 0, (α, β ∈ Ω1(M)).

We call µ : S →M the moment map of the action and it satisfies the moment
map condition (see [13])

ia(α)ω = µ∗α (α ∈ Ω1(M)). (2.3)

Example 2.18 (Classical Hamiltonian spaces). A classical Hamiltonian Tn-space
with moment map µ : (S, ω) → Rn is the same thing as Hamiltonian T -space for
the symplectic torus bundle T := (Tn×Rn,Ωcan)→ Rn. The T -action and is given
in terms of the Tn-action determine each other by

A : (Tn × Rn)×Rn S → S, (g, x, p) 7→ gp, if x = µ(p).

Conversely, any T -action takes this form for a unique Tn-action.

Example 2.19 (The trivial Hamiltonian T -space). Let (T ,Ω) be any symplectic
torus bundle. Then T acts on itself by left translations

A : T ×M T → T , (g, h) 7→ gh,

with moment map the projection p : T → M . The multiplicativity of Ω shows that
this is a Hamiltonian T -space.

Example 2.20 (The trivial S2-bundle over T2). Consider the symplectic manifold

(S, ω) := (T2, ωT2)× (S2, ωS2),

where ωT2 and ωS2 denote the area forms with total area 1, so

ωT2 := dy ∧ dx, ωS2 := dφ ∧ dh,

where (φ, h) are cylindrical coordinates on S2. This admits an action of the sym-
plectic torus bundle (T ,Ω) corresponding to the standard integral affine cylinder

(M,Λ) := (S1 × R,Zdx⊕ Zdh).

Explicitly, the symplectic torus bundle

(T ,Ω) = (T2 × S1 × R,dy ∧ dx+ dθ ∧ dh),

p : T → S1 × R, (y, θ, x, h) 7→ (x, h),

acts along the map

µ : T2 × S2 → S1 × R, (y, x, φ, h)→ (x, h),

as follows
(y, θ, x, h) · (ỹ, x, φ, h) = (y + ỹ, x, θ + φ, h).

Example 2.21 (The non-trivial S2-bundle over T2). The non-trivial orientable
S2-bundle over T2 can be obtained by taking the quotient of the trivial S2-bundle
R2 × S2 → R2 by the proper and free action of Z2 given by

(k1, k2) · (y, x, φ, h) = (y + k1, x+ k2, φ− k2y, h).

Let (S, ω) be the resulting manifold T2 ∼× S2 := (R2 × S2)/Z2 equipped with the
symplectic form induced by the Z2-invariant symplectic form

(h+ 2)dy ∧ dx+ (xdy + dφ) ∧ dh.

This symplectic manifold admits an action of the symplectic torus bundle (T ,Ω)
associated to the integral affine manifold

(M,Λ) = (S1×]− 2,∞[,Z((h+ 2)dx+ xdh)⊕ Zdh).
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Explicitly, this torus bundle is

T =
(
T2 × R×]− 2,∞[

)
/Z,

p : T → S1×]− 2,∞[, (y, θ, x, h) 7→ (x, h),

where Z acts as

k · (y, θ, x, h) = (y, θ − ky, x+ k, h),

and the multiplication on the fibers is just addition. The symplectic form Ω is
induced by the Z-invariant symplectic form

(h+ 2)dy ∧ dx+ (xdy + dθ) ∧ dh.

The symplectic torus bundle (T ,Ω) acts on (S, ω) along the map

µ : T2 ∼×S2 → S1×]− 2,∞[, (y, x, φ, h) 7→ (x, h),

as follows

(y, θ, x, h) · (ỹ, x, φ, h) = (y + ỹ, x, θ + φ, h).

Let µ1 : (S1, ω1)→M and µ2 : (S2, ω2)→M be Hamiltonian T -spaces. Then a
morphism from µ1 to µ2 is a symplectic map

S1
Ψ //

µ1

��

S2

µ2

��
M

Id
M

which is T -equivariant:

Ψ(g · p) = g ·Ψ(p).

We need a generalization of this notion to Hamiltonian spaces of distinct sym-
plectic torus bundles.

Definition 2.22. Let (φ,Φ) : (T1,Ω1) 99K (T2,Ω2) be a morphism of symplectic
torus bundles, and let µi : (Si, ωi) → Mi be Hamiltonian Ti-spaces. A morphism
from µ1 to µ2 covering (φ,Φ) is a map

S1
Ψ //

µ1

��

S2

µ2

��
M1

φ
// M2

satisfying:

(i) Ψ is a Poisson map;
(ii) Ψ is (φ,Φ)-equivariant, i.e., Ψ(Φ(g, µ1(p)) · p) = g ·Ψ(p).

The base map of a morphism of Hamiltonian spaces is an integral affine map
by Proposition 2.16. For an isomorphism this map must be an integral affine
isomorphism, while the the map Ψ between the total spaces must be a symplec-
tomorphism. An isomorphism for which the base map φ is the identity, and so
T1 = T2, will be called an equivalence.

Example 2.23. Let µ : (S, ω)→ Rn be a Hamiltonian Tn-space and Kθ : Tm → Tn
a Lie group homomorphism. The induced Lie algebra homomorphism θ : Rm → Rn
is a linear integral affine map (Rm,Zm) → (Rn,Zn), and we have a morphism of
symplectic torus bundles

(φ,Φ) : Tn × Rn 99K Rm × Tm, φ = θ∗, Φ(g, x) = (x,Kθ(g)).
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On the other hand, the induced Tm-action on S

h · x := Kθ(h) · x,

is Hamiltonian, with momentum map µ̃ := θ∗ ◦ µ : S → Rm. Moreover,

S
Id //

µ

��

S

µ̃

��
Rn

φ
// Rm

is a a morphism of Hamiltonian spaces covering (φ,Φ).

2.4. T -invariant tensors. Let p : (T ,Ω) → M be a symplectic torus bundle.
Given a Hamiltonian T -space µ : (S, ω) → M , the torus bundle T acts on the
µ-fibers so each g ∈ T induces a map between the tangent spaces to the fibers:

g∗ : Tµ−1(x)→ Tµ−1(x), with x = p(g).

In order to extend the action of g to the tangent bundle TS we use the canoni-
cal horizontal distribution H (see Definition 2.10). We denote the corresponding
horizontal lift of tangent vectors by:

horg : TxM → TgT , horg(w) := (dgp)|−1
H (w).

Definition 2.24. Given a symplectic torus bundle p : (T ,Ω) → M and a Hamil-
tonian T -space µ : (S, ω)→M the tangent action of g ∈ T is the map

g∗ : TpS → TgpS, g∗v := dA(horg(dµ(v)), v).

The multiplicativity of the distribution H ensures that this defines an action of
the torus bundle T on the map µ ◦ pr : TS →M .

Remark 2.25. The distribution H is an example of a Cartan connection on the
torus bundle p : T → M . The construction of the action in Definition 2.24 is
a special case of a more general construction valid for actions of Lie groupoids
G ⇒ M on a map µ : S → M . Whenever the Lie groupoid G is equipped with a
Cartan connection one obtains an action of G on µ ◦ pr : TS →M (see, e.g., [3])

Definition 2.26. We say that a tensor field on the total space of a Hamiltonian
T -space µ : (S, ω)→M is T -invariant if it is invariant under the tangent action
of every g ∈ T .

Similarly, one can talk about T -invariance of other objects. For example, a
distribution D ⊂ TS is T -invariant if is preserved under the tangent action. A
foliation of S is T -invariant if the corresponding distribution if T -invariant.

Example 2.27. For any symplectic torus bundle p : (T ,Ω) → M the symplectic
form Ω and the horizontal distribution H are both T -invariant. For any Hamilton-
ian T -space µ : (S, ω)→M the symplectic form ω is also T -invariant.

Given a Hamiltonian (T ,Ω)-space µ : (S, ω) → M , fixing a integral affine chart
(U, xi), one obtains a Tn-action on S|U . This follows from the fact that a choice
of integral affine chart induces a local trivialization of the symplectic torus bundle
(cf. Remark 2.7). Although these locally defined Tn-actions depend on the choice of
integral affine chart, it turns out that T -invariance is equivalent to Tn-invariance,
as stated in the next proposition. For the statement, we will the fact that a local
section s : U → T of T →M acts on S|U as thefiber preserving diffeomorphism

p 7→ s(µ(p)) · p.
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Proposition 2.28. Given a tensor field K on the total space of a Hamiltonian
T -space µ : (S, ω)→M the following are equivalent:

(i) K is T -invariant;
(ii) K is invariant under the action of any horizontal local section of T ;

(iii) K is invariant under the infinitesimal action of any locally defined flat 1-form

La(α)K = 0 if ∇α = 0; (2.4)

(iv) K is Tn-invariant relative to the locally defined Tn-action induced by any
integral affine chart.

Proof. Obviously, a tensor is T -invariant if and only if it is T |Ua
-invariant for some

open cover {Ua} of M . Hence, it is enough to check the statement on an integral
affine chart (U, xi) with connected domain.

The equivalence of (i) and (ii) follows from the fact that any element g ∈ T
extends to a horizontal local section (see proof of Proposition 2.9).

For the equivalence between (ii) and (iii), observe that if α ∈ Ω1(U) is any flat
1-form then exp(tα) : U → T is a horizontal section, and acting by this local section
is given by the flow of the vector field a(α) ∈ X(S) (cf. (2.3))

A(exp(tα), p) = φta(α)(p).

For the equivalence between (ii) and (iv), observe that the choice of integral
affine chart gives an identification

Tn × U ' T |U .
Under this identification, the horizontal sections of T become the constant sections
of Tn × U → U . Therefore, the action by g ∈ Tn coincides with the action by the
horizontal section x 7→ (g, x), and the equivalence follows. �

3. Principal Hamiltonian T -spaces a.k.a. Lagrangian fibrations

A very important class of Hamiltonian T -spaces are Lagrangian fibrations. In this
section we show that they correspond exactly to principal Hamiltonian T -spaces
and we recall their classification, from this point of view.

3.1. Lagrangian fibrations. By a Lagrangian fibration we mean the following.

Definition 3.1. A Lagrangian fibration is a symplectic manifold (S, ω) together
with a surjective submersion µ : S →M satisfying the following properties:

(i) dim(S) = 2 dim(M);
(ii) µ : (S, ω)→M is a Poisson map, where M is equipped with the zero Poisson

structure;
(iii) µ is a proper with connected fibers.

Notice that conditions (i) and (ii) can be replaced by the simpler statement that
the fibers are Lagrangian submanifolds. We prefer this formulation since it is more
natural from the perspective of Poisson geometry adopted here, specially having in
mind generalizations to the non-commutative setting.

Given any Lagrangian fibration µ : (S, ω) → M one obtains a symplectic torus
bundle p : (T ,Ω)→M which acts in a Hamiltonian fashion on µ as follows. First,
the Lagrangian fibration induces an integral affine structure Λ on M given by

Λ := {α ∈ T ∗M : φ1
a(α) = Id}.

Here, for α ∈ T ∗xM we denoted by φ1
a(α) the time-1 flow of the vector field a(α)

on the fiber µ−1(x) defined by (2.3). Then the symplectic torus bundle (TΛ,ΩΛ)
associated with Λ acts on the fibration by setting:

[α] · p := φ1
a(α)(p) (α ∈ T ∗µ(p)M).
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One checks that this is indeed a Hamiltonian TΛ-action (see, e.g., [13, Chp. 12]).
Moreover, this is a principal action, i.e., the map

TΛ ×M S → S ×M S, (g, p) 7→ (gp, p),

is a diffeomorphism.
Conversely, given a symplectic torus bundle p : (T ,Ω) → M , every principal

Hamiltonian T -space µ : (S, ω)→M is a Lagrangian fibration. In other words:{
principal Hamiltonian TΛ-spaces

µ : (S, ω)→M

}
=

{
Lagrangian fibrations

µ : (S, ω)→M inducing Λ

}
Two Lagrangian fibrations µi : (Si, ωi)→M are called equivalent if there exists

a symplectomorphism Ψ : (S1, ω1)→ (S2, ω2) commuting with the projections:

S1
Ψ //

µ1

��

S2

µ2

��
M

Id
M

It is easy to see that equivalent Lagrangian fibrations induce the same integral affine
structure Λ ⊂ T ∗M and Ψ is an equivalence of Hamiltonian TΛ-spaces.

Example 3.2 (Symplectic torus bundles). A symplectic torus bundle p : (T , ω)→
M is an example of a Lagrangian fibration satisfying a very special property: it
admits a global Lagrangian section, namely the identity section. Conversely, if a
principal Hamiltonian T -space µ : (S, ω) → M admits a global Lagrangian section
s : M → S then we obtain an equivalence

(T ,Ω) ∼−→ (S, ω), g 7→ g · s(p(g)).

Under this equivalence, the T -action on S becomes the action of T on itself by
translations.

In general, a Lagrangian fibration does not admit a global Lagrangian section.
However, locally such sections always exists, and this gives a local model for a
Lagrangian fibrations, as discussed in the next example.

Remark 3.3 (Action-angle coordinates). Let p : (T ,Ω)→M be a symplectic torus
bundle. Any principal Hamiltonian T -space µ : (S, ω) → M is locally equivalent
to p : (T ,Ω) → M . Namely, choosing an open set U ⊂ M where there exists a
Lagrangian section s : U → S of µ, we obtain an equivalence as in the previous
example

Ψ : T |U ∼−→ S|U , g 7→ g · s(p(g)).

It follows also from the previous discussion that any two Lagrangian fibrations in-
ducing the same integral affine structure Λ are locally equivalent.

Moreover, if we fix integral affine coordinates (U, xi) over which there exists a
Lagrangian section s : U → S of µ, we obtain an equivalence (cf. Remark (2.7))

S|U ' Tn × U, ω|U '
n∑
i=1

dθi ∧ dxi.

This local form only depends on the choice of an integral affine chart and a La-
grangian section. This is sometimes referred to as the Arnold-Liouville Theorem,
and the coordinates (xi, θi) are called action-angle coordinates.
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3.2. Classification of principal Hamiltonian T -spaces. The obstruction for a
Lagrangian fibration to admit a global Lagrangian section is given by the Lagrangian-
Chern class, as we now recall. This class also yields Duistermaat’s global classifi-
cation of Lagrangian fibrations [19]. In our language, it allows to classify principal
Hamiltonian T -spaces, up to equivalence.

Given a symplectic torus bundle p : (T ,Ω) → M denote by TLag its sheaf of

Lagrangian sections. The groupoid multiplication makes this into an abelian sheaf.
Given a principal Hamiltonian T -space µ : (S, ω) → M , the usual construction
of the Chern class using Čech cocycles can be performed using local Lagrangian
sections. This yields a Čech cohomology class

c1(S, ω) ∈ Ȟ1(M, TLag),

called the Lagrangian-Chern class.

Theorem 3.4 (Duistermaat). Given a symplectic torus bundle p : (T ,Ω) → M
the Lagrangian-Chern class gives a 1:1 correspondence:

c1 :

principal Hamiltonian T -spaces
µ : (S, ω)→M

up to equivalence

 −̃→ Ȟ1(M, TLag)

Since Ȟ1(M, TLag) is an abelian group, one also has an abelian group structure

on the equivalence classes of principal Hamiltonian T -spaces. This group structure
can be described explicitly using the fusion product of principal Hamiltonian T -
spaces (see, e.g., [14]).

An integral affine manifold (M,Λ) is called complete if the canonical flat connec-
tion ∇ is complete. Lagrangian fibrations over a complete integral affine manifold
have the following simple description.

Proposition 3.5. Let (M,Λ) be a complete, integral affine manifold so M ' Rn/Γ.
There is a 1:1 correspondence:{

principal Hamiltonian TΛ-spaces
µ : (S, ω)→M

}
←̃→

 symplectic actions
Γ y (Tn × Rn, ωcan)

covering Γ y Rn


Proof. Since (M,Λ) is complete, we have M ' Rn/Γ, with Γ = π1(M) ⊂ AffZ(Rn)
acting properly and free on Rn.

Assume Γ y (Tn × Rn, ωcan) is a symplectic action covering Γ y Rn. It is a
proper and free action, and the induced symplectic form on the quotient

S := (Tn × Rn)/Γ→M = Rn/Γ,

yields a Lagrangian fibration with base the integral affine manifold (M,Λ). So it is
a principal Hamiltonian TΛ-space.

Conversely, given a principal Hamiltonian TΛ-space µ : (S, ω)→M we consider
its pullback under the covering projection q : Rn →M

S̃

µ̃

��

q̃ // S

µ

��
Rn

q // M

.

Here q̃ : S̃ → S is also a Γ-covering where Γ acts on the first factor of S̃ = Rn×M S.
This action makes µ̃ equivariant and preserves the pullback symplectic

ω̃ := q̃∗ω.
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On the other hand, µ̃ : (S̃, ω̃)→ Rn is a principal Hamiltonian Tn-space. Any such
space is isomorphic to the canonical Hamiltonian Tn-space (Tn × Rn, ωcan)→ Rn,
so the result follows. �

Remark 3.6. The previous result can be related to Duistermaat classification The-
orem 3.4 as follows. On the one hand, under the assumptions of Proposition 3.5,one
has an identification:

Ȟ1(M, TLag) ' Ȟ1
Γ(Rn,TnLag)

where the right-hand side denotes Γ-equivariant cohomology for the Γ-sheaf of La-
grangian sections of (Tn × Rn, ωcan)→ Rn.

On the other hand, one has a Γ-equivariant version of Duistermaat result, which
gives a 1:1 correspondence: Γ-equivariant

principal Hamiltonian Tn-spaces

µ̃ : (S̃, ω̃)→ Rn, up to isomorphism

 −̃→ Ȟ1
Γ(Rn,TnLag)

Any such Hamiltonian space admits a global Lagrangian section and so is sym-
plectomorphic to the canonical bundle pr : (Tn × Rn, ωcan) → Rn, recovering the
correspondence in the proposition.

Notice that the induced symplectic action of Γ on Tn × Rn, in general, does
not coincide with the canonical lift of the action Γ y Rn. This happens precisely

when µ̃ : (S̃, ω̃) → Rn admits a Γ-invariant Lagrangian section, i.e., when it is
represented by the trivial class in Ȟ1

Γ(Rn,TnLag).

Proposition 3.5 is also useful to construct examples. We illustrate it with one
such example.

Example 3.7. The standard integral affine structure on the torus M = R2/Γ is
obtained from the action of Γ = Z2 on R2 by translations:

(m,n) · (x1, x2) = (x1 +m,x2 + n).

The canonical lift Γ y R2 × T2 is given by

(m,n) · (x1, x2, θ1, θ2) = (x1 +m,x2 + n, θ1, θ2).

The zero section is a Γ-equivariant Lagrangian section and this agrees with the fact
that the corresponding quotient is the trivial bundle (T2 × T2, ωcan) → T2, which
has representative the trivial class in Ȟ1(T2, TLag)

More generally, fix a ∈ [0, 1[ and consider the symplectic action Γ y R2 × T2

covering Γ y R2 given by

(m,n) · (x1, x2, θ1, θ2) = (x1 +m,x2 + n, θ1 + an, θ2). (3.1)

For this action, the bundle R2 × T2 → R2 still admits a Γ-equivariant section,
namely

s(x1, x2) = (x1, x2,−ax2, 0).

Hence, we obtain a family of Lagrangian fibrations, each isomorphic to the trivial
fibration T2 × T2 → T2, but with a new symplectic form

ωa = ωcan + adx1 ∧ dx2.

Notice that the integral affine structure induced on the base T2 is still the standard
one. If s : T2 → T2 × T2 is any section, s∗ωcan is an exact form and applying
Stokes formula we find that∫

T2

s∗ωa = a

∫
T2

dx1 ∧ dx2 = a.
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Therefore, if a ∈]0, 1[ the fibration (T2 × T2, ωa) → T2 does not admit any La-
grangian section. Equivalently, there is no Γ-equivariant section of R2 × T2 → R2

which is Lagrangian (this can also be checked directly). This gives examples of La-
grangian fibrations with trivial Chern class and non-trivial Lagrangian-Chern class
c(S, ω) ∈ Ȟ1(T2, TLag).

3.3. Lagrangian connections. In the construction of the Chern class of a princi-
pal torus bundle one passes from integral to real coefficients using connections. One
has a similar situation for principal Hamiltonian T -spaces, for which the concept
of a Lagrangian connection is needed.

Definition 3.8. A connection for a principal Hamiltonian T -space µ : (S, ω)→
M is a T -invariant distribution D ⊂ TS such that TS = D ⊕ ker(dµ). We call
such a connection Lagrangian if Dp ⊂ (TpS, ωp) is Lagrangian for all p ∈ S.

Example 3.9. For p : (T ,Ω) → M , viewed as a principal Hamiltonian T -space
with the action by translations, the canonical horizontal distribution (see Definition
2.10) is a Lagrangian connection.

Example 3.10. Let µ : (S, ω) → Rn be a classical Hamiltonian Tn-space, viewed
as Hamiltonian T -space for the symplectic torus bundle T = (Tn×Rn,Ωcan)→ Rn.
If the action is principal, then a connection in the sense of Definition 3.8 is just an
ordinary principal bundle connection. It is Lagrangian if and only if its horizontal
spaces are Lagrangian.

Connections can also be described by connection 1-forms, which are defined as
follows. For a Hamiltonian T -space µ : (S, ω) → M and a vector bundle E → M
we denote by Ωk(S,E) the space of k-forms with values in µ∗E.

Definition 3.11. A connection 1-form for a principal Hamiltonian T -space
µ : (S, ω)→M is a form θ ∈ Ω1(S, T ∗M) which satisfies:

(i) T -invariance: θgp(g · v) = θp(v), for all v ∈ TpS, g ∈ Tµ(p);
(ii) θp(ap(α)) = α, for all α ∈ T ∗µ(p)M and p ∈ S.

Note that in the previous definition, in (i) we have used the tangent action of T
on S and in (ii) its infinitesimal version a : µ∗T ∗M → TS.

Similar to ordinary principal connections, there is a bijective correspondence
between connections and connection 1-forms for a principal Hamiltonian T -space
µ : (S, ω) → M , in which the distribution corresponding to a connection 1-form θ
is D = ker θ. The following lemma characterizes those connection 1-forms giving
rise to Lagrangian connections.

Lemma 3.12. Let θ be a connection 1-form for a principal Hamiltonian T -space
µ : (S, ω) → M . Consider the T -invariant, non-degenerate, 2-form ωθ ∈ Ω2(S)
defined by

ωθ(v, w) := 〈θ(v),dµ(w)〉 − 〈θ(w),dµ(v)〉.
The connection ker θ is Lagrangian if and only if ω = ωθ.

Proof. The backward direction is immediate. For the forward direction, note that
Im(a) = ker(dµ) by principality of the action. So, it suffices to verify the equality
ω = ωθ on tangent vectors of the form v+ap(α), with v ∈ ker(θp) and α ∈ T ∗µ(p)M .

This is readily done using the moment map condition (2.3). �

Proposition 3.13. Every principal Hamiltonian T -space admits a Lagrangian con-
nection.
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Proof. Remark 3.3 and Example 3.9 show that over a sufficiently small integral
affine chart a Lagrangian connection always exists. Consider an open cover {Ui}i∈I
of M together with connection 1-forms θi for µ : S|Ui → Ui, such that ker(θi) is
Lagrangian. Choosing a partition of unity {ρi}i∈I subordinated to this cover, we
can construct a global connection 1-form θ :=

∑
i∈I(ρi ◦µ)θi. In view of the lemma

above, ker(θ) is Lagrangian, since

ωθ =
∑
i∈I

(ρi ◦ µ)ωθi =
∑
i∈I

(ρi ◦ µ)ω = ω.

�

Next we define the curvature 2-form of a connection on a principal Hamiltonian
T -space µ : (S, ω) → M . Pulling back the canonical flat connection ∇ on T ∗M
along the projection µ : S → M we obtain a flat connection ∇ on µ∗T ∗M and
this gives a differential d∇ : Ω•(S, T ∗M) → Ω•+1(S, T ∗M). We further denote by
Ω•∂(M,T ∗M) the kernel of the anti-symmetrization map

∂ : Ω•(M,T ∗M)→ Ω•+1(M), (3.2)

which is a subcomplex of

(Ω•(M,T ∗M),d∇).

Proposition 3.14. Let D be a connection on µ : (S, ω) → M with connection
1-form θ ∈ Ω1(S, T ∗M). There is a unique 2-form Kθ ∈ Ω2(M,T ∗M) such that

µ∗Kθ = d∇θ.

This satisfies the following properties:

(i) Kθ is d∇-closed;
(ii) Kθ = 0 if and only if D is involutive.

Moreover, if D is a Lagrangian connection then Kθ ∈ Ω2
∂(M,T ∗M), meaning that

∂Kθ(v1, v2, v3) :=
∑
σ∈S3

(−1)|σ|〈Kθ(vσ(1), vσ(2)), vσ(3)〉 = 0.

Proof. The existence of Kθ follows from the remark that d∇θ is horizontal and T -
invariant, and its uniqueness is clear. Properties (i) and (ii) are immediate, whilst
the last property follows by observing that

dωθ =
1

2
µ∗(∂Kθ),

so that (by Lemma 3.12) ∂Kθ must vanish if θ is Lagrangian. �

According to the previous proposition, a choice of Lagrangian connection on
µ : (S, ω)→M gives rise to a cohomology class

[Kθ] ∈ H2(Ω•∂(M,T ∗M),d∇).

This class is independent of the choice of Lagrangian connection and, as for principal
S1-bundles, it is related to the Lagrangian Chern class by a map that ‘passes from
integer to real coefficients’. To make this precise, consider the composite

Ȟ1(M, TLag)
' // Ȟ2(M,OΛ) // Ȟ2(M,OAff)

' // H2(Ω•∂(M,T ∗M),d∇) , (3.3)

where OAff and OΛ denote respectively the sheaves of locally defined functions
on M that are affine and integral affine with respect to Λ. The first map in this
sequence is the connecting homomorphism induced by the short exact sequence

0 // OΛ
// C∞ d // TLag

// 0,
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while the last map is the isomorphism induced by the fine resolution

0 // OAff
// C∞ d∇◦d // Ω1

∂(−, T ∗M)
d∇ // Ω2

∂(−, T ∗M)
d∇ // . . . (3.4)

Theorem 3.15. If θ is a Lagrangian connection for a principal Hamiltonian T -
space µ : (S, ω) → M , then (3.3) maps the Lagrangian Chern class c1(S, ω) to the
class [Kθ].

Proof. Let U = {Ui}i∈I be a good open cover of M such that µ admits a Lagrangian
section σi over Ui for each i ∈ I. The class c1(S, ω) ∈ Ȟ1(M, TLag) is represented

by the 1-cocycle τ = [τij ] ∈ Č1(U , TLag), defined by the relation:

τij(x) · σi(x) = σj(x), x ∈ Uij .
The connecting homomorphism in (3.3) sends c1(S, ω) to the class represented by
the 2-cocycle ďf ∈ Č2(U ,OΛ), where f = [fij ] ∈ Č1(U , C∞) is any 1-cochain lifting
τ (which exists since Uij is contractible for all i and j). The last map in (3.3) is

induced by the ‘Čech-de Rham’-type double complex

...
...

...

Č2(U , C∞) //

OO

Č2(U ,Ω1
∂(−, T ∗M)) //

OO

Č2(U ,Ω2
∂(−, T ∗M)) //

OO

. . .

Č1(U , C∞) //

OO

Č1(U ,Ω1
∂(−, T ∗M)) //

OO

Č1(U ,Ω2
∂(−, T ∗M)) //

OO

. . .

Č0(U , C∞) //

OO

Č0(U ,Ω1
∂(−, T ∗M)) //

OO

Č0(U ,Ω2
∂(−, T ∗M)) //

OO

. . .

In this complex the vertical differentials are those of the Čech complex and the
horizontal differentials are induced by (3.4). Notice that both the rows and columns
are exact at the (p, q)th entry whenever p, q > 0. We need to show that (ďf, 0, 0)
and (0, 0,Kθ) represent the same class in the cohomology of the total complex.
This follows because

(ďf, 0, 0)− (0, 0,Kθ) = dTot(f, σ
∗θ),

where σ∗θ ∈ Č0(U ,Ω1
∂(M,T ∗M)) is given by (σ∗θ)i := σ∗i θ. Note that σ∗i θ belongs

to the kernel of ∂ because σi and θ are Lagrangian and, by Lemma 3.12, one has

∂(σ∗i θ) = σ∗i ωθ = σ∗i ω = 0.

�

3.4. Flat Lagrangian connections. Flat Lagrangian connections will play a key
role in the study of invariant Kähler metrics. In this subsection we show how
Lagrangian fibrations with such connections can be classified in terms of a sheaf
cohomology group, much like principal Tn-bundles with flat connection.

Definition 3.16. A flat Lagrangian fibration is a Lagrangian fibration equipped
with a flat Lagrangian connection.

Note that, by Proposition 3.14, a flat Lagrangian connection is the same thing
as an invariant Lagrangian foliation transverse to the fibers.

Remark 3.17. In the literature on T-duality and mirror symmetry flat Lagrangian
fibrations in our sense are sometimes called semi-flat (see, e.g., [5]).
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Given an integral affine manifold (M,Λ) we denote by TFlat the sheaf of ∇-flat

sections of TΛ. If (U, xi) an integral affine chart then the flat sections of TΛ|U take
the form

s =

n∑
i=1

cidx
i (mod Λ),

where the coefficients ci are locally constant. This shows that every flat section is
automatically a Lagrangian section. Hence, TFlat is a subsheaf of TLag and we have

a map in cohomology
Ȟ1(M, TFlat)→ Ȟ1(M, TLag).

This map is part of an exact sequence, which will allow us to express the first
obstruction.

Proposition 3.18. Given a symplectic torus bundle (T ,Ω)→M the sequence

Ȟ1(M, TFlat) // Ȟ1(M, TLag) // H2(Ω•∂(M,T ∗M),d∇), (3.5)

where the second map is given by (3.3), is exact.

Proof of Proposition 3.18. Consider the map of short exact sequences:

0 // OΛ
//

��

C∞ d // TLag
//

��

0

0 // OAff
// C∞ // TLag/TFlat

// 0

By naturality of the connecting homomorphism, the induced square:

Ȟ1(M, TLag)
∼ //

��

Ȟ2(M,OΛ)

��
Ȟ1(M, TLag/TFlat)

∼ // Ȟ2(M,OAff)

commutes. So, up to isomorphism, (3.5) is part of the long exact sequence of:

0→ TFlat → TLag → TLag/TFlat → 0.

�

Combining this result, Proposition 3.14 and Theorem 3.15 we obtain the follow-
ing corollary.

Corollary 3.19. Fix an integral affine manifold (M,Λ). Given a Lagrangian fi-
bration µ : (S, ω)→M inducing Λ the following conditions are equivalent:

(i) µ : (S, ω)→M admits a flat Lagrangian connection;
(ii) the Lagrangian-Chern class c1(S, ω) ∈ Ȟ1(M, TLag) lies in the image of (3.5).

Flat Lagrangian fibrations are classified by their flat Chern class. This is the
element in Ȟ1(M, TFlat) constructed as the usual Chern class but using only flat lo-
cal sections. More precisely, two flat Lagrangian fibrations µi : (Si, ωi, θi)→ (M,Λ)
are said to be equivalent if there exists an equivalence of Lagrangian fibrations
preserving the connections:

S1
Ψ //

µ1

��

S2

µ2

��
M

Id
M

Ψ∗θ2 = θ1.
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Then one has the following classification result.

Theorem 3.20. Fix an integral affine manifold (M,Λ). Assigning to a flat La-
grangian fibration its flat Chern class yields a canonical 1:1 correspondenceflat Lagrangian fibrations

µ : (S, ω, θ)→M
up to equivalence

 ←̃→ Ȟ1(M, TFlat)

Moreover, the flat Chern class is mapped to the Lagrangian Chern class by (3.5).

Proof. Using flat sections, the proof of the theorem is entirely similar to the proof
of Theorem 3.4 (see, e.g.,[19] or [14]). �

Remark 3.21. Note that TFlat is the locally constant sheaf associated to the rep-
resentation of π1(M) on TΛ given by the holonomy of the integral affine manifold
(M,Λ). In particular, if the holonomy representation if trivial then the cohomology
of TFlat is that of M with values in the abelian group Tm, where m = dim(M). For
example, when M is simply-connected one obtains that the cohomology vanishes in
degree one.

Finally, we observe that one can specialize the correspondence given in Proposi-
tion 3.5 to obtain the following useful description of flat Lagrangian fibrations over
complete integral affine manifolds.

Corollary 3.22. Let (M,Λ) be a complete integral affine manifold (meaning that
M ' Rn/Γ) and let H be the canonical horizontal distribution of Tn × Rn → Rn.
There is a 1:1 correspondenceflat Lagrangian fibrations

µ : (S, ω, θ)→M
up to equivalence

 ←̃→


symplectic actions

Γ y (Tn × Rn, ωcan)
covering Γ y Rn

preserving H


Example 3.23. A simple example illustrating the above correspondences can be
obtained by considering the integral affine circle (M,Λ) = (S1, bZdx), where b >
0 is a parameter. Then H1(M, TLag) = 0, so any Lagrangian fibration inducing

(M,Λ) takes the form

pr2 : (S1 × S1, bdy ∧ dx)→ S1.

By the remark above, we have H1(M, TFlat) = S1. A class e2πia ∈ S1 can be realized
as the Lagrangian connection

Da = 〈∂x − a∂y〉.

Example 3.24. Consider the second Lagrangian fibration

(T2 × T2, ωa)→ T2

in Example 3.7. We saw there that for a ∈]0, 1[ this fibration has non-trivial
Lagrangian-Chern class. On the other hand, the canonical horizontal distribution
of T2 × R2 → R2 is invariant under the action (3.1), so it follows from Corollary
3.22 that this Lagrangian fibration is flat.

4. Toric Hamiltonian T -spaces a.k.a. toric Lagrangian fibrations

The main class of Hamiltonian T -spaces that we study in this paper is a gener-
alization of both principal Hamiltonian T -spaces (i.e., Lagrangian fibrations) and
classical symplectic toric manifolds. They are defined as follows.
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Definition 4.1. A Hamiltonian T -space µ : (S, ω) → M is called toric if it
satisfies the following conditions.

(i) The T -action is free on a dense subset of S.
(ii) dim(S) = 2 dim(M).
(iii) The map µ has connected fibers and it is proper as map onto its image.

In the rest of this section we will see that the theory of principal Hamiltonian T -
spaces, studied in the previous section, extends to the toric setting. In particular,
in section 4.1, we extend the correspondence between principal Hamiltonian T -
spaces and Lagrangian fibrations by showing that toric Hamiltonian T -spaces are
essentially the same thing as toric Lagrangian fibrations, i.e., singular Lagrangian
fibrations with only elliptic singularities.

4.1. Toric Lagrangian fibrations. We consider the following special class of sin-
gular Lagrangian fibrations.

Definition 4.2. By a singular Lagrangian fibration we mean a symplectic
manifold (S, ω) together with a smooth map µ : S → M satisfying the following
properties:

(i) dim(S) = 2 dim(M);
(ii) µ : (S, ω)→M is a Poisson map, where M is equipped with the zero Poisson

structure;
(iii) µ has connected fibers, is proper as a map onto its image and its regular points

form a dense open set in S.

A toric Lagrangian fibration is a singular Lagrangian fibration whose only sin-
gularities are of elliptic type.

An elliptic type singularity is the simplest non-degenerate singularity that a
singular Lagrangian fibration can possess – see, e.g., [18, 37]. Instead of giving its
definition, we recall the following characterization.

Theorem 4.3 (Dufour and Molino [18]). Let µ : (S, ω) → M be a singular La-
grangian fibration. A singular point p0 ∈ S is elliptic if and only if there is
a neighborhood U of x0 := µ(p0) and an embedding φ : U → Rn, such that
φ ◦ µ : (µ−1(U), ω)→ Rn is the moment map of an effective Tn-action.

Note that the regular fibers of a singular Lagrangian fibration are indeed La-
grangian submanifolds. For a general singular Lagrangian fibration a fiber of
µ : S → M can contain both regular and singular points. However, the previ-
ous result implies that for a toric Lagrangian fibration µ : S → M this cannot
happen: the rank of dµ is the same for all points in the same fiber. Hence, for
a toric fibration the set of regular points is a dense open set S̊ ⊂ S saturated by
µ-fibers. It follows that ∆̊ := µ(S̊) is also an open subset of M which is dense

in the image ∆ := µ(S). Therefore, the restriction µ : (S̊, ω) → ∆̊ is a (regular)
Lagrangian fibration so, as we saw in Section 3.1, there is an induced integral affine
structure Λ̊ on ∆̊ and µ : (S̊, ω)→ ∆̊ is a principal Hamiltonian TΛ-space.

The following result shows that the integral affine structure on ∆̊ extends uniquely
to an open M ′ ⊂M containing ∆, so µ : (S, ω)→M ′ becomes a toric Hamiltonian
T -space.

Theorem 4.4. Let µ : (S, ω) → M be a toric Lagrangian fibration. Then there is
an open M ′ ⊂M containing µ(S) and an integral affine structure Λ on M ′ such that
µ : (S, ω) → M ′ is a toric Hamiltonian TΛ-space. The germ of (M ′,Λ) is unique.
Conversely, every toric Hamiltonian T -space is a toric Lagrangian fibration.
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Proof. It follows from Theorem 4.3 that ∆ := µ(S) is a codimension 0 submanifold

with corners of M , with interior ∆̊ = µ(S̊). Moreover, the integral affine structure Λ̊

on ∆̊ extends to the boundary ∂∆, so ∆ is an integral affine manifold with corners.
In fact, around a boundary point x0 ∈ ∂∆ an integral affine chart is provided by
the restriction φ : V ∩∆→ Rn of the embedding given by Theorem 4.3.

Recall that any manifold with corners embeds as a codimension 0 submanifold
of a manifold without corners and the germ of such embeddings is unique. Simi-
larly, for embeddings of integral affine manifolds with corners we have the following
lemma, which proves the first part of the statement of the theorem.

Lemma 4.5. Let (∆,Λ) be an integral affine manifold manifold with corners.

(i) Given any a codimension 0 embedding of ∆ in a manifold without corners M ,
the integral affine structure Λ extends to an open neighborhood of ∆ in M .

(ii) The germ of codimension 0 integral affine embeddings of (∆,Λ) in integral
affine manifolds without corners is unique.

Proof of the Lemma 4.5. Any integral affine manifold manifold with corners can
be embedded as a codimension 0 integral affine submanifold of an integral affine
manifold manifold without corners. The proof is entirely similar to the proof given
in [35] that any real analytic manifold admits a complexification (see also [17]). Fix
such an embedding φ : (∆,Λ) → (N,ΛN ) and let ψ : ∆ → M be any codimension
0 embedding in a manifold without corners. Using Whitney’s embedding theorem
we can assume that N ⊂ Rp and, by a partition of unity argument, that there is
a smooth map F : W → Rp extending the identity on ∆, defined on some open
neighborhood of ∆ in M . Choosing a retraction r : U → N of some neighborhood
of N in Rp, the composition r ◦ F : F−1(U) → U restricts to the identity on ∆.
Hence, possibly after shrinking W , we obtain a local diffeomorphism r◦F : W → N ,
that extends the identity on ∆. Pulling back ΛN by this diffeomorphism, we obtain
an extension of Λ from ∆ to an integral affine structure on the neighborhood W .
This proves item (i).

Item (ii) in the lemma follows from item (i), since two integral affine structures
on a manifold M which agree on ∆ they must agree on some open neighborhood
of ∆, because ∆ has codimension 0. �

It remains to prove the last statement in the theorem. Given a toric Hamiltonian
T -space µ : (S, ω) → M and a point p0 ∈ S, fixing a integral affine chart (U, φ)
around x0 := µ(p0) we have that φ ◦ µ : (µ−1(U), ω) → Rn is the moment map of
an effective Tn-action. If this action is free, p0 is a regular point. Otherwise, p0

is a singular point which, by Theorem 4.3, is elliptic. Hence, µ : (S, ω) → M is a
toric Lagrangian fibration. �

It follows from the previous results that the standard local model for toric
symplectic manifolds is also a local model for toric Hamiltonian T -spaces. Let
µ : (S, ω) → M be a toric (T ,Ω)-space with ∆ := µ(S) and let x ∈ ∆. As we saw
before, a choice of integral affine chart (U, φ = (x1, . . . , xn)) centered at x gives a
trivialization of the symplectic torus bundle

Φ : (T ,Ω)|U ' (Tn × U,
n∑
i=1

dθi ∧ dxi).

Via this local isomorphism the toric T -action corresponds to a toric Tn-action with
moment map

φ ◦ µ : (µ−1(U), ω)→ Rn.
Since µ has connected fibers and is proper onto its image, it follows from the
standard normal form for toric manifolds (see, e.g., [26, Lemma B.3]) that, around
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x, there is a local isomorphism between this Hamiltonian Tn-space and the standard
local model. The latter is the Hamiltonian Tn-space consisting of:

• the symplectic manifold

(Sk,n, ωk,n) := (Ck × Tn−k × Rn−k,
k∑
j=1

1

2πi
dzj ∧ dzj +

n−k∑
j=1

dθj ∧ dxj);

• the moment map is given by

µk,n : Ck × Tn−k × Rn−k → Rn, (z, θ, x) 7→ (|z1|2, . . . , |zk|2, x),

with image ∆ = Rnk ;
• the Tn-action given by

(τ1, τ2) · (z, θ, x) := (e2πiτ1z, τ2 + θ, x), (τ1, τ2) ∈ Tk × Tn−k = Tn. (4.1)

So, after possibly changing the integral affine chart φ, we obtain an isomorphism
(φ,Φ,Ψ) from the Hamiltonian T |U -space µ : (µ−1(U), ω)→ U to the Hamiltonian
Tn-space µ : (µ−1

k,n(V ), ωk,n) → V , where V := φ(U) ⊂ Rn. Henceforth, we will

refer to such an isomorphism, or to (z, θ, x), as standard toric coordinates for
µ : (S, ω)→M around x.

For future reference, we state the following result concerning invariant functions
on the local model.

Proposition 4.6. Consider S := Ck × Tn−k × Rn−k, equipped with the Tn-action
(4.1) and let U be an open in ∆ := Rnk . For any Tn-invariant smooth function f
on µ−1(U), the following hold:

(a) The unique function f on U such that f = µ∗f is smooth, i.e., it is the restric-
tion of a smooth function defined on some open in Rn;

(b) If f vanishes on µ−1(U) ∩ {zj = 0} for some j ∈ {1, . . . , k}, then it is of the

form f = |zj |2 · f̂ for a unique Tn-invariant smooth function f̂ on µ−1(U).

Proof. Part (a) is well-known: it readily follows from Schwartz’ theorem. Part (b)
is immediate from part (a) and the fact that if h ∈ C∞(U) vanishes on U∩{xj = 0},
then h = xj ĥ, for some ĥ ∈ C∞(U). �

Remark 4.7. In the literature singular Lagrangian fibrations admitting local ef-
fective Tn-actions have been study by several authors [6, 36, 37, 38]. The result
above shows that this form of symmetry can be encoded globally by toric Hamilton-
ian T -actions. Moreover, the results to follow will show that this approach gives an
effective, coordinate free way of studying the geometry of such fibrations.

4.2. Classification of toric Hamiltonian T -spaces. Delzant’s classification of
compact symplectic toric manifolds in terms of polytopes ([15]) was extended to
toric Hamiltonian T -spaces in [28]. In this more general setup, Delzant’s classifi-
cation and Duistermaat’s classification of Lagrangian fibrations (cf. Theorem 3.4)
are combined, as we will now explain.

In Delzant’s classification, the polytope corresponding to a symplectic toric mani-
fold is the image of the moment map and lies in the integral affine manifold (Rn,Zn).
These Delzant polytopes satisfy certain integrality conditions. For toric Hamilton-
ian T -spaces, the image of µ is a more general object called a Delzant subspace of
the integral affine manifold (M,Λ), the base of the symplectic torus bundle (T ,Ω).

Definition 4.8. A Delzant subspace ∆ of an m-dimensional integral affine man-
ifold (M,Λ) is a subspace of M with the property that for each x ∈ ∆ there is an
integral affine chart (U, φ) for (M,Λ) centered at x such that φ(U ∩∆) is an open
in Rmk := [0,∞[k×Rm−k for some k ∈ {0, . . . ,m} (depending on x).
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In other words, a Delzant subspace of (M,Λ) is a codimension zero integral affine
submanifold with corners.

Example 4.9 (Compact symplectic toric manifolds). For any compact symplectic
toric manifold µ0 : (S, ω)→ Rn, the image of the moment map is a Delzant polytope
in Rn. Delzant polytopes are precisely the compact and connected Delzant subspaces
of Rn equipped with the standard integral affine structure.

Example 4.10 (Non-compact symplectic toric manifolds). Non-compact symplec-
tic toric manifold µ0 : (S, ω)→ Rn also fit into our framework. It was observed in
[26] that the orbit space S/Tn is a manifold with corners and the induced map

φ : S/Tn → Rn

is a local embedding. The pullback along φ of the standard integral affine structure
in Rn makes ∆ := S/Tn an integral affine manifold with corners. By Lemma 4.5, ∆
embeds as a Delzant subspace of an integral affine manifold (M,Λ) without corners.
Note that the composition of the quotient map with this embedding

µ : S → ∆ ↪→M,

yields a toric Hamiltonian TΛ-space µ : (S, ω)→M .

Example 4.11. The Hamiltonian T -spaces in examples 2.20 and 2.21 are toric
and the image of their moment maps are Delzant spaces. In fact:

• For the standard integral affine cylinder R×S1, appearing in Example 2.20,
∆ = [a, b]× S1 is a Delzant subspace, for any real numbers a < b.

• Similarly, for the exotic integral affine cylinder ] − 2,∞[×S1 of Example
2.21, ∆ = [a, b]× S1 is also a Delzant subspace, for any −2 < a < b.

A version of the classification theorem for toric Hamiltonian T -spaces can be
stated as follows. For a complete proof and details we refer to [28].

Theorem 4.12 ([28]). Let (T ,Ω) → (M,Λ) be a symplectic torus bundle. For
any toric Hamiltonian T -space µ : (S, ω) → M , the image ∆ := µ(S) is a Delzant
subspace of (M,Λ). Moreover, such Hamiltonian T -spaces are classified by their:

(i) Delzant subspace ∆ := µ(S), and
(ii) Lagrangian-Chern class c1(S, ω) ∈ Ȟ1(∆, TLag).

Here TLag denotes the sheaf of Lagrangian sections of T |∆ and the Lagrangian-

Chern class is defined similarly to the regular case (see [28]) and the proof of
Theorem 4.31).

Remark 4.13. As for classical toric symplectic manifolds [15], the map

µ : S/T →M (4.2)

is a homeomorphism onto ∆ := µ(S). Moreover, it respects the natural stratifica-
tions on S/T and ∆, namely:

• ∆ is naturally stratified, being a manifold with corners;
• S/T is naturally stratified, being the orbit space of a proper Lie groupoid

action [31].

We refer to [28] for details.

Remark 4.14. The classification result above, beside generalizing Duistermaat and
Delzant classification results, is also closely related to classification results in vari-
ous other settings, as in Remark 4.7. For example, the classification of non-compact
symplectic toric manifolds due to Karshon and Lerman [26] follows from this theo-
rem.
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4.3. Classical symplectic toric manifolds. Motivated by Example 4.10 we in-
troduce the following definition.

Definition 4.15. A toric Hamiltonian T -space µ : (S2n, ω) → M is called a
classical symplectic toric manifold if there exists an effective Hamiltonian Tn-
action on (S, ω) with moment map µ0 : S → Rn and a local embedding φ : ∆→ Rn
such that

µ0 = φ ◦ µ.
The toric Hamiltonian T -spaces that are classical symplectic toric manifolds can

be easily characterized in terms of the integral affine geometry of their Delzant
subspaces.

Theorem 4.16. A Hamiltonian T -space µ : (S2n, ω)→M is a classical symplectic
toric manifold if and only if the associated Delzant space ∆ = µ(S) has trivial affine
holonomy.

Proof. The Delzant space ∆ = µ(S) has trivial affine holonomy if and only if the

developing map devx0
: ∆̃ → Rn factors through the covering map to an integral

affine local embedding φ : ∆→ Rn.
On the other hand, a map µ0 : S → Rn which factors through a local embedding

φ : ∆→ Rn such that
µ0 = φ ◦ µ,

is the moment map of an effective Hamiltonian Tn-action if and only if φ is integral
affine. Hence, the result follows. �

Recall that a compact toric symplectic manifold is always 1-connected. In this
respect we also have the following result.

Corollary 4.17. A Hamiltonian T -space µ : (S, ω)→M whose associated Delzant
space ∆ = µ(S) is 1-connected is a classical symplectic toric manifold. In particular
this holds whenever S is 1-connected.

Proof. The first part of the statement follows immediately from the theorem. For
the second part, consider the inclusions

S
µ // ∆

S̊
?�

OO

µ|S̊
// ∆̊
?�

OO

The map µ : S̊ → ∆ is a principal Tn-bundle while ∆̊ and ∆ have the same
homotopy type. Therefore, passing to fundamental groups we obtain a commutative
diagram

π1(S)
µ∗ // π1(∆)

π1(S̊)

OO

// π1(∆̊)

'

OO

where the bottom horizontal arrow is surjective. It follows that µ∗ : π1(S)→ π1(∆)
is also surjective. Hence, if S is 1-connected, so is ∆. �

Corollary 4.18. A Hamiltonian T -space µ : (S, ω) → M with S compact is a
classical symplectic toric manifold if and only if S is 1-connected.

Note that non-compact symplectic toric manifolds may fail to be 1-connected
(e.g., S = T ∗Tn). Hence, the last corollary does not hold if one removes the
compactness assumption.
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4.4. The elliptic and b-tangent bundle.

4.4.1. Background on the b-tangent bundle. Let ∆ be a manifold with corners. Re-
call that a b-vector field in ∆ is a smooth vector field that is tangent to all open
faces (or strata) of ∆ [29]. The sheaf of b-vector fields, denoted Xb := Xb ∆ is a
locally free sheaf of C∞-modules, with local bases

x1∂x1 , . . . , xk∂xk , ∂xk+1 , . . . , ∂xn , (4.3)

for any coordinates (U, xi) that map onto an open in Rnk . Hence, the vector spaces

Tx∆b :=
Xb x

mx · Xb x

(x ∈ ∆),

fit together into a rank n vector bundle T∆b – the b-tangent bundle or log
tangent bundle of ∆ – with smooth local frames given by (4.3). Here Xb x denotes
the stalk of Xb at x and mx is the ideal in C∞x of germs of functions that vanish at
x. The map

ρ : T∆b → T∆ (4.4)

induced by the evaluation maps Xx → Tx∆, identifies the sheaf of smooth sections
of T∆b with Xb ∆. The b-tangent bundle has the structure of a Lie algebroid over
∆, with bracket the usual Lie bracket of vector fields and anchor map (4.4).

The smooth sections of the b-cotangent bundle

T ∗∆b := ( T∆b )∗

are determined by their restriction to the interior ∆̊, which are just ordinary smooth
1-forms. In view of this, sections of the dual bundle are often simply denoted by
their underlying 1-forms on ∆̊. The local frame of T ∗∆b dual to (4.3) consists of
those smooth sections that restrict to the 1-forms

1

x1
dx1, . . . ,

1

xk
dxk,dxk+1, . . . ,dxn,

on ∆̊. In summary, smooth sections of the b-cotangent bundle can be represented
by smooth 1-forms on ∆̊ with poles of order at most 1 at the boundary.

Next, we turn to residues. The open faces of ∆ are the leaves of the Lie algebroid
T∆b . Accordingly, for each open face F of ∆ we have a short exact sequence

0 // ker(ρ)|F // T ∗∆b |F
ρ // TF // 0.

When F is a facet, i.e., a face of codimension 1 in ∆, ker(ρ)|F is a line bundle that
admits a canonical non-vanishing section, which can be characterized as follows.

Proposition 4.19. Let F be an open facet of a manifold with corners ∆. There is
a unique non-vanishing section

EF ∈ Γ∞(ker(ρ)|F )

with the property that any X ∈ Xb (U) that is Euler-like with respect to F extends
EF |U∩F .

Here by an Euler-like vector field X ∈ X(∆) relative to the submanifold F ⊂ ∆
we mean a vector field such that X|F = 0 and the linearization of X along F induces
the identity map on the normal bundle to F in ∆. This proposition is well-known
(see, e.g., [9, 25]) so we omit the proof.

Remark 4.20. Let (U, x1, . . . , xn) be coordinates for ∆ onto an open in Rnk . Writ-
ing a given b-vector field X ∈ Xb (U) as

X =

k∑
i=1

fi x
i ∂xi +

n∑
i=k+1

fi ∂xi , fi ∈ C∞∆ (U),
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then X is Euler-like with respect to F if and only if for each x ∈ U ∩ F

fi(x) =


1 if xi = 0 and i ≤ k,

0 otherwise.

In particular, if k = 1, then x1∂x1 ∈ Xb (U) is an extension of EF |U∩F .

Using the previous proposition the residue of a vector-valued 1-form can be
defined as follows.

Definition 4.21. Let ∆ be a manifold with corners and F an open facet of ∆. The
residue along F of a vector-valued 1-form α ∈ Ω1( T∆b , E) is the section

resF (α) := α(EF ) ∈ Γ∞(E|F ).

4.4.2. Background on the elliptic tangent bundle. The elliptic tangent bundle TSµ

of a toric (T ,Ω)-space µ : (S, ω) → M is a Lie algebroid over S, similar to the
b-tangent bundle introduced in the previous subsection. This Lie algebroid was
first introduced in [9] in the case of a single elliptic divisor and then generalized for
several divisors, including the case of a classical symplectic toric action, in [10, 11].
In our case, we can define the elliptic tangent bundle more directly in terms of its
sheaf of sections as follows.

Recall that ∆ := µ(S) is a submanifold with corners of M , so that it comes with
a natural sheaf of smooth functions C∞∆ . Consider the sheaf µ∗(XS)T on ∆ that
assigns to an open V the vector space of T -invariant vector fields on the invariant
open µ−1(V ) in S. This is naturally a sheaf of C∞∆ -modules, which is locally free of
rank 2n, where n = dim(∆) = 1

2 dim(S). Indeed, in the standard toric coordinates

(uj + ivj , θl, x
l) around a point x ∈ ∆ of depth k – see Proposition 4.6 – a basis for

µ∗(XS)T around x is given by the vector fields

∂φ1
, . . . , ∂φk

, r1∂r1 , . . . , rk∂rk , . . . , ∂θ1 , . . . , ∂θn−k
, ∂x1 , . . . , ∂xn−k . (4.5)

Here our convention for the angular and radial vector fields on Ck is so that

1
2π∂φj

= uj∂vj − vj∂uj
,

rj∂rj = uj∂uj
+ vj∂vj .

The sheaf of C∞∆ -modules µ∗(XS)T pulls back along µ to a sheaf Xµ of C∞S -modules,
which is locally free of the same rank. More concretely, Xµ can be viewed as the
subsheaf of XS consisting of those vector fields on S locally generated by T -invariant
vector fields. We will call Xµ the sheaf of elliptic vector fields on S relative to
µ. The elliptic tangent bundle TSµ is the corresponding vector bundle over S.
Like the b-tangent bundle, TSµ has a natural Lie algebroid structure. The anchor
is the canonical map

ρ : TSµ → TS,

which identifies its sheaf of sections with Xµ , and the Lie bracket is the usual Lie
bracket of vector fields. By construction, the vector fields (4.5) form a smooth local
frame of TSµ . The elliptic tangent bundle allows to resolve the singularities of the
differential of µ and of the infinitesimal action a (the ranks of which drop at points

outside of S̊), in the following sense.
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Proposition 4.22. The differential of µ lifts uniquely to a fiberwise surjective Lie
algebroid map µ∗

TSµ µ∗ //

ρ

��

T∆b

ρ

��
TS

dµ
// T∆

Moreover, the infinitesimal action lifts uniquely to a vector bundle map a∗

TSµ

ρ

��
µ∗(T ∗M)

a∗

::

a
// TS

that is fiberwise injective and has image ker(µ∗).

Proof. The first statement follows from the remark that any invariant vector field
on S is µ-related to a unique b-vector field on ∆, which is readily verified using the
bases (4.5). The second statement follows from the fact that a(α) is an invariant
vector field tangent to ker(dµ) for every 1-form α. �

Finally, we recall the notion of radial residue. As for classical symplectic toric
manifolds, for a toric (T ,Ω)-space µ : (S, ω) → M the stratification of S induced
by the T -action consists of the submanifolds of S of the form SF := µ−1(F ), with
F an open face of ∆ := µ(S). These strata are the leaves of the Lie algebroid TSµ .
In particular, for any open face F of ∆, we have a short exact sequence

0 // ker(ρ)|SF
// TSµ |SF

ρ // TSF // 0.

If F is an open facet of ∆, then ker(ρ)|SF
is a rank 2 vector bundle that admits a

canonical non-vanishing section, which can characterized as follows.

Proposition 4.23. Let µ : (S, ω) → M be a toric (T ,Ω)-space and let F be an
open facet of ∆ := µ(S). There is a unique non-vanishing section

ESF
∈ Γ∞(ker(ρ)|SF

)

such that any T -invariant vector field on an invariant open U in S that is Euler-like
with respect to SF extends ESF

|U∩SF
. Moreover, ESF

is µ∗-related to 2EF .

Remark 4.24. In standard toric coordinates, as in (4.5), a T -invariant vector
field X on U can be written as

X =

k∑
i=1

fri ri∂ri + fφi ∂φi
+

n−k∑
j=1

fθj ∂θj + fxj ∂xj ,

for some invariant functions fri , f
φ
i , f

θ
j , f

x
j ∈ C∞(U)T . Then X is Euler-like with

respect to SF if and only if for each p = (z, t, x) ∈ U ∩ SF one has

fφi (p) = 0, fθj (p) = 0, fxj (p) = 0 and fri (p) =

{
1 if zi = 0,

0 otherwise,

for all i ∈ {1, . . . , k} and j ∈ {1, . . . , n− k}. In particular, if k = 1, then r∂r is an
extension of ESF

|U∩SF
.

Similar to the definition of residues for vector-valued b-forms, we can define
residues of vector-valued elliptic 1-forms as follows.
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Definition 4.25. Let µ : (S, ω)→ M be a toric Hamiltonian T -space, F an open
facet of ∆ := µ(S) and E a vector bundle over ∆. The radial residue along F
of a vector-valued 1-form α ∈ Ω1( TSµ , E) is the section

resF,Rad(α) := α(ESF
) ∈ Γ∞(E|SF

).

4.5. Elliptic Lagrangian connections. We will now show that Theorem 3.15
extends to toric Hamiltonian T -spaces. For that, we need an appropriate notion of
connection 1-form on a toric T -space µ : (S, ω) → M . First, notice that there is
a canonical fiberwise linear T -action on TSµ along the composition of the bundle
projection with µ, because TSµ is the pull-back along µ of a vector bundle on
∆ := µ(S). For any p ∈ S the action by an element g ∈ Tµ(p) is the canonical
isomorphism TpS

µ → Tg·pS
µ . The anchor map of the elliptic tangent bundle is

T -equivariant with respect to this action and the tangent action of T .

Definition 4.26. An elliptic connection 1-form for a toric Hamiltonian T -
space µ : (S, ω)→M is a Lie algebroid form θ ∈ Ω1( TSµ , T ∗M) which satisfies:

(i) T -invariance: θgp(g · v) = θp(v), for all v ∈ TpS
µ , g ∈ Tµ(p);

(ii) θp((a∗)p(α)) = α, for all α ∈ T ∗µ(p)M and p ∈ S.

We call such a connection 1-form Lagrangian if ker(θ)p ⊂ (TpS, ωp) is Lagrangian

for every p ∈ S̊ := µ−1(∆̊).

Remark 4.27. In the case of torus actions the notion of elliptic connection already
appears in [12].

Example 4.28. An elliptic Lagrangian connection for the standard toric local
model µk,n : (Sk,n, ωk,n)→ Rn is given by

θ(ri∂ri) = 0, θ(∂φi
) = dxi, θ(∂xi) = 0, θ(∂θi) = dxi+k.

Note that this has zero radial residue along all open facets of Rnk .

Proposition 4.29. Every toric Hamiltonian T -space admits an elliptic Lagrangian
connection 1-form with zero radial residue along all open facets.

Proof. In view of the above example such connection 1-forms exist locally. A global
such 1-form can be constructed from these using a partition of unity for the manifold
with corners ∆ := µ(S), as in the proof of Proposition 3.3. �

Next, we turn to the curvature of such connection 1-forms. Let µ : (S, ω)→ M
be a toric Hamiltonian T -space. There is a flat TSµ -connection on the bundle
µ∗T ∗M obtained by first pulling-back the canonical flat connection ∇ on T ∗M
along µ to a TS-connection on µ∗T ∗M and then composing with the anchor of
TSµ . This gives a differential

d∇ : Ω•( TSµ , T ∗M)→ Ω•+1( TSµ , T ∗M).

It follows from Proposition 4.6, the standard local normal form and the properties
of a connection 1-form θ that there is a unique 2-form

Kθ ∈ Ω2( T∆b , T ∗∆)

such that

µ∗Kθ = d∇θ ∈ Ω2( TSµ , T ∗M).

We call Kθ the curvature of the elliptic connection θ.
Notice that ∇ also induces a flat T∆b -connection on T ∗∆, with corresponding

differential

d∇ : Ω•( T∆b , T ∗∆)→ Ω•+1( T∆b , T ∗∆).
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The curvature Kθ is d∇-closed and its cohomology class in H2( T∆b , T ∗∆) does
not depend on the choice of θ. If θ has zero radial residues, then by the propo-
sition below the curvature is an honest smooth 2-form Kθ ∈ Ω2(∆, T ∗∆). So, in
view of Proposition 4.29, the connection-curvature construction actually defines a
cohomology class H2(∆, T ∗∆). In the case of torus actions this was also observed
in [12].

Proposition 4.30. Let θ ∈ Ω1( TSµ , T ∗M) be an elliptic connection 1-form for
a toric Hamiltonian T -space µ : (S, ω) → M and suppose that θ has zero radial
residues. Then d∇θ ∈ Ω2(S, T ∗M) and Kθ ∈ Ω2(∆, T ∗∆). Moreover, if θ is
Lagrangian, then Kθ ∈ Ω2

∂(∆, T ∗∆), meaning that

∂Kθ(v1, v2, v3) :=
∑
σ∈S3

(−1)|σ|〈Kθ(vσ(1), vσ(2)), vσ(3)〉 = 0.

Proof. Note that ιa(α)(d
∇θ) = 0 for all 1-forms α, since θ is a connection 1-form.

Also ιESF
(d∇θ) = 0 for each open facet F , since θ has zero radial residues. Hence,

d∇θ is a smooth 2-form on S. Since µ∗(ESF
) = 2 EF , it follows that Kθ is a smooth

2-form as well. Finally, ∂Kθ = 0 if θ is Lagrangian, since this holds on ∆̊ by
Proposition 3.14, so it holds on all of ∆ by density of ∆̊. �

This proposition shows that a choice of elliptic Lagrangian connection with zero
radial residue gives rise to a cohomology class

[Kθ] ∈ H2(Ω•∂(∆, T ∗∆),d∇),

with the complex (Ω•∂(∆, T ∗∆),d∇) defined like in Section 3.3. In order to extend
Theorem 3.15, consider the composite

Ȟ1(∆, TLag)
' // Ȟ2(∆,OΛ) // Ȟ2(∆,OAff)

' // H2(Ω•∂(∆, T ∗∆),d∇) , (4.6)

where OAff and OΛ denote respectively the sheaves of locally defined functions on ∆
that are affine and integral affine with respect to Λ. The first map in this sequence
is the connecting homomorphism induced by the short exact sequence

0 // OΛ
// C∞ d // TLag

// 0,

while the last map is the isomorphism induced by the fine resolution

0 // OAff
// C∞ d∇◦d // Ω1

∂(−, T ∗∆)
d∇ // Ω2

∂(−, T ∗∆)
d∇ // . . .

Theorem 4.31. Let µ : (S, ω) → M be a toric Hamiltonian T -space. If θ is an
elliptic Lagrangian connection for µ with zero radial residue, then (4.6) maps the
Lagrangian Chern class c1(S, ω) to the class [Kθ].

For the proof it will be useful to recall from [28] how, given a Delzant subspace ∆
of an integral affine manifold (M,Λ), one constructs the canonical toric T -space
µ∆ : (S∆, ω∆) → M with momentum map image ∆ and c1(S∆, ω∆) = 0. This
construction consists of the following steps:

(i) As a topological space, S∆ is the quotient of TΛ|∆ by the normal subgroupoid
with isotropy group at x ∈ ∆ given by the subtorus with Lie algebra (TxF )0,
the annihilator in T ∗xM of the tangent space to the open face F through x.

(ii) The bundle projection of TΛ descends to a continuous map µ∆ : S∆ →M and
the action of TΛ along its bundle projection descends to a continuous action
of TΛ along µ∆.
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(iii) There are a unique smooth and symplectic structures on S∆ with the following
property: for any integral affine chart (U, φ = (x1, ..., xn)) onto a connected
open φ(U) around the origin in Rnk such that φ(U ∩ ∆) = φ(U) ∩ Rnk , the
induced homeomorphism

µ−1
∆ (U)

∼ // µ−1
k,n(φ(U)) (4.7)[ n∑

j=1

θjdx
j
]
7→
(
e2πiθ1

√
x1, . . . , e2πiθk

√
xk, θk+1, . . . , θn, x

k+1, . . . , xn
)

is a symplectomorphism with respect to ωk,n.

All together, this gives a toric TΛ-space

µ∆ : (S∆, ω∆)→M

with moment map image ∆ and trivial Lagrangian Chern class (by definition). Note
that this comes with a canonical symplectic open embedding

TΛ|∆̊ ↪→ S∆

onto the dense subset S̊∆ = µ−1
∆ (∆̊).

Proof of Theorem 4.31. Consider U = {Ui}i∈I a good open cover of ∆ together
with equivalences of Hamiltonian T -spaces

(µ−1(Ui), ω) ∼
Ψi //

µ
%%

(µ−1
∆ (Ui), ω∆)

µ∆

yy
M

For any two i, j ∈ I there is a unique Lagrangian section τij ∈ TLag(Uij) such that

τij(µ(p)) ·Ψj(p) = Ψi(p), p ∈ µ−1(Uij).

The class c1(S, ω) is represented by the Čech 1-cocycle τ = [τij ] ∈ Č1(U , TLag).

The zero-section of TΛ induces a continuous section σ∆ : ∆ → S∆ of µ∆, which is
smooth and Lagrangian on ∆̊ and we set

σi := ψ−1
i ◦ σ∆ : Ui → S. (4.8)

The fact that c1(S, ω) is mapped to [Kθ] by (4.6) follows from an argument identical
to that in the proof of Theorem 3.15, where the Lagrangian sections σi are now
given by (4.8). There is however one technical issue to overcome; now the sections

σi are not smooth on all of Ui, only on Ůi = Ui ∩ ∆̊, so a priori we can we can only
consider

σ∗i θ ∈ Ω1
∂(Ůi, T

∗∆).

We need to show that the 1-forms σ∗i θ extend smoothly to all of Ui for each i ∈ I.
Since this is a local property, it can be checked in the standard toric coordinates
for µ∆ induced by integral affine coordinates (U, xi) as in (4.7). In such toric
coordinates (ψ−1

i )∗θ is of the form

(ψ−1
i )∗θ =

k∑
j=1

dφj ⊗ αj + µ∗k,n(dxj)⊗ βj +

n−k∑
j=1

dθj ⊗ αj+k + µ∗k,n(dxj+k)⊗ βj+k

for αj , βj ∈ Ω1(Ui), because θ has zero radial residues. Moreover, σ∆ is given by

σ∆(x) =
(√

x1, . . . ,
√
xk, 0, . . . , 0, xk+1, . . . , xn

)
.

Therefore, σ∗i θ =
∑n
j=1 dxj ⊗ βj on U ∩ Ůi, so it extends smoothly to Ui. �
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4.6. Flat elliptic Lagrangian connections. Flat Lagrangian elliptic connections
with zero radial residue will play a key role in the study of invariant Kähler metrics.
In this subsection we extend the results of Section 3.4 to such connections.

Definition 4.32. A flat toric Hamiltonian T -space is a toric Hamiltonian
T -space equipped with a flat Lagrangian elliptic connection that has zero radial
residues.

Given an integral affine manifold (M,Λ) and a Delzant subspace ∆, we denote by
TFlat the sheaf on ∆ of ∇-flat sections of TΛ|∆. This coincides with the restriction
of the sheaf of flat sections of T to ∆ and, as before, it is a subsheaf of TLag. Also,

the induced map in cohomology fits in an exact sequence

Ȟ1(∆, TFlat) // Ȟ1(∆, TLag) // H2(Ω•∂(∆, T ∗∆),d∇), (4.9)

where the second map is given by (4.6). Therefore, Corollary 3.19 extends. The
same goes for Theorem 3.20.

Theorem 4.33. Fix a Delzant subspace ∆ of an integral affine manifold (M,Λ).
There is a canonical 1:1 correspondence flat toric Hamiltonian TΛ-spaces

µ : (S, ω, θ)→M
with µ(S) = ∆, up to equivalence

 ←̃→ Ȟ1(∆, TFlat)

The cohomology class corresponding to a flat toric Hamiltonian T -space is mapped
to its Lagrangian Chern class by the first map in (4.9).

For the proof of this, we use the following observation.

Proposition 4.34. The canonical toric T -space µ∆ : (S∆, ω∆) → M admits a
unique elliptic connection θ∆ that restricts to the canonical flat Lagrangian connec-
tion on TΛ via the canonical open embedding

TΛ|∆̊ ↪→ S∆. (4.10)

The connection θ∆ is flat, Lagrangian and has zero radial residues.

Proof. Uniqueness holds since the image of (4.10) is dense in S∆. This also implies
that for existence, it is enough to show that locally the canonical flat connection on
TΛ|∆̊ extends to an elliptic connection 1-form for µ∆ with zero radial residues. So
we can work in the toric coordinates induced by an integral affine chart (U, xi), as
in (4.7), over which we also have an induced trivialization of the symplectic torus

bundle TΛ|∆̊. The embedding (4.10) becomes the map Tn × R̊nk → Sk,n given by(
θ1, ..., θn, x

1, ..., xn
)
7→
(
e2πiθ1

√
x1, . . . , e2πiθk

√
xk, θk+1, ..., θn, x

k+1, . . . , xn
)
.

On the other hand, the canonical flat connection on TΛ|∆̊ becomes
∑n
i=1 dθi ⊗ dxi

so corresponds under (4.10) with the restriction to S̊∆ of the connection given in
Example 4.28. Therefore, the canonical flat connection on TΛ|∆̊ indeed extends to
an elliptic connection 1-form for µ∆ with zero radial residues. Since the canonical
connection on TΛ is flat and Lagrangian and S̊∆ is dense in S∆, it follows that θ∆

is also flat and Lagrangian. �

Proof of Theorem 4.33. The proof is virtually the same as that in the case of La-
grangian fibrations, where we now take the equivalence class of the flat toric Hamil-
tonian TΛ-space of the above proposition as the equivalence class corresponding to
the zero element of the group Ȟ1(∆, TFlat). �
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Example 4.35. Consider the Delzant subspace ∆ = S1 × [−1, 1] of the standard
cylinder (S1 × R,Λst). Notice that

Ȟ1(∆, TLag) = Ȟ2(∆,OΛ) = 0,

so every toric TΛ-space is isomorphic to the space µ : (T2 × S2, ω) → S1 × R of
Example 2.20.

Since Λ has trivial holonomy representation it follows – see Remark 3.21 – that
the equivalence classes of flat TΛ-toric fibrations are in 1-1 correspondence with

Ȟ1(∆, TFlat) = Ȟ1(∆,T2) = T2.

For a, b ∈ R, the classes (e2πia, e2πib) ∈ T2 can be realized by the elliptic connections
on µ : T2 × S2 → ∆ given by the connection 1-form

θa,b = (−adx+ dy)⊗ dx+ (−bdh+ dφ)⊗ dh.

This corresponds to the Lagrangian foliation on µ−1(]− 1, 1[) given by

Da,b := 〈∂x + a∂y, ∂h + b∂φ〉 .

Example 4.36. Consider the Delzant subspace ∆ = S1×[−1, 1] of the non-standard
cylinder (S1×] − 2,∞[,Z((h + 2)dx + xdh) ⊕ Zdh), as in Example 2.21. We still
have Ȟ1(∆, TLag) = 0 so it follows that every toric TΛ-space is isomorphic to the

space µ : (T2 ∼×S2, ω)→ S1×]− 2,∞[ appearing in Example 2.21.
A computation using the Mayer-Vietoris sequence, shows that

Ȟ1(∆, TFlat) = Ȟ1(∆,T2) = T2,

so we conclude that equivalence classes of flat TΛ-toric fibrations are parameterized
by (e2πia, e2πib) ∈ T2, with a, b ∈ R. These can be realized by the elliptic connections
on µ : (T2 ∼×S2, ω)→ S1×]− 2,∞[ given by the connection 1-form

θa,b = (h+ 2) (−adx+ dy)⊗ dx+ (−bdh+ dφ+ xdy)⊗ dh.

This corresponds to the Lagrangian foliation on µ−1(]− 1, 1[) given by

Da,b := 〈∂x + a(∂y − x∂φ), ∂h + b∂φ〉 .

5. Delzant construction

The proof of the classification theorem of toric Hamiltonian T -spaces (Theorem
4.12) requires the construction of a toric Hamiltonian T -space µ : (S, ω)→M with
moment map image µ(S) a given Delzant subspace ∆ ⊂ (M,Λ).

In the case of a Delzant polytope ∆ ⊂ (Rn,Zn) Delzant gave a construction of
a compact symplectic toric manifold with moment map image ∆ by symplectic re-
duction of a linear Hamiltonian torus action on (Cd, ωst), where d is the number of
facets. For a general Delzant subspace, as we recalled in Section 4.5, the construc-
tion of canonical toric T -space uses a different method. In this section we will give
a generalization of Delzant’s construction for a large class of Delzant subspaces.
Although this construction does not apply to all Delzant subspaces, it does cover
many natural examples and has the advantage of realizing the desired toric space
via symplectic reduction of a rather simple symplectic manifold.

5.1. The primitive outward pointing normals. The aim of this section is to
show for a Delzant subspace ∆ in a 1-connected integral affine manifold each facet
of ∆ admits a naturally defining integral affine function.

In order to state a precise result, we recall that for a manifold with corners ∆,
given x ∈ ∂∆ the cone Cx(∆) consists of all inward-pointing tangent vectors at x.
We further denote by S1(∆) the collection of codimension 1 strata of ∆ (i.e., the
open facets of ∆).
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Proposition 5.1. Let (M,Λ) be a 1-connected integral affine manifold and let ∆
be a Delzant subspace. For each open facet Σ of ∆, there is a unique integral affine
function ` = `Σ ∈ OΛ(M) satisfying the following properties:

(i) `|Σ = 0 and ker(d`)|Σ = TΣ;
(ii) ` is outward-pointing, i.e., dx`(v) ≤ 0 for all v ∈ Cx(∆) and all x ∈ Σ;
(iii) for any f ∈ OΛ(M) with property (i), there is a k ∈ Z such that f = k `.

Moreover, any x ∈ ∆ admits an open neighbourhood U in M such that

∆ ∩ U =
⋂

{Σ∈S1(∆): x∈Σ}

{`Σ ≤ 0} ∩ U. (5.1)

The number of open facets of ∆ with x in their closure equals the depth of x in ∆.

Given a Delzant subspace ∆ of a 1-connected integral affine manifold (M,Λ) we
let

H(∆) := {`Σ | Σ ∈ S1(∆)} (5.2)

be the collection of integral affine functions `Σ associated to the open facets of
∆ given by the previous proposition. We call the elements of H(∆) primitive
boundary defining (integral affine) functions.

Example 5.2. It can happen that the same integral affine function is associated to
different codimension 1 strata. An example of this is

M := R2 −
⊔
k∈Z
{k} × [0,∞[, ∆ = M ∩ (R×]−∞, 0]),

where M is equipped with the integral affine structure inherited from (R2,Z2). Then
∆ in fact has infinitely many codimension 1 strata, but H(∆) consist of a single
function.

For the proof of Proposition 5.1, we first recall the following fact.

Lemma 5.3. Let (V ∗,Λ) be an integral affine vector space. Suppose that H ⊂ V
is an hyperplane, which is primitive in the sense that spanR(H ∩ Λ∨) = H. Then
there is an α ∈ Λ such that:

(i) H = ker(α);
(ii) if β ∈ Λ and H = ker(β), then β = k α for some k ∈ Z.

Moreover, α is unique up to a sign.

We call α ∈ Λ, as in this lemma, a primitive normal covector to the hyper-
plane H.

Lemma 5.4. Let (M,Λ) be an integral affine manifold, let ∆ be a Delzant sub-
space and let Σ be a codimension 1 stratum of ∆. For each x ∈ Σ, there is
a unique outward-pointing primitive normal covector αx ∈ Λx to the hyperplane
TxΣ ⊂ (TxM,Λ∨x ). The family of all such outward-pointing primitive normals is
holonomy-invariant.

In this lemma, by ’holonomy invariant’ we mean that for any path γ in Σ, the
holonomy representation hol([γ]) : Tγ(0)M → Tγ(1)M pulls αγ(1) back to αγ(0).

Proof. The existence and uniqueness of the covectors αx follows from the previous
lemma and the fact that open facets of Delzant subspaces are primitive codimension
1 submanifolds of (M,Λ). By the uniqueness of primitive normal covectors, to prove
holonomy-invariance it suffices to show that for any path γ in Σ, the holonomy
representation hol([γ]) : Tγ(0)M → Tγ(1)M maps the tangent cone Cγ(0)(∆) onto
the tangent cone Cγ(1)(∆). It is enough to check this for a path contained in the
domain of an integral affine chart.
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Let (U, φ = (x1, . . . , xm)) be an integral affine chart adapted to ∆ in the sense
that φ(U ∩∆) is an open in [0,∞[×Rm−1 around the origin. Then for any point
x ∈ φ−1({0} × Rm−1) we have

Cx(∆) = Cone (∂x1 ,±∂x2 . . . ,±∂xm) .

If γ is a path lying in an open facet Σ∩U ⊂ φ−1({0} ×Rm−1), then hol([γ]) maps
Cγ(0)(∆) onto Cγ(1)(∆), since the frames induced by integral affine coordinate
charts are flat and the coordinate vector fields ∂xi are invariant under the action of
hol([γ]). �

Proof of Proposition 5.1. Let Σ be a codimension 1 stratum of ∆. Since M is
1-connected, for any x0 ∈ Σ there is a unique parallel 1-form α ∈ Ω1(M) that
evaluates at x0 to the the outward-pointing primitive normal covector. By the
holonomy-invariance in Lemma 5.4, for any x ∈ Σ the value αx is the outward-
pointing primitive normal covector at x. As M is 1-connected, there is a unique
function ` = `Σ ∈ C∞(M) such that d` = α and `|Σ = 0. Since α is parallel and
αx0
∈ Λx0

, α takes values in Λ. Hence, ` is an integral affine function. It satisfies
the required properties (i)–(iii) and is the unique such integral affine function, due
to the properties of the covectors in Lemma 5.4 and the fact that the differential
of an integral affine function is a parallel 1-form.

Next, fix x ∈ ∆ of depth k. Pick an integral affine chart (U, φ = (x1, . . . , xn))
centered at x such that W := φ(U ∩∆) is a convex open set in [0,∞[k×Rn−k. The
set of points in U ∩∆ of depth 1 corresponds to the disjoint union of the convex
subsets

Wi :=
{

(x1, . . . , xm) ∈W | xi = 0 and xj > 0 for 1 ≤ j ≤ k, j 6= i
}
,

for i = 1, . . . , k. Since each Wi is connected, φ−1(Wi) is contained in a single open
facet Σi of ∆, with defining function satisfying `Σi

|U = −xi. The latter shows that
Σi 6= Σj if i 6= j. Therefore, the number of open facets with x in their closure is
indeed equal to k. It is now also clear that (5.1) holds for this choice of U . �

5.2. Delzant subspaces of finite type. Let (M,Λ) be a connected integral affine
manifold and let ∆ be a connected Delzant subspace. Consider the canonical map

(i∆)∗ : ∆̃→ M̃,

from the universal cover of ∆ into that of M , relative to some choice of base-point.

The image ∆̂ := (i∆)∗(∆̃) is a Delzant subspace of M̃ . For the Delzant subspaces to

which our construction applies, the collection H(∆̂) of primitive boundary defining
functions is finite and determines the Delzant subspace in the following sense.

Definition 5.5. A connected Delzant subspace ∆ is of finite type if H(∆̂) is finite
and

∆̂ =
⋂

f∈H(∆̂)

{f ≤ 0}. (5.3)

Below we give two examples illustrating how each of these conditions may fail.

Example 5.6. Let

M := R2 − {(0, y) | y ≥ 0}
with the standard integral affine structure Λ = Zdx ⊕ Zdy. Consider the Delzant
subspace

∆ = {(x, y) ∈M | y ≤ |x|} .
This is closed in M and has two open facets, with primitive boundary defining
functions `±(x, y) = ±(x− y). However, ∆ does not satisfy (5.3).
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Example 5.7. Consider the non-standard integral affine cylinder

(M,Λ) := (S1 × R,Zdx⊕ Z(dh− xdx))

and the Delzant subspace

∆ =
{

(x, h) ∈ S1 × R | h ≤ 1
2x

2 − 1
8 , −

1
2 ≤ x ≤

1
2

}
.

The lift ∆̂ ⊂ R2 = M̃ is the region bounded from above by the curves{
h = 1

2 (x+ n)2 − 1
8

}
⊂ R2, n ∈ Z.

In this example, even though ∆ has only one open facet, the collection H(∆̂) is
infinite, as it consists of the functions

`n(x, h) = h− 1
2 (x+ n)2 + 1

8 , n ∈ Z.

In both of these examples the Delzant subspace is not compact. We do not know
of an example of a compact Delzant subspace that is not of finite type.

In the coming subsection, the following property of Delzant subspaces of finite
type will be important.

Proposition 5.8. Let (M,Λ) be a 1-connected integral affine manifold, ∆ a Delzant
subspace of finite type and x ∈ ∆. Consider the primitive boundary defining func-
tions ` ∈ H(∆) for which `(x) = 0.

(i) The number of such functions equals the depth of x.
(ii) Their differentials at x can be extended to a basis of Λx and span (TxF )0.

Proof of Proposition 5.8. Let x ∈ ∆. By Proposition 5.1 the number of ` ∈ H(∆)
for which `(x) = 0 is at least k := depth∆(x). To show that these are in fact
equal, given `0 ∈ H(∆) such that `0(x) = 0, we need to prove that `0 is one of the
functions `i associated to one of the k open facets Σi with x in their closure. Choose
an integral affine chart (U, φ = (x1, . . . , xn)) centered at x, as in the second part of
the proof of Proposition 5.1. Since `0 is affine and vanishes at x, its restriction to
U is of the form:

`0|U = −
n∑
i=1

tix
i, ti ∈ R.

In view of (5.3), `0 is non-positive on ∆ and so ti ≥ 0 for all i = 1, . . . , k and ti = 0
for all i = k + 1, . . . , n. As in the proof of Proposition 5.1, `i|U = −xi for each
i = 1, .., k. So,

`0 =

k∑
i=1

ti`i, ti ≥ 0,

since this equality holds on U and the functions on both sides are affine. It follows
from property (iii) in Proposition 5.1 that, if `0 6= `i for all i = 1, . . . , k, then there
are at least two distinct i1, i2 ∈ {1, . . . , k} for which ti1 , ti2 6= 0. In that case,
since ∆ satisfies (5.3), Σ0 must be contained in the codimension 2 submanifold
{`i1 = `i2 = 0}, which is a contradiction. So, our first claim follows. Moreover, the
fact that `i|U = −xi for all i = 1, ..., k shows that the differentials of these functions
at x extend to a basis of Λx and span (TxF )0. �

5.3. The 1-connected case. In this section we give a Delzant type construction
for a finite type Delzant subspace of a 1-connected integral affine manifold. Treat-
ing the 1-connected case first is convenient for the proof of the general case, and
moreover it is interesting on its own, as it already covers a class of non-compact
toric symplectic manifolds (cf. Section 4.3).
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Let (M,Λ) be a 1-connected integral affine manifold and let ∆ be a Delzant
subspace of finite type so

∆ =

d⋂
i=1

{`i ≤ 0},

where `1, . . . , `d are the primitive boundary defining functions. We consider the
map:

φ := (`1, ..., `d) : (M,Λ)→ (Rd,Zd).
Since this map is integral affine, it induces a morphism of symplectic torus bundles

(φ, φ∗) : (TΛ,ΩΛ) 99K (Td × Rd,
d∑
i=1

dθi ∧ dxi)

as in Proposition 2.16. This, in turn, induces a Hamiltonian Td-action on (TΛ,ΩΛ)
with moment map the composition of φ with the bundle projection π and action
given by

(θ1, ..., θd) · [α] =
[
α+

d∑
i=1

θi d`i

]
.

Theorem 5.9. Consider the diagonal Hamiltonian Td-action with moment map

µφ := φ+ (|z1|2, ..., |zd|2) : (TΛ,ΩΛ)× (Cd, ωst)→ Rd.

The Td-action is free on µ−1
φ (0) and the symplectic quotient

((TΛ × Cd) // Td, ωred)

is a toric Hamiltonian TΛ-space for the action induced by translations on the first
factor. Moreover, this space is equivalent to the canonical toric Hamiltonian TΛ-
space µ∆ : (S∆, ω∆)→M .

Proof. We start by checking the diagonal Td-action on µ−1
φ (0) is free, so the sym-

plectic quotient is well-defined. Let ([αx], z) ∈ µ−1
φ (0) and θ = (θ1, ..., θd) ∈ Td

be such that θ fixes ([αx], z). Since θ fixes z, it follows that θi = 0 mod Z
whenever zi 6= 0. On the other hand, because `i(x) = −|zi|2, the remaining
i ∈ {1, ..., d}, say i1, ..., ik, are those for which `i(x) = 0. So, by Proposition
5.8, (d`i1)x, . . . , (d`ik)x extends to a basis of Λx. Hence, the fact that θ fixes [αx]
implies that θi1 = ... = θik = 0 mod Z as well.

Next, observe that the action of TΛ on itself by translation descends to a Hamil-
tonian TΛ-action along

µ :
(
(TΛ × Cd) // Td, ωred

)
→M, [α, z] 7→ π(α),

which has moment map image

d⋂
i=1

{`i ≤ 0} = ∆.

Finally, we claim that we have an equivalence of Hamiltonian TΛ-spaces

(S∆, ω∆)

µ∆

##

∼
Ψ // ((TΛ × Cd) // Td, ωred

)
µ

ww
M

given by

[αx] 7−→ [αx, (
√
−`1(x), . . . ,

√
−`d(x))].
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This map is a TΛ-equivariant bijection with inverse induced by

(αx, z) 7−→ [t−1 · αx],

where t = (t1, . . . , td) is given by

ti = ti(z, x) :=


zi
|zi| , if `i(x) 6= 0,

0, if `i(x) = 0.

To see that Ψ is a smooth map, we note that around a point x0 of depth k its
expression in the chart (4.7) is

(z1, . . . , zk, θk+1, . . . , θn, x
k+1, . . . , xn) 7→

[ n∑
i=k+1

θidx
i, (w1, . . . , wd)

]
,

where

wi :=


zi, if `i(x0) = 0,

√
−`i(x), if `i(x0) 6= 0.

Finally, we observe that this map is a symplectomorphism. Indeed, over ∆̊, where
k = 0, it is given by the symplectic map

(θ1, . . . , θn, x
1, . . . , xn) 7→

[ n∑
i=1

θidx
i, (
√
−`1(x), . . . ,

√
−`d(x))

]
.

By density, we conclude that Φ is a symplectic map. Since it is a bijection between
manifolds of the same dimension, it is a symplectomorphism. �

Example 5.10 (The standard Delzant construction). One can recover the usual
Delzant construction of a compact symplectic manifold from the construction in
Theorem 5.9 via reduction by stages as follows.

Fix a Delzant polytope ∆ ⊂ Rn with d facets. In this case, Theorem 5.9 gives a
symplectic toric manifold

µ :
(
(Tn × Rn × Cd) // Td, ωred

)
→ Rn. (5.4)

If `1, . . . , `d are the primitive boundary defining functions, one has a linear map

Rd → Rn, ea 7→ d`a,

where {ea} is the standard basis of Rd. The kernel of this map is a Lie subalgebra
n ⊂ Rn, which integrates to a subtorus N ⊂ Td. Choosing a subtorus Tn ⊂ Td
complementary to N , one can first perform symplectic reduction by this subtorus.
The resulting reduced space is canonically isomorphic to the d-dimensional complex
vector space with its canonical symplectic form via the map

(Tn × Rn × Cd) // Td, ωred)→ (Cd, ωst), (x, θ, z) 7→ (−θ) · z.

Therefore, the symplectic toric manifold (5.4) is canonically isomorphic to

µ : (Cd // N, ωred)→ Rn. (5.5)

This is the compact toric symplectic manifold constructed by Delzant [15].
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5.4. The general construction. Let (M,Λ) be a connected integral affine man-
ifold and let ∆ be a Delzant subspace of finite type. Consider the canonical map

(i∆)∗ : ∆̃→ M̃,

from the universal cover of ∆ into that of M , relative to a fixed base-point in ∆.

The image ∆̂ := (i∆)∗(∆̃) is a Delzant subspace of M̃ . Let Γ be the image of the
group homomorphism (i∆)∗ : π1(∆) → π1(M). Note that the canonical Γ-action

on M̃ is by integral affine isomorphisms and preserves ∆̂. Therefore, it induces

an action on the set of primitive boundary defining functions H(∆̂). Fixing an
ordering H(∆) = {`1, ..., `d}, this induces a homomorphism Γ → Sym(1, . . . , d)
and, therefore, actions on Cd and Td by coordinate permutations. The group Γ

also acts on TΛ̃ via the cotangent lift of the action on M̃ . All together, we obtain

a Hamiltonian action of the semi-direct product Γ n Td, with moment map

µφ := φ+ (|z1|2, ..., |zd|2) : (TΛ̃,ΩΛ̃)× (Cd, ωst)→ Rd,

where (TΛ̃,ΩΛ̃) is the symplectic torus bundle over (M̃, Λ̃).

Theorem 5.11. The Γ n Td-action is free on µ−1
φ (0) and the symplectic quotient

((TΛ̃ × Cd) // (Γ n Td), ωred)

is a toric Hamiltonian TΛ-space, which is equivalent to the canonical toric Hamil-
tonian TΛ-space µ∆ : (S∆, ω∆)→M .

Proof. The fact that the Γ n Td-action on µ−1
φ (0) is free and proper, follows using

that the Td-action on this set is free and the Γ-action on M̃ is free and proper.
Next, note that the symplectic torus bundle (TΛ̃,ΩΛ̃) is canonical isomorphic to

the pull-back of (TΛ,ΩΛ) along the covering map M̃ →M . The action of (TΛ̃,ΩΛ̃)

on the first factor in TΛ̃×C
d descends to a Hamiltonian TΛ-action on the symplectic

quotient. This makes it a toric TΛ-space.
For the last statement, we use the following lemma.

Lemma 5.12. Let (M,Λ) be a connected integral affine manifold, let ∆ be a con-

nected Delzant subspace and consider ∆̂ and Γ as above. The Γ-action on ∆̂ lifts
to a symplectic action on (S∆̂, ω∆̂) and there is an equivalence of Hamiltonian TΛ-
spaces

(S∆̂, ω∆̂)/Γ

µ∆̃
%%

// (S∆, ω∆)

µ∆

zz
M

where µ∆̃ is the composition of the map S∆̂/Γ → M̃/Γ induced by µ∆̃ with the

quotient map M̃/Γ→M .

Proof. This readily follows from the naturality of the construction of the canonical
toric space associated to a Delzant subspace (see [28]). �

Since Td is a normal subgroup of Γ n Td, there is an induced Γ-action on the
symplectic quotient ((TΛ̃ × Cd) // Td, ωred). The equivalence between TΛ̃-spaces

(S∆̂, ω∆̂)→ (TΛ̃ × Cd) // Td, ωred)

given by Theorem 5.9 is Γ-equivariant. Passing to the quotients, the equivalence in
the statement follows from the previous lemma. �
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Remark 5.13 (Realizing non-trivial Lagrangian-Chern classes). Theorem 5.11
gives a Delzant type construction for toric T -spaces with trivial Lagrangian-Chern
class. This construction can be extended to the case of non-trivial Lagrangian-Chern
class. After possible shrinking M , one can assume that any class in Ȟ1(∆, TLag)
can be realized as the restriction of the Lagrangian-Chern class of a principal TΛ-
space µP : (P, ωP ) → M . Then a toric T -space with a non-trivial class, can be
realized as a symplectic quotient of the form

((q∗P × Cd) // (Γ n Td), ωred)

where q : M̃ →M is the covering map.

6. Invariant Kähler metrics I: Lagrangian fibrations

In this section we study T -invariant Kähler structures on principal Hamiltonian
T -spaces, i.e., Lagrangian fibrations. In the next section we will consider toric
Hamiltonian T -spaces.

Definition 6.1. Given a Hamiltonian T -space µ : (S, ω) → M , a T -invariant
Kähler structure is a T -invariant Kähler metric G on S with Kähler form ω.

By Proposition 2.28, the T -invariance of the Kähler structure can be expressed
as

La(α)G = 0 if ∇α = 0. (6.1)

Since ω is T -invariant, this is equivalent to the T -invariance of the complex struc-
ture J : TS → TS, i.e.,

La(α)J = 0 if ∇α = 0. (6.2)

Given a Lagrangian fibration µ : (S, ω) → M we will call a compatible Kähler
metric g on S invariant if it is TΛ-invariant, where Λ ⊂ T ∗M is the induced integral
affine structure on the base. Invariant Kähler metrics on a Lagrangian fibration are
intimately related to Hessian metrics on the base of the fibration. We recall that
a Hessian metric on an (integral) affine manifold M is a Riemannian metric g
satisfying

d∇g[ = 0. (6.3)

where g[ : TM → T ∗M denotes the T ∗M -valued form on M given by contraction
with g. This condition is equivalent to the existence of a potential for the metric
in each (integral) affine chart (U, xi) with contractible domain, i.e., a function
φ ∈ C∞(U) such that

g|U =
∑
i,j

∂2φ

∂xi∂xj
dxi ⊗ dxj .

We refer to [33] for details on Hessian metrics.
The main theorem of this section is the following.

Theorem 6.2. Let µ : (S, ω) → M be a a Lagrangian fibration. A choice of
invariant Kähler metric G on S makes µ : S →M into a Riemannian submersion,
with the following properties:

(i) (ker dµ)⊥ is a flat Lagrangian connection;
(ii) The metric g induced on the base M is a Hessian metric.

Conversely, given a flat Lagrangian connection D and a Hessian metric g on M ,
there is unique invariant Kähler metric G on S inducing g such that D = (ker dµ)⊥.
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Remark 6.3. This theorem shows that the existence problem for invariant Kähler
metric on a Lagrangrian fibration reduces to two independent obstruction problems.
As discussed in Section 3.4, the obstruction to the existence of a flat Lagrangian
connection for a Lagrangian fibration can be expressed in terms of its Lagrangian
Chern class. The obstruction to the existence of a Hessian metric on an (integral)
affine manifold are more subtle and have been studied by several authors (see, e.g.,
[33] and the references therein).

Example 6.4. Consider the symplectic torus bundle in Example 2.8. Its base
(T2,Zdx1 ⊕ Z(dx2 − x1dx1)) is an integral affine manifold which does not admit
a Hessian metric. Indeed, this being a symplectic torus bundle, it admits a flat
Lagrangian connection. However, its total space (T ,Ω) does not admit any Kähler
structure, as it is the Kodaira-Thurston symplectic manifold.

Notice that the symplectic manifold (T ,Ω) admits another Lagrangian fibration

µ : T → T2, [θ1, θ2, x
1, x2] 7→ [θ2, x

1].

The induced integral affine structure on the base T2 is now the standard one. This
fibration does not admit a Lagrangian section. In fact, due to Theorem 6.2, it
does not even admit a flat Lagrangian connection, since its base (T2,Λst) admits a
Hessian metric, but its total space is not Kähler.

Two equivalent Kähler Lagrangian fibrations induce the same metric on their
base. Moreover, given two Kähler Lagrangian fibrations that induce the same
Hessian metric on M , an equivalence of the underlying Lagrangian fibrations inter-
twines the Kähler structures if and only if it intertwines the orthogonal complements
to the fibers. Therefore, we conclude the following from Theorems 3.20 and 6.2.

Corollary 6.5. Given an integral affine manifold (M,Λ), there is a canonical 1:1
correspondenceKähler Lagrangian fibrations

µ : (S, ω,G)→M
up to equivalence

 ←̃→
{

Hessian metrics
g on M

}
× Ȟ1(M, TFlat)

Choosing an integral affine chart (U, xi) with contractible domain, there exist
action-angle coordinates (µ−1(U), xi, θj) (see Remark 3.3) in which the connection
takes the form

θ =

n∑
i=1

dθi ⊗ dxi.

In such coordinates the invariant Kähler metric G can be written as

G =

n∑
i,j=1

gij dxi ⊗ dxj +

n∑
i,j=1

gij dθi ⊗ dθj , (6.4)

where

gij =
∂2φ

∂xi∂xj
,

for some function φ ∈ C∞(U), and (gij) denotes the inverse matrix of (gij). The
corresponding complex structure takes the form

J =

n∑
i,j=1

gij dxi ⊗ ∂θj −
n∑

i,j=1

gijdθi ⊗ ∂xj .
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6.1. Proof of Theorem 6.2. Let Λ be the induced integral affine structure on
the base of µ : (S, ω)→ M . Denote by G a TΛ-invariant Kähler metric on S. The
distribution orthogonal to the fibers

D := (ker dµ)⊥

is TΛ-invariant and the restriction of G to D is also TΛ-invariant. It follows that
there is a unique Riemannian metric g on M such that dxµ : Dx → TpM is an
isometry for all x ∈ µ−1(p), i.e., µ : (S,G)→ (M, g) is a Riemannian submersion.

Now observe that we can express D has:

D = J(ker dµ),

where J : TS → TS denotes the complex structure. Since ker dµ is Lagrangian, we
conclude that D is Lagrangian. It follows also that the vector fields Ja(α), with α
flat 1-forms, generate D. Now, J is TΛ-invariant, so by (6.2) we find that:

[a(α), J(a(β))] = (La(α)J) + J([a(α),a(β)]) = 0,

for any flat 1-forms α and β. Then the vanishing of the Nijenhuis torsion of J gives:

[J(a(α)), J(a(β))] = J([J(a(α)),a(β)] + [a(α), J(a(β))]) + [a(α),a(β)] = 0.

This shows that D is flat, so (i) holds.
To prove that g is an Hessian metric we will check that (6.3) holds:

d∇g[(X,Y ) = ∇Xg[(Y )−∇Y g[(X)− g[([X,Y ]) = 0, (X,Y ∈ X(M)).

To prove this it is enough to consider vector fields of the form X = g](α) and
Y = g](β), with α and β flat, since these locally generate all vector fields. Therefore,
we are left to check that:

[g](α), g](β)] = 0 if ∇α = ∇β = 0.

Now observe that the definition of the metric h yields:

µ∗(J(a(α))) = g](α).

Hence, if α and β are flat, this last relation and the computation above shows that:

[g](α), g](β)] = µ∗([J(a(α)), J(a(β))] = 0.

This shows that (ii) holds.
To prove the converse, note that given a flat Lagrangian connection D we can

define a unique Riemannian metric G on S by requiring the following properties to
hold:

(a) ker dµ and D are orthogonal;
(b) On D the metric is the unique one that gives isometries

dpµ : (Dp, G|Dp
)→ (Tµ(p)M, gµ(p));

(c) On ker dµ the metric is the unique one that gives isometries

(T ∗µ(p)M, g−1
µ(p))→ (ker dpµ,G|ker dpµ), α 7→ a(α)|p.

The resulting Riemannian metric is clearly invariant and we are left to prove that
it is a Kähler metric with Kähler form ω.

Given p ∈ S and α ∈ Tµ(p)M there is a unique horizontal vector g̃](α) ∈ Dp

such that

dpµ(g̃](α)) = g](α).

Since both sides of the previous equation are linear in α, it follows that there is a
unique vector bundle map J : ker dµ→ D such that

J(a(α)) := g̃](α). (6.5)
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Since TS = ker dµ⊕D, we obtain a vector bundle map J : TS → TS by requiring
J2 = −I. Notice that J is an invariant almost complex structure

La(α)J = 0, if ∇α = 0,

and claim that

G(X,Y ) = ω(X, JY ), (X,Y ∈ TS).

To see this, we check that the bilinear form ω(·, J ·) satisfy properties (a)-(c) above:

(a) Since J(ker dµ) = D and J(D) = ker dµ, and both distributions are Lagrangian,
it follows that they are orthogonal relative to the bilinear form ω(·, J ·).

(b) By (6.5), it follows that

ω(g̃](α), Jg̃](β)) = −ω(g̃](α),a(β))

= (µ∗β)(g̃](α))

= β(g](α)) = h(g](α), g](β)).

Hence, the restriction of dµ to D maps the bilinear form ω(·, J ·) to g.
(c) Again by (6.5), it follows that

ω(a(α), J(a(β))) = ω(a(α), g̃](β)))

= (µ∗α)(g̃](β))

= α(g](β)) = g−1(α, β).

Hence, the last item is also satisfied.

It remains to show that J is integrable, i.e., that its Nijenhuis torsion vanishes.
For this, note that:

[a(α), J(a(β))] = (La(α)J)(a(β)) + J([a(α),a(β)]) = 0, if ∇α = ∇β = 0,
(6.6)

since J is invariant and a(α) and a(β) commute. On the other hand, since g is
Hessian, we have for flat α and β:

g[([g](α), g](β)]) = g[([g](α), g](β)])−∇g](α)β +∇g](β)α

= −d∇g[(g](α), g](β)) = 0.

It follows that [g](α), g](β)] = 0, and using (6.5), we conclude that:

[J(a(α)), J(a(β))] = 0, if ∇α = ∇β = 0. (6.7)

From (6.6) and (6.7), we find that the Nijenhuis torsion of J satisfies:

NJ(a(α),a(β)) = NJ(a(α), J(a(β))) = NJ(J(a(α)), J(a(β))) = 0,

for any flat sections α and β. Since the vector fields a(α) and J(a(α)) locally
generate all vector fields, we conclude that NJ ≡ 0. This concludes the proof. �

6.2. Abreu’s equation. The scalar curvature of an invariant Kähler structure
on a Lagrangian fibration is an invariant smooth function on the total space, and
hence corresponds to a smooth function on the base of the fibration. In his work
on classical symplectic toric manifolds [1], Abreu gave an explicit expression for
this function in terms of integral affine coordinates and observed that the Kähler
metric is extremal in the sense of Calabi (see, e.g., [7]) if and only if this function
is affine. This generalizes to toric T -spaces. In this section we consider the case of
Lagrangian fibrations.

Recall that for an affine manifold (M,∇) with a Hessian metric:
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• the first Koszul form α is the 1-form on M defined by:

α(X)ν = ∇Xν, X ∈ X(M),

with ν the volume density of the Hessian metric,
• the second Koszul form β := ∇α is the symmetric (0, 2)-tensor given by:

(∇α)(X,Y ) = (∇Xα)(Y ).

As will be clear from the proof below, the second Koszul form is an incarnation
of the Ricci tensor in Hessian geometry. Further, recall that any integral affine
manifold (M,Λ) carries a canonical volume density νΛ, which in any integral affine
chart (U, xi) is given by

νΛ|U = |dx1 ∧ · · · ∧ dxn|.

Theorem 6.6. Let µ : (S, ω,G) → M be a Kähler Lagrangian fibration, inducing
an integral affine structure Λ on M and a Hessian metric g on (M,Λ). Let α and
β be the first and second Koszul forms of (M,Λ, g), νΛ the volume density of Λ and
∇g the Levi-Civita connection of g. The scalar curvature of G is given by

SG = Trg(2∇gα− β) ◦ µ = divνΛ
(g](α)) ◦ µ. (6.8)

Moreover, G is an extremal metric if and only if SG is affine, viewed as function
on the integral affine manifold (M,Λ).

Remark 6.7.

(i) Given a compact complex manifold (S, J) and a Kähler class, the Calabi func-
tional is defined on the space of J-compatible Kähler metrics G in the given
Kähler class and is given by

G 7→
∫
M

S2
G dvG, (6.9)

where vG is the Riemannian volume form. A Kähler metric G is called ex-
tremal if it is a critical point of this functional [7]. Using the corresponding
Euler-Lagrange equations one finds (see, e.g., [34]) that a Kähler metric G is
extremal if and only if

(gradSG)(1,0) is a holomorphic vector field. (E)

We adopt condition (E) as the definition of extremal Kähler metric, whether
S is a compact manifold or not.

(ii) In our approach, where we fix a symplectic manifold (S, ω), one has the fol-
lowing equivalent approach. The functional (6.9) is now defined on the space
of ω-compatible Kähler metrics G whose complex structure belong to a fixed
symplectomorphism class. The critical points are still the Kähler metrics sat-
isfying (E), which in symplectic terms can be reformulated as

XSG
is a Killing vector field. (E’)

(iii) In an integral affine chart (U, x1, . . . , xn) for (M,Λ), the first Koszul form is
given by

α|U =
1

2

n∑
j=1

∂ log(det(g))

∂xj

and (6.8) yields

SG|U = −1

2

n∑
j,k=1

∂2gjk

∂xj∂xk
,

where g−1 =
∑n
j,k=1 g

jk∂xj∂xk . The condition that the function SG is affine
then becomes a 4th order PDE for the potential of the metric g, known as
Abreu’s equation.
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Proof. The proof is essentially as in [1]. In view of Corollary 6.5 and Remark 3.21,
M can be covered by opens U over which the given Kähler Lagrangian fibration
is equivalent to the Lagrangian fibration (TΛ,ΩΛ)→ M equipped with the Kähler
structure induced as in Theorem 6.2 by g and the canonical horizontal distribution.
So, we can assume that (S, ω) = (TΛ,ΩΛ) and µ is the bundle projection.

Given an integral affine manifold (M,Λ) with a Hessian metric g, there is another
integral affine structure on M defined by the lattice dual to

Λ] := g](Λ) ⊂ TM.

The metric g is Hessian with respect to Λ] as well. This defines the dual Hessian
structure, in the terminology of [33]. The second Koszul form of (M,Λ], g) is (see
[33, Lemma 3.1])

β] = β − 2∇gα. (6.10)

Like TΛ = T ∗M/Λ, the torus bundle π : TM/Λ] → M comes with a canonical

horizontal distribution and vector bundle isomorphism a : π∗TM
∼−→ ker(dπ).

Moreover, TM/Λ] comes with a natural complex structure J given by

J(a(X)) = X̃, J(X̃) = −a(X),

and the metric g induces a metric G] on TM/Λ] given by

G](a(X1) + Ỹ1,a(X2) + Ỹ2) = g(X1, X2) + g(Y1, Y2),

where X̃ denotes the horizontal lift of X ∈ TM . These define a Kähler struc-
ture, which corresponds to the above Kähler structure on TΛ via the torus bundle
isomorphism:

TM/Λ]
∼−→ TΛ (6.11)

induced by g (see, e.g., [5]). It follows from [33, Proposition 3.5] that the Ricci
tensor R] of G] is given by:

R](a(X1) + Ỹ1,a(X2) + Ỹ2) = − (β](X1, X2) + β](Y1, Y2)) ,

with β] the second Koszul form of (M,Λ], g). From this it readily follows that the
scalar curvature SG (which equals that of G], since (6.11) is an isometry) is equal to
−Trg(β]) ◦ µ, which proves the first equality in (6.8) in view of (6.10). The second
equality follows from Remark 6.7.

A straightforward computation using action-angle coordinates and expression
(6.4) for G shows that for a function f , depending only on the action coordinates,
the Hamiltonian vector field Xf is a Killing vector field for G if and only if f is
affine. This yields the equivalence of the extremal condition (E’) with the condition
for SG. �

6.3. Examples. We will now illustrate how one can use Theorems 6.2 and 6.6 to
construct extremal Kähler metrics on Lagrangian fibrations.

Example 6.8. Any metric on (S1, bZdx), with b > 0, is Hessian (for dimensional
reasons) and of the form fdx2, for f ∈ C∞(S1) strictly positive. It follows from
(6.8) that the scalar curvature of any invariant Kähler metric G on the complex
torus that induces this Hessian metric is given by

SG =
f ′′

2f2
− (f ′)2

f3
. (6.12)

Since S1 is compact, if SG is affine, then it is in fact constant. Since f is strictly
positive and periodic, it follows that this constant must then be zero. The only
solutions to the ODE

ff ′′ − 2(f ′)2 = 0,
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are the constant functions on S1. Therefore, we conclude that the only extremal
metrics are those for which f is constant.

As we saw in Example 3.23, any Lagrangian fibration inducing (M,Λ) takes the
form

pr2 : (S1 × S1, bdy ∧ dx)→ S1.

If we fix the Hessian metric g = b2 dx2 and choose any of the Lagrangian connec-
tions Da in that example, the resulting extremal Kähler metric on S = T2 is the
flat metric

G = (a2 + b2) dx2 + 2adxdy + dy2.

The 2-torus equipped with corresponding complex structure is biholomorphic to the
complex torus C/〈1, τ〉, where τ = a+ ib.

Example 6.9. Consider the Lagrangian fibration pr1 : (T2 × T2, ωa) → T2 of
Examples 3.7 and 3.24, where a ∈ R and ωa = ωcan + adx1 ∧ dx2. This admits the
flat Lagrangian connection

D = 〈∂x1
, ∂x2

+ a∂θ1〉.

If we consider the flat Hessian metric g = dx1dx1 + dx2dx2 on T2, we obtain from
Theorem 6.2 the ωa-compatible extremal Kähler metric

G = dx1dx1 + (1 + a2)dx2dx2 − 2adx1dθ2 + dθ1dθ1 + dθ2dθ2.

Notice that, when one varies a ∈ [0, 1[, these give non-isomorphic Kähler metrics.

Example 6.10. Consider the standard integral affine cylinder

(M,Λ) = (S1 × R,Zdx⊕ Zdh)

of Example 2.20. Given a metric

g = Adh2 + 2Bdhdx+ Cdx2

on this cylinder, We find that

d∇g[(∂h, ∂x) = (∂hB − ∂xA) dh+ (∂hC − ∂xB) dx.

Therefore, we have a family of Hessian metrics

g =
1

τ(h)
dh2 +

1

ε(x)
dx2,

where both τ(h) and ε(x) are strictly positive.
Note that H1(M, TLag) = H2(M,OΛ) = 0, so that any toric TΛ-space is isomor-

phic to the symplectic torus bundle over (M,Λ) (see Example 2.20). Applying (6.8),
it follows that the scalar curvature of the lifted Kähler metric G on this symplectic
torus bundle is given by

SG = −1

2
(τ ′′(h) + ε′′(x)),

for any choice of flat Lagrangian connection. The condition for G to be extremal,
i.e., for SG to be affine, amounts to the condition that ε(x) is constant and τ(h) is
a cubic polynomial in h. Since τ(h) is strictly positive, this leads to the following
two possibilities for G to be extremal:

(i) τ(h) = bh2 + ch+d with b > 0 and c2−4bd < 0, in which case G has constant
negative scalar curvature − b

2 ;
(ii) τ(h) is constant, in which case G has zero scalar curvature.
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Example 6.11. Consider the non-standard integral affine cylinder of Example
2.21. Given a general metric on S1×]− 2,∞[, written in the form

g = Adh2 + 2B dhdx+ C dx2.

We find that

d∇g[(∂h, ∂x) =
(
∂hB − ∂xA+ B

h+2

)
dh+

(
∂hC − ∂xB − C

h+2

)
dx.

Therefore, we have a family of Hessian metrics

g =
1

τ(h)
dh2 + (h+ 2)ε dx2,

where ε > 0 and τ(h) is a strictly positive smooth function on ]− 2,∞[.
Like in the previous example, H1(M, TLag) = H2(M,OΛ) = 0, so any toric TΛ-

space is isomorphic to the symplectic torus bundle over (M,Λ) (see Example 2.21).
Applying (6.8), it follows that the scalar curvature of the lifted Kähler metric G on
this symplectic torus bundle is given by

SG = −1

2
τ ′′(h)− 1

h+ 2
τ ′(h),

for any choice of flat Lagrangian connection. Such a metric is extremal if

1

2
τ ′′(h) +

1

h+ 2
τ ′(h) = c1(h+ 2) + c0

for some constants c1 and c0. One finds that

τ(h) =
c1
6

(h+ 2)3 +
c0
3

(h+ 2)2 +
c2

h+ 2
+ c3

where c2 and c3 are constants of integration. Therefore, choosing the constants such
that τ(h) > 0, we obtain extremal Kähler metrics on the symplectic torus bundle.
These include examples both with constant and non-constant scalar curvature.

7. Invariant Kähler metrics II: toric Lagrangian fibrations

In this section we will generalize the characterization of compatible invariant
Kähler metrics on Lagrangian fibrations given in Theorem 6.2 to toric (T ,Ω)-spaces.

Below, in Section 7.1, we will introduce the notion of hybrid b-metric for
manifolds with corners. These are metrics admitting a specific type of singularity
at the boundary and with a well-defined notion of residue at the open facets. Using
this notion, we can state the main result of this section as follows.

Theorem 7.1. Let (M,Λ) be an integral affine manifold and let µ : (S, ω)→M be

a toric (TΛ,ΩΛ)-space, with Delzant subspace ∆ := µ(S). Denote by ∆̊ the interior

of ∆ and set S̊ := µ−1(∆̊). For any invariant Kähler metric G on S compatible
with ω, the following hold:

(i) (ker dµ)⊥|S̊ extends to an elliptic connection with zero radial residue over the
open facets;

(ii) The Hessian metric g on ∆̊, induced via Theorem 6.2, extends to a hybrid b-
metric on ∆ with the residue at the open facets given by the primitive outward-
pointing normals multiplied by 1

4π .

Conversely, given a flat Lagrangian elliptic connection θ with zero radial residues
and a hybrid b-metric g on ∆ with residues as in (ii), there is a unique invariant
compatible Kähler metric G on S inducing g and such that ker θ|S̊ = (ker dµ)⊥|S̊.

Remark 7.2. The scalar curvature SG of an invariant Kähler metric G descends
to a smooth function on ∆, because it is T -invariant. It follows from the case of
smooth Lagrangian fibrations (by restricting to ∆̊) that G is an extremal Kähler
metric if and only if SG : ∆→ R is an affine function.
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By the same reasoning as for Corollary 6.5, we conclude the following from
Theorems 4.33 and 7.1.

Corollary 7.3. Given an integral affine manifold (M,Λ) and a Delzant subspace
∆, there is a canonical 1:1 correspondence Kähler toric T -spaces
µ : (S, ω,G)→M with µ(S) = ∆

up to equivalence

 ←̃→
{

Hessian hybrid
b-metrics g on ∆

}
× Ȟ1(∆, TFlat)

7.1. Hybrid b-metrics. Let ∆ be a manifold with corners. Given a smooth section

g ∈ Γ∞( T ∗∆b ⊗ T ∗∆), (7.1)

we let g[ : T∆b → T ∗∆ denote the induced vector bundle map. We also denote by

ĝ ∈ Γ∞( T ∗∆b ⊗ T ∗∆b )

the section induced by g via the anchor map of T∆b , so that ĝ[ = ρ∗ ◦ g[.
Definition 7.4. A smooth section g of T ∗∆b ⊗ T ∗∆ will be called:

(i) non-degenerate if g[x is an isomorphism for each x ∈ ∆;

(ii) symmetric if ĝx is symmetric for all x ∈ ∆ (equivalently, for all x ∈ ∆̊);
(iii) positive semi-definite if ĝx is positive semi-definite for all x ∈ ∆ (equiva-

lently, for all x ∈ ∆̊).

We will call g a hybrid b-metric on ∆ if it satisfies all these three properties.

A hybrid b-metric on ∆ can be thought of as a smooth Riemannian metric on ∆̊
with specified singularities at the boundary. In local coordinates, these singularities
are of the same type as those of the singular metrics in [1]. Assume ∆ is an open
in Rnk . A smooth section g of T ∗∆b ⊗ T ∗∆ is symmetric if and only if it is of the
form

g =

k∑
i=1

1

xi
giidx

i ⊗ dxi +
∑

(i,j)∈Ik

gijdx
i ⊗ dxj , (7.2)

for some gij ∈ C∞(∆) such that gij = gji for all i, j ∈ {1, . . . , n}, where we denote

Ik := {(i, j) ∈ {1, . . . , n}2 | i 6= j or i = j > k}.
If g is symmetric, then

• positive semi-definiteness of g means that for each x ∈ ∆̊ the matrix g̊(x)
given by

g̊(x)ij :=

{
1
xi gii(x) if i = j ≤ k,
gij(x) if (i, j) ∈ Ik,

(7.3)

is positive semi-definite.
• non-degeneracy of g at a point in ∆ means that

(x1 · · · · · xk) · det(̊g) ∈ C∞(∆) (7.4)

is non-zero at that point.

Therefore, if g is symmetric and positive semi-definite, then it is non-degenerate if
and only if (7.4) is strictly positive on all of ∆. The latter condition is as in [1].

Assume now that ∆ is an affine manifold with corners, i.e., ∆ has an atlas
for which the transition functions are restrictions of affine transformations. An
Hessian hybrid b-metric g on ∆ is a hybrid b-metric satisfying

d∇g[ = 0,

where ∇ is the associated flat T∆b -connection on T ∗∆. Such a b-metric g admits
local potentials around points in the boundary of ∆ which are of a very particular
form.
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Proposition 7.5. Let ∆ is an affine manifold with corners and g a Hessian hybrid
b-metric on ∆. Around a point x ∈ ∂∆ of depth k there exists a chart (U, xi)
centered at x for which

g =

n∑
i,j=1

∂2φ

∂xi∂xj
dxi ⊗ dxj

where φ is a smooth function on ∆̊ ∩ U of the form

φ =

k∑
i=1

cix
i log(xi) + f, ci := gii(0) ∈ R, f ∈ C∞(U). (7.5)

Proof. Fix an affine chart for ∆ centered at x onto an open [0, δ[k×]−δ, δ[n−k. The
fact that g is Hessian means that the coefficients (7.3) of the Riemannian metric

on ∆̊ underlying g satisfy the usual set of differential equations

∂g̊ij

∂xl
=
∂g̊il

∂xj
, 1 ≤ i, j, l ≤ n. (7.6)

In terms of the functions gij ∈ C∞(U) as in (7.2) this means that

∂gii
∂xj

= xi
∂gij
∂xi

if i ≤ k, i 6= j, (7.7)

∂gij
∂xl

=
∂gil
∂xj

if (i, j), (i, l) ∈ Ik. (7.8)

Since (7.7) vanishes if xi = 0, for i ∈ {1, . . . , k} the function

x 7→ gii(x
1, . . . , xi−1, 0, xi+1, . . . , xn)

is constant on U with value ci. Since gii(x)− ci vanishes if xi = 0, gii − ci is of the
form xihi for a smooth function hi ∈ C∞(U). The equations (7.7) and (7.8) then
express the fact that the 1-forms αi on U given by

αi =


hidx

i +
∑
j 6=i gijdx

j if 1 ≤ i ≤ k,

∑n
j=1 gijdx

j , if k < i ≤ n,

are closed. By the Poincaré lemma for manifolds with corners, each αi must in fact
be exact. So, there are φi ∈ C∞(U) such that dφi = αi. Applying the Poincaré
lemma once more, this time to the closed 1-form

∑n
i=1 φidx

i on U , we find an
f ∈ C∞(U) such that:

∂2f

∂xi∂xj
=


hi if i = j < k,

gij if (i, j) ∈ Ik,

with Ik as in (7.3). For this choice of f , the function φ defined by (7.5) is indeed a

potential for g on ∆̊ ∩ U . �

Next, we introduce the notion of residue appearing in Theorem 7.1.

Definition 7.6. The residue of a hybrid b-metric g at an open facet of ∆ is the
residue of the vector valued 1-form g[ ∈ Ω1( T∆b , T ∗∆) at the facet (see Definition
4.21).

Example 7.7. Consider a Delzant polytope

∆ :=

d⋂
i=1

{`i ≤ 0} ⊂ Rn.
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Then ∆̊ is contractible, so any Hessian hybrid b-metric on ∆ admits a global poten-
tial φ ∈ C∞(∆̊). By applying successively Proposition 7.5, one concludes that for
a Delzant polytope a Hessian hybrid b-metric as in Theorem 7.1 (ii) has potential
of the form

φ(x) = − 1
4π

d∑
i=1

`i(x) log `i(x) + f(x),

where f is smooth on ∆ (not just on ∆̊). In view of this and (7.4), we recover
the type of singular Hessian metrics on Delzant polytopes appearing in the works of
Guillemin [24] and Abreu [1].

Remark 7.8. In [1] Abreu also observed that the difference between any two of his
singular hessian metrics on a Delzant polytope extends smoothly over the boundary.
This holds more generally for any two hybrid b-metrics on a manifold with corners
∆ that have the same residues.

For the proof of Theorem 7.1, it will be useful to also consider the notion dual
to that of the singular metrics above. These will be smooth sections

δ ∈ Γ∞(T∆⊗ T∆b ).

Given such a section δ, we denote by δ] : T ∗∆ → T∆b the induced vector bundle
map. We also denote by

δ̂ ∈ Γ∞(T∆⊗ T∆)

the section induced by δ via the anchor map of T∆b , so that δ̂] = ρ ◦ δ].

Definition 7.9. A smooth section δ of T∆⊗ T∆b will be called:

(i) non-degenerate if δ]x is an isomorphism for each x ∈ ∆;

(ii) symmetric if δ̂x is symmetric for all x ∈ ∆ (equivalently, for all x ∈ ∆̊);

(iii) positive semi-definite if δ̂x is positive semi-definite for all x ∈ ∆ (equiva-

lently, for all x ∈ ∆̊).

We will call δ a hybrid b∗-metric on ∆ if it satisfies all these three properties.

A hybrid b∗-metric has an underlying metric on T ∗∆̊ that extends smoothly to

the tensor δ̂ on all of ∆. Note, however, that δ̂ is degenerate at the boundary. To
see how, suppose that ∆ is an open around the origin in Rnk . Then a smooth section
δ of T∆⊗ T∆b is symmetric if and only if it is of the form

δ =

k∑
i,j=1,j 6=i

xixjδij∂xi ⊗ ∂xj +

k∑
i=1

xiδii∂xi ⊗ ∂xi +

n∑
i,j=k+1

δij∂xi ⊗ ∂xj (7.9)

+

k∑
i=1

n∑
j=k+1

xiδij (∂xi ⊗ ∂xj + ∂xj ⊗ ∂xi) ,

for δij ∈ C∞(∆) such that δij = δji for all 1 ≤ i, j ≤ n. For positive semi-
definiteness and non-degeracy, there are criteria analogous to those for hybrid b-
metrics.

On a given manifold with corners, hybrid b-metrics are in bijective correspon-
dence with hybrid b∗-metrics, in which a hybrid b-metric g and its corresponding
hybrid b∗-metric δ are related by the fact that g[ and δ] are inverse to each other.

7.2. Proof of Theorem 7.1. In this section we prove the two directions of the
statement of Theorem 7.1. We start by proving the following local result concerning
invariant metrics in the local model discussed in Section 4.1.
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Lemma 7.10. Let (Sk,n, ωk,n) be a standard local model with the Tn-action (4.1),
and let U be an open in ∆ := Rnk . Then:

(i) A smooth Tn-invariant symmetric tensor:

G : µ−1
k,n(U ∩ ∆̊)→ T ∗Sk,n ⊗ T ∗Sk,n

extends smoothly to all of µ−1
k,n(U) if and only if it takes the following form

G =

k∑
j=1

(
grj ,rj (drj)

2 + r3
j grj ,φj

drjdφj + r2
j gφj ,φj

(dφj)
2
)

+

k∑
j,l=1,j 6=l

(
rjrlgrj ,rldrjdrl + rjr

2
l grj ,φl

drjdφl + r2
j r

2
l gφj ,φl

dφjdφl
)

+

k,n−k∑
j,l=1

(
rjgrj ,xldrjdx

l + rjgrj ,θldrjdθl + r2
j gφj ,xldφjdx

l + r2
j gφj ,θldφjdθl

)
+

n−k∑
j,l=1

(
gθj ,θldθjdθl + gxj ,θldx

jdθl + gxj ,xldxjdxl
)

where the coefficients functions are Tn-invariant smooth functions on µ−1
k,n(U)

and gφj ,φj = (2π)2grj ,rj over U ∩ {xj = 0}.
(ii) Dually, a smooth Tn-invariant symmetric tensor

G∗ : µ−1
k,n(U ∩ ∆̊)→ TSk,n ⊗ TSk,n

extends smoothly to all of µ−1
k,n(U) if and only if its coefficients with respect to

the coframe on S̊

dφ1, . . . ,dφk,
1

r1
dr1, . . . ,

1

rk
drk,dθ1, . . . ,dθn−k,dx

1, . . . ,dxn−k

are Tn-invariant smooth functions on µ−1
k,n(U), with the exception of the fol-

lowing coefficients, which take the form

G∗
(

1

rj
drj ,

1

rj
drj

)
=

1

r2
j

g∗rj ,rj , G∗ (dφj ,dφj) =
1

r2
j

g∗φj ,φj
,

with g∗rj ,rj and g∗φj ,φj
Tn-invariant smooth functions on µ−1

k,n(U) such that

g∗φj ,φj
= (2π)2g∗rj ,rj over U ∩ {xj = 0}.

Proof. The backward implication in (i) readily follows by expressing the coefficients
of G with respect to the frame:

∂u1
, ∂v1

, . . . , ∂uk
, ∂vk , ∂θ1 , . . . , ∂θn−k

, ∂x1 , . . . , ∂xn−k

on U in terms of the coefficients with respect to the frame (4.5) on Ů . For the
forward implication, suppose that G extends smoothly to all of µ−1

k,n(U). By conti-
nuity this extension is T -invariant as well, hence so are its coefficient functions with
respect to the frame (4.5). Applying Proposition 4.6 to these, it follows that the
coefficients in the last 3 lines of the formula for G are of the desired form. More-
over, it follows that there are Tn-invariant smooth functions gφj ,φj , grj ,rj , g̃φj ,rj on

µ−1
k,n(U) such that:

G
(
∂φj , ∂φj

)
= r2

j gφj ,φj ,

G
(
rj∂rj , rj∂rj

)
= r2

j grj ,rj ,

G
(
∂φj , rj∂rj

)
= r2

j g̃φj ,rj .
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Denote the smooth extension of G to µ−1
k,n(U) by Ĝ. Comparing the limits of the

function Ĝ(∂uj
, ∂vj ) along the two paths:

R 3 ε 7→ (z1, . . . , zj−1, ε, zj+1, . . . , zk, t, x)

R 3 ε 7→ (z1, . . . , zj−1, iε, zj+1, . . . , zk, t, x)

as ε tends to zero (for any given j ∈ {1, . . . , k} and (z, t, x) ∈ U ∩ {zj = 0})
leads to the conclusion that g̃φj ,rj vanishes over U ∩ {xj = 0}, so g̃φj ,rj = r2

j gφj ,rj .

Computing the same limits for the function Ĝ(∂uj , ∂uj ) shows that gφj ,φj and (2π)2 ·
grj ,rj coincide over U ∩{xj = 0}, which completes the proof of (i). Part (ii) follows
from the same type of arguments. �

7.2.1. From invariant (Kähler) metrics to hybrid b-metrics. Let µ : (S, ω) → M
be a toric (TΛ,ΩΛ)-space with Delzant subspace ∆ := µ(S). Further, let G be a
ω-compatible invariant Kähler metric on S. As in the proof of Theorem 6.2, the
T -invariance of G implies that there is a unique symmetric, positive semi-definite

section δ̂ ∈ Γ∞(T∆⊗ T∆) making the following diagrams commute

TS
G[

// T ∗S

a∗

��

T ∗S
(G[)

−1

// TS

dµ

��
µ∗(T ∗∆)

a

OO

δ̂]
// µ∗(T∆) µ∗(T ∗∆)

dµ∗

OO

δ̂]
// µ∗(T∆)

(7.10)

The tensor δ̂ extends the metric on T ∗∆̊ dual to the unique Riemannian metric on
g on ∆̊ making µ : (S̊, G) → (∆̊, g) a Riemannian submersion. For each locally
defined 1-form α on ∆ the vector field (G[)−1(µ∗α) is T -invariant, since both µ∗α
and G are. Therefore, (G[)−1 ◦ (dµ)∗ lifts to a unique vector bundle map:

. TSµ

ρ

��
µ∗(T ∗∆)

(G[)−1◦(dµ)∗
//

h

66

TS

(7.11)

From this and the commutativity of the right-hand square in (7.10), it follows that

δ̂] takes 1-forms on ∆ to b-vector fields. Therefore, δ lifts to a symmetric and
positive semi-definite section δ ∈ Γ∞(T∆ ⊗ T∆b ) making the following digrams
commute

T∆b

ρ

��

TSµ

µ∗

��
T ∗∆

δ]
<<

δ̂]
// T∆ µ∗(T ∗∆)

h

99

δ]
// µ∗( T∆b )

(7.12)

with µ∗ as in Proposition 4.22. In what follows, we will show that δ is non-
degenerate, so that it is a hybrid b∗-metric on ∆. Its dual will then be the hy-
brid b-metric on ∆ extending the Riemannian metric g, as in (i). Moreover, by
commutativity of the right-hand triangle in (7.12), the composite

µ∗( T∆b )
(δ])−1

// µ∗(T ∗∆)
h // TSµ (7.13)

will be a section of µ∗, which gives the extension of (ker dµ)⊥|S̊ to the elliptic
connection θ in (i).

It remains to prove that:
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(i) δ is non-degenerate at each x ∈ ∂∆;
(ii) the residue of δ at each open facet is the primitive outward-pointing normal

multiplied by 1
4π ;

(iii) θ has zero radial residue.

Let us fix x ∈ ∂∆ and standard toric coordinates (zi, θj , x
j) centered at x (see

Section 4.1). In these coordinates, the smooth section δ of T∆ ⊗ T∆b takes the
form (7.9), so we can write the map δ]x : T ∗x∆→ Tx∆b as a matrix of the form(

Dk Dn−k,k
0 Dn−k

)
, (7.14)

with respect to standard bases of T ∗x∆ and Tx∆b for ∆ = Rnk , where Dk is the
diagonal k by k matrix with ith diagonal entry δii(x), Dn−k is the n− k by n− k
matrix with (i, j)-entry δk+i,k+j(x), and similarly for Dn−k,k. Since

∂φ1
, . . . , ∂φk

, ∂θ1 , . . . , ∂θn−k
,

are the vector fields associated to standard coframe on Rn by the infinitesimal
action a, it follows from part (i) of Lemma 7.10 and the left diagram in (7.10) that

δij =


gφi,φj if i, j ≤ k,
gφi,θj−k

if i ≤ k, j ≥ k + 1,

gφj ,θi−k
if i ≥ k + 1, j ≤ k,

gθi−k,θj−k
if i ≥ k + 1, j ≥ k + 1.

(7.15)

From this and the fact that G is positive definite, it follows that the functions δii

are strictly positive on ∆ and the matrix (7.14) is invertible. This proves item (i).
For items (ii) and (iii) we can further assume that the depth of x is 1, i.e., k = 1.

We are left to show that δ11(x) = 4π. Since

2rdr, dx1, . . . ,dxn−1,

are the 1-forms obtained by pulling back the standard coframe on Rn along µ, it
follows from part (ii) of Lemma 7.10 and the right diagram in (7.10) that

δij =


4 g∗r,r,

2 g∗r,xj−1 if j ≥ 2,

2 g∗r,xi−1 if i ≥ 2,

g∗xi−1,xj−1 if i ≥ 2, j ≥ 2.

(7.16)

By considering the coefficient functions of g with respect to the frame

1

r
∂φ, ∂r, ∂θ1 , . . . , ∂θn−1 , ∂x1 , . . . , ∂xn−1

over S̊ and those of g∗ with respect to the dual coframe

rdφ, dr, dθ1, . . . ,dθn−1,dx
1, . . . ,dxn−1

over S̊, we obtain mutually inverse matrices of functions that converge as z tends
to zero. Comparing the two limits as z tends to zero leads to the conclusion that

g∗r,r(x) gr,r(x) = 1.

Combined with the fact that gφ,φ(x) = (2π)2 gr,r(x) by Lemma 7.10, and with
(7.15) and (7.16), it follows that δ11(x) = 4π.

To prove item (iii), we ought to show that, for any b-vector field ν that is Euler-
like with respect to a open facet F , the lift of 2 ν along (7.13) is Euler-like with
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respect to SF . In view of Remark 4.20, we can assume that ν = x1∂x1 . The lift of
the b-vector field 2x1∂x1 is of the form

2̃x1∂x1 = r∂r + fφ∂φ +

n−1∑
j=1

fθj ∂θj ,

where fφ and fθj are Tn-invariant smooth functions on µ−1
1,n(U). By Remark 4.24,

it is enough to show that fφ(x) = fθ1 (x) = · · · = fθn−1(x) = 0 whenever x1 = 0.

Note that over S̊ one has

0 = g
(

2x̃1∂x1 , ∂θl

)
= r2 gr,θl + gφ,θl f

φ +

n−1∑
j=1

gθj ,θl f
θ
j ,

0 =
1

r2
g
(

2x̃1∂x1 , ∂φ

)
= r2 gφ,r + gφ,φ f

φ +

n−1∑
j=1

gφ,θj f
θ
j ,

where we first we used that ker(dµ) and L are orthogonal over S̊, and then we
applied Lemma 7.10. In view of (7.15), letting z tend to zero it follows that
(fφ(x), fθ1 (x), . . . , fθn−1(x)) belongs to the kernel of the invertible matrix (7.14)

whenever x1 = 0. So, fφ(x) = fθ1 (x) = · · · = fθn−1(x) = 0 if x1 = 0.
This concludes the proof of one direction of Theorem 7.1.

7.2.2. From hybrid b-metrics to invariant (Kähler) metrics. Let µ : (S, ω) → M
be a toric (TΛ,ΩΛ)-space with Delzant subspace ∆ := µ(S). Further, let θ be an
elliptic connection and let g be a hybrid b-metric on ∆ as in the statement of the
theorem. We use δ to denote the corresponding hybrid b∗-metric and we let G be the
unique invariant ω-compatible Kähler metric on S̊ such that µ : (S̊, G)→ (∆̊, g) is
a Riemannian submersion and ker θ|S̊ = (ker dµ)⊥|S̊ . By the proof of Theorem 6.2,

this data satisfies (7.10) on S̊. We ought to show that G extends to a Riemannian
metric on all of S. This extension is then automatically invariant and compatible
with ω, due to density of S̊.

First, we will show that G extends smoothly to S as a tensor. Since this is a
local property, we can verify this in standard toric coordinates (z, θ, x) by showing
that the coefficients of G are of the form in part (i) of Lemma 7.10. Because the
left square in (7.10) commutes, the coefficients of G involving only

∂φ1 , . . . , ∂φk
, ∂θ1 , . . . , ∂θn−k

are of this form, with the required Tn-invariant smooth functions on µ−1
k,n(U) given

by the pull-backs of the corresponding coefficients δij of δ, as in (7.9). For the
coefficients of G involving ri∂ri , notice that the horizontal lift of 2xi∂xi must be of
the form

2̃xi∂xi = ri∂ri + r2
i

( k∑
j=1

fφi,j∂φj +

n−k∑
j=1

fθi,j∂θj

)
, (7.17)

where fφj and fθj are Tn-invariant smooth functions on µ−1
k,n(U). Indeed, this follows

from the condition in (ii) in Theorem 7.1, Remarks 4.20 and 4.24, and Proposition
4.6. Since the horizontal lift is orthogonal to ker dµ, it follows that the coefficients
G (ri∂ri , ∂φl

) and G (ri∂ri , ∂θl) are of the required form, and that

G
(

2̃xi∂xi , 2̃xl∂xl

)
= G

(
2̃xi∂xi , rl∂rl

)
. (7.18)

for i, l ≤ k. Since µ is a Riemannian submersion, it holds that:

G
(

2̃xi∂xi , 2̃xl∂xl

)
=

{
r2
i r

2
l µ
∗(gil) if i 6= l,

r2
i µ
∗(gii) if i = l,
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with gil ∈ C∞(U) as in (7.2). So, it follows from (7.18) that the coefficients
G (ri∂ri , rl∂rl) are also of the required form, and that

gφi,φi
= µ∗k,n(δii) and gri,ri = µ∗k,n(gii) over xi = 0.

Since g[ and δ] are inverse to each other, it holds that gii(x)δii(x) = 1 when
xi = 0. By the assumption on the residue of g, one has that gii(x) = 1

4π when

xi = 0. Hence, it follows that

gφi,φi
= (2π)2gri,ri over xi = 0.

By similar arguments, the other coefficients are of the required form as well. So,
the tensor G indeed extends smoothly to all of S. This extension is symmetric and
positive semi-definite, since it is so on the dense subset S̊. So, to conclude that it is
a Riemannian metric on S, it suffices to show that the dual metric G∗ on S̊ extends
smoothly, as a tensor, to all of S. This follows from an argument along the same
lines as that for G, by instead using part (ii) of Lemma 7.10 and the coframe over

S̊ ∩ µ−1(U) dual to the frame:

2̃x1∂x1 , . . . , 2̃xk∂xk , ∂̃xk+1 , . . . , ∂̃xn , ∂φ1
, . . . , ∂φk

, ∂θ1 , . . . , ∂θn−k
.

This concludes the proof of Theorem 7.1.

7.3. Examples.

Example 7.11. Consider the integral affine cylinder (M,Λ) = (S1×R,Zdx⊕Zdh)
and the Delzant subspace ∆ = S1 × [−1, 1] as in Example 4.35. Further, consider
the corresponding canonical toric TΛ-space µ : (T2 × S2, ω) → S1 × R described in
Example 2.20. As in Example 6.10, there are Hessian hybrid b-metrics of the form

g =

(
1

4π(1− h2)
+ f(h)

)
dh2 + c(x) dx2,

where now the singular term is so that the residue at both facets is 1
4π . By a

computation as in Example 6.10, we find that the extremal condition holds if and
only if f = 0 and c(x) is constant. Using the flat Lagrangian elliptic connection
Da,b of Example 4.35, Theorem 7.1 gives the family of ω-compatible extremal Kähler
metrics

G =

(
1

τ(h)
+ b2τ(h)

)
dh2 + τ(h)dφ(dφ− 2bdh) + gT2 , (7.19)

where τ(h) = 4π(1− h2) and gT2 is the flat metric on the torus given by

gT2 =
1

c

(
(a2 + c2)dx2 − 2adxdy + dy2

)
.

Note that when a = b = 0 and c = 1 we recover the product of the round metric on
S2 with the standard flat metric on T2.

Example 7.12. Let (M,Λ) = (S1×]−2,∞[,Z((h+2)dx+xdh)⊕Zdh) be the non-
standard integral affine cylinder and consider the Delzant subspace ∆ = S1× [−1, 1]
(see Example 4.36). Further, we consider the corresponding canonical toric TΛ-
space µ : (T2 ∼×S2, ω)→ S1×]− 2,∞[, which is described in Example 2.21. Similar
to Example 6.11, there are Hessian hybrid b-metrics of the form

g =

(
1

4π(1− h2)
+ f(h)

)
dh2 + (h+ 2)cdx2,

with c > 0 a constant and f ∈ C∞(]− 2,∞[). Let us define a function τ(h) by

1

τ(h)
:=

1

4π(1− h2)
+ f(h).
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One finds the boundary conditions

τ(±1) = 0, τ ′(±1) = ∓8π.

Applying formula (6.8), one finds that

SG = −1

2
τ ′′(h)− τ ′(h)

h+ 2
.

Proceeding as in Example 6.11, taking into account the boundary conditions, one
finds that SG is an affine function if and only if

τ(h) = −4π

11

(
2(h+ 2)3 − 5(h+ 2)2 − 15 +

18

h+ 2

)
.

This gives the affine function

SG =
4π

11
(12h+ 9).

The corresponding hybrid Hessian b-metric takes the form

g =

(
1

4π(1− h2)
+

1

2π(2h2 + 11h+ 20)

)
dh2 + (h+ 2)cdx2.

We can now use the family of elliptic Lagrangian connections Da,b on the TΛ-space
µ : (T2 ∼×S2, ω)→ S1×]− 2,∞[ discussed in Example 4.36 to lift g to the family of
ω-compatible extremal Kähler metrics

G =

(
1

τ(h)
+ b2τ(h)

)
dh2 + τ(h)θ(θ − 2bdh) + (h+ 2)gT2 , (7.20)

where θ := (xdy + dφ) and gT2 is the flat metric on the torus given by

gT2 =
1

c

(
(a2 + c2)dx2 − 2adxdy + dy2

)
.

Notice the similarity between formulas (7.19) and (7.20). When b = 0, the metric
(7.20) appears as a special case of the metrics considered by Apostolov et al. [2]
(see the formula in Theorem 3, loc. cit.). The precise relation between the approach
followed here and the results in [2] will be discussed in a sequel to this paper.

7.4. Invariant Kähler metrics via Kähler reduction. The Delzant-type con-
struction from Section 5 (see Theorem 5.11) can be used to construct invariant
Kähler metrics via Kähler reduction, much like in [24].

Let (M,Λ) be a connected integral affine manifold and ∆ ⊂ M a Delzant sub-
space of finite type. Assume that M admits a Hessian metric g and let g̃ be its

lift to the universal covering space (M̃, Λ̃). Let GΛ̃ be the ΩΛ̃-compatible invariant
Kähler metric on TΛ̃ obtained by lifting g̃ via the canonical Lagrangian connection.

Proposition 7.13. Let (M,Λ, g) be a connected integral affine Hessian manifold
and let ∆ be a Delzant subspace of finite type. Consider the product metric GΛ̃×gst

on TΛ̃ × Cd. The Hessian hybrid b-metric g∆ on ∆ induced by the reduced Kähler
metric on the symplectic quotient

((TΛ̃ × Cd) // (Γ n Td), ωred)

takes the form

g∆ = g + HessΛ(φ),

where φ is the smooth function on ∆̊ corresponding to the function on M̃ given by

φ̃ = − 1

4π

d∑
i=1

`i log |`i|. (7.21)
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The proof follows the usual Kähler reduction recipe: one restricts the metric
to the zero level, obtaining a (Γ n Td)-invariant metric, that then descends to the
symplectic quotient, yielding the expression in the theorem. Notice that, although

each term in (7.21) is a function on M̃ which may fail to descend to ∆̊, the sum does
descend to a smooth function, since the Γ-action permutes the primitive boundary
defining functions.

Remark 7.14. For a Delzant polytope, Guillemin showed in [24] that, if one applies
Kähler reduction to the standard Delzant construction, one obtains an invariant
Kähler metric on the symplectic toric manifold which induces a Hessian metric
on ∆̊ with potential given by (7.21). Our Delzant type construction is different
from the standard one (see Remark 5.10) and results in the presence of the original
Hessian metric on M as an additional term. This is unavoidable since for a general
Delzant subspace of finite type there may not exist a global potential. Moreover,
the Hessian of (7.21) may not even define a metric in ∆̊. This is the case, for
instance, in Examples 7.11 and 7.12. Also, the Hessian hybrid b-metrics constructed
in those examples show that ∆ may carry Hessian hybrid b-metrics with residues as
in Theorem 7.1 which are not obtained by Kähler reduction as in Proposition 7.13.

Corollary 7.15. Any finite-type Delzant subspace of a Hessian integral affine man-
ifold admits a Hessian hybrid b-metric with residues as in Theorem 7.1.
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