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ASSOCIATIVITY AND INTEGRABILITY

RUI LOJA FERNANDES AND DAAN MICHIELS

Abstract. We provide a complete solution to the problem of extending a
local Lie groupoid to a global Lie groupoid. First, we show that the classical
Mal’cev’s theorem, which characterizes local Lie groups that can be extended
to global Lie groups, also holds in the groupoid setting. Next, we describe a
construction that can be used to obtain any local Lie groupoid with integrable
algebroid. Last, our main result establishes a precise relationship between
the integrability of a Lie algebroid and the failure in associativity of a local
integration. We give a simplicial interpretation of this result showing that the
monodromy groups of a Lie algebroid manifest themselves combinatorially in
a local integration, as a lack of associativity.
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1. Introduction

One of the main differences between the Lie theory of groupoids and the ordinary
Lie theory of groups is the failure of Lie’s Third Theorem: not every Lie algebroid
integrates to a Lie groupoid. A fundamental fact discovered in [4] is that the lack
of integrability of a Lie algebroid can be measured by the so-called monodromy
groups. On the other hand, it is well known that every Lie algebroid integrates to
a local Lie groupoid. In this paper we show that the failure of integrability of a
Lie algebroid can also be measured by the failure of associativity of any of its local
integrations.

In connection with his proof of Lie’s Third Theorem [3] for ordinary Lie theory,
E. Cartan already considered the question whether a local Lie group is contained in
a global Lie group, i.e., whether a local Lie group is “globalizable” (sometimes called
“enlargeable”). Mal’cev [10] was the first one to define a notion of a local group
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and he showed that the lack of associativity is the only obstruction to embedding
a local group in a global one. More precisely, the associativity axiom for a local
group requires that for every triple of elements one has:

g(hk) = (gh)k,

provided both sides are defined. While for a global group this implies that all higher
associativities hold, this is not true for a local Lie group. So, for example, there
exist local Lie groups in which one can find 4 elements such that:

(gh)(kl) �= g((hk)l),

so that 4-associativity does not hold. An obvious necessary condition for a local
group to be globalizable is that n-associativity holds for all n ≥ 3, in which case we
say that the local Lie group is globally associative. Mal’cev’s theorem states that
this condition is also sufficient.

Mal’cev’s notion of a local group was used by Smith [14], who applied a simpli-
cial complex approach to establish another criterion for globalizability. Both the
Mal’cev criterion and the Smith criterion were used in the 1960s to understand the
failure of Lie’s Third Theorem for Banach Lie algebras. For an account of these
works, and the fact that the two criteria are in fact the same, we refer to [16]. More
recently, these kind of problems have resurfaced in connection with Goldbring’s so-
lution ([7]) to the local version of Hilbert’s fifth problem (see, e.g., the recent book
by Tao [15]).

All these notions for local groups extend to local groupoids so, perhaps, it is not
too surprising that a version of Mal’cev’s result holds for local groupoids. We will
be interested mainly in the case of local Lie groupoids, and we will establish the
following.

Theorem 1.1 (Mal’cev’s theorem for local Lie groupoids). A sufficiently connected
local Lie groupoid is globalizable if and only if it is globally associative.

The connectedness needed in the statement of this theorem as well as in the
results that follow will be explained in the main body of the paper.

Simple examples of non-globalizable local Lie groups exist, and Olver in [12]
gives a general method of constructing local Lie groups that are not contained in
a global Lie group, leading to a classification of local Lie groups. The main idea
is to start with a (global) Lie group and consider an open neighborhood U of the
unit. Obviously, U is a globalizable local Lie group. However, if U is chosen not to

be 1-connected, a covering Ũ inherits a local Lie group structure from U which, in
general, is non-globalizable. Olver’s theorem essentially states that every local Lie
group is covered by a local Lie group which covers a globalizable local Lie group.

The theory of covers for local Lie groupoids is more subtle than for local Lie
groups. Still, we will show that when the underlying Lie algebroid is integrable,
Olver’s theorem also extends to local Lie groupoids with the appropriate assump-
tions.
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Theorem 1.2 (Classification of local Lie groupoids). Suppose G is a source-

connected local Lie groupoid with integrable Lie algebroid A. Let G̃ be the source-
simply connected cover of G and let G(A) be the source-simply connected integration
of A. Then we have a diagram:

G̃

G U ⊆ G(A)

p1 p2

where p1 is the covering map and p2 is a generalized covering of local Lie groupoids.

Our version of Mal’cev’s theorem shows that global associativity must fail for a
local Lie groupoid whose Lie algebroid is non-integrable. This is a completely new
aspect of the theory of groupoids which has no counterpart for groups. One of the
main goals of this paper is to establish a precise connection between the lack of
associativity and the lack of integrability.

Given a local groupoid G over M we build a new groupoid AC(G) over M , called
the associative completion of G as follows. One introduces the set of well-formed
words on G:

W (G) :=
⊔
n≥1

G ×s t G ×s t · · · ×s t G︸ ︷︷ ︸
n times

,

namely the words (w1, . . . , wn) in G formed by arrows whose source and target
match: s(wi) = t(wi+1) for all i ∈ {1, . . . , n − 1}. Given a well-formed word
w = (w1, . . . , wk, wk+1, . . . , wn) such that wk and wk+1 can be composed, we have
a new well-formed word w′ = (w1, . . . , wkwk+1, . . . , wn). We say that w′ is obtained
from w by contraction or that w is obtained from w′ by expansion. Contractions
and expansions generate an equivalence relation ∼ on W (G), and one defines the
associative completion of G to be the space of equivalence classes:

AC(G) := W (G)/∼.

Notice that there is an obvious map G → AC(G).
Under a very mild assumption on G, concatenation of well-formed words gives

AC(G) a groupoid structure over M . Moreover, if G is a local topological groupoid
and we equip AC(G) with the quotient topology inherited from W (G), we have the
following.

Proposition 1.3. If G is a local topological groupoid, then AC(G) is a topological
groupoid and G → AC(G) is a morphism of local topological groupoids. Given any
morphism F : G → H, where H is a topological groupoid, there exists a unique
morphism of topological groupoids F̃ : AC(G) → H such that the following diagram
commutes:

G
F ��

��

H

AC(G)
F̃

���
�

�
�

�

If F : G → H is a morphism of local topological groupoids, there is an obvious
map AC(F ) : AC(G) → AC(H), which is a morphism of topological groupoids, and
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makes the following diagram commutative:

G

��

F �� H

��
AC(G)

AC(F )
�� AC(H)

Hence, AC is a functor from the category of local topological groupoids to the
category of topological groupoids.

In general, if G is a local Lie groupoid, AC(G) is not a Lie groupoid. We call an
element in the isotropy

g ∈ Gx = s−1(x) ∩ t−1(x)

an associator at x if there is a well-formed word (w1, . . . , wn) which admits two
sequences of contractions: one ending at g and the other one ending at the unit 1x.
The set of all associators, denoted Assoc(G), is contained in the kernel of the map
G → AC(G). Under mild assumptions on G, we show that it coincides with this
kernel, and, moreover, that it controls the smoothness of AC(G).

Theorem 1.4. If G is an enough connected local Lie groupoid, then AC(G) is
smooth if and only if Assoc(G) is uniformly discrete in G. In this case, G → AC(G)
is a local diffeomorphism.

Notice the obvious similarities between the functor AC(−) and the integration
functor G(−), which associates to a Lie algebroid the space of A-paths modulo
A-homotopies (see [4, 5]):

• If A is a Lie algebroid, then G(A) is a topological groupoid. It is a Lie
groupoid iff the monodromy N (A) is uniformly discrete in A.

• If G is a local Lie groupoid, then AC(G) is a topological groupoid. It is a
Lie groupoid iff the associators Assoc(G) are uniformly discrete in G.

Moreover, if AC(G) is smooth, then the Lie algebroid of G is integrable since G and
AC(G) have the same Lie algebroid. One of our main results establishes a precise
relationship between the monodromy groups and the associators as follows.

Theorem 1.5. Let G be a shrunk local Lie groupoid G with Lie algebroid A → M .
For each x ∈ M , there is an embedding of local groups Gx ↪→ G(gx) such that:

Assocx(G) = Gx ∩ Nx(A).

The assumption in this theorem that G is shrunk is of a topological nature. Any
local Lie groupoid has a neighborhood of the units which is shrunk. Such kind of
assumption on G is required in order to be able to establish a relationship between
the monodromy groups and the associators, since we will see that even local Lie
groups may have non-discrete associators.

The associative completion AC(G) has a simplicial interpretation: a local Lie
groupoid G has a nerve which is a simplical set G = {G(m)} and AC(G) 	
Π1(G), the path groupoid of G. The theory is more complicated than for (global)
groupoids, since now the nerve fails to be a Kan complex. Still, just like the mon-
odromy groups Nx(A), that can be defined as the image of a monodromy homo-
morphism ∂ : π2(M,x) → G(gx), which appears as the connecting homomorphism
of a long exact sequence (see [4]):

· · · �� π2(M,x)
∂ �� G(gx) �� Gx(A) �� π1(M,x) �� · · ·
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we will see that there is a simplicial version of the monodromy map involving the
simplicial homotopy groups:

· · · �� π2(U, x)
∂s �� AC(Gx) �� ACx(G) �� π1(U, x) �� · · · .

Here, U is the local groupoid over M obtained as the image of the source/target
map (t, s) : G → M ×M , and U denotes its nerve. We will see that then it follows
that for a shrunk local Lie groupoid there is an isomorphism AC(G) 	 G(A) (as
topological groupoids).

This paper is organized as follows. In Section 2 we discuss some basic properties
of local Lie groupoids, including our definition, various connectedness assumptions,
and constructions. In Section 3 we give a few examples illustrating the failure
of associativity. In Section 4 we show that Mal’cev’s theorem holds for local Lie
groupoids. In Section 5 we extend a construction of local Lie groups due to Olver
[12] to the case of local Lie groupoids. This leads to the classification of local Lie
groupoids with integrable algebroid. In Section 6, we deduce our results concerning
the relationship between associativity of a local Lie groupoid and the integrabil-
ity of its Lie algebroid, via associators and monodromy groups. Finally, Section 7
discusses the simplicial approach to AC(G) and the simplicial version of the mon-
odromy map. The appendix contains Python code for a video that illustrates a
construction related to a triangulation used in the proof of the main theorem of
Section 6.

Notations and conventions. All manifolds and maps under consideration will be
smooth. Throughout the text, local groupoids will be denoted by Latin letters
(e.g., G), and global groupoids will be denoted by calligraphic versions (e.g., G). If
A is a Lie algebroid, then G(A) will denote the associated source-simply connected
groupoid (it is global, so it has a calligraphic symbol). Arrows of a groupoid
compose from right to left, so that gh can only be defined if s(g) = t(h).

2. Local Lie groupoids

In this section, we discuss some basic concepts and properties of local Lie group-
oids that will be relevant for this paper.

2.1. Definition of a local Lie groupoid. There are several different definitions
of local Lie groupoids. We adopt the following “weak” version as the definition
(there are even weaker versions; see, e.g., [2]). Later we will consider stronger
versions.

Definition 2.1. A local Lie groupoid G over a manifoldM is a manifoldG, together
with maps:

• s, t : G → M submersions (the source and target maps);
• u : M → G a smooth map (the unit map);
• m : U → G a submersion (the multiplication), where U ⊂ G ×s t G is an
open neighborhood of:

(G ×s t M) ∪ (M ×s t G) =
⋃
g∈G

{(g, u(s(g))), (u(t(g)), g)};

• i : V → V a smooth map (the inversion), where V ⊂ G is an open neigh-
borhood of u(M) such that V ×s t V ⊂ U ;
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such that the following axioms hold:

• s(m(g, h)) = s(h) and t(m(g, h)) = t(g) for all (g, h) ∈ U ;
• m(m(g, h), k) = m(g,m(h, k)) in a subset W ⊂ G ×s tG ×s tG whose interior
contains

(M ×s t M ×s t G) ∪ (M ×s t G ×s t M) ∪ (G ×s t M ×s t M);

• m(g, u(s(g))) = m(u(t(g)), g) = g for all g ∈ G;
• s(i(g)) = t(g) and t(i(g)) = s(g) for all g ∈ V ;
• m(i(g), g) = u(s(g)) and m(g, i(g)) = u(t(g)) for all g ∈ V .

Remark 2.2. A few remarks concerning this definition are in order:

(1) By a local Lie group we will always mean a local Lie groupoid G ⇒ M with
objects the singleton: M = {∗}.

(2) It follows from this definition that u : M → G is an embedding and we will
consider M as a submanifold of G using this embedding. In particular, if
x ∈ M , we will write the unit at x as just x, leaving out the u.

(3) It also follows from the definition that i : V → V is an involutive diffeo-
morphism. An element of V will be called invertible. Note that we do not
require all elements in G to be invertible, unlike some of the definitions in
the literature, and this is relevant for us (see Remarks 2.24, 4.12, and 5.9).

(4) For the multiplication we usually write gh instead of m(g, h). We require
it to be defined near (G ×s t M) ∪ (M ×s t G), not just near M ×s t M . In
other words, t(g)g and gs(g) are defined (and equal g) for all g ∈ G.

(5) For a Lie groupoid the fact that multiplication is a submersion follows from
the other axioms, but this is not the case for a local Lie groupoid.

(6) Just as in the case of Lie groupoids, we allow the manifold G to be non-
Hausdorff. However, all other manifolds, includingM , the source and target
fibers, are assumed to be Hausdorff.

(7) Occasionally, we will deal with local topological groupoids : the definition is
analogous but one works in the topological category instead. Similarly, one
can define local groupoids completely free from topology (where the sets U ,
V , and W define the “local” nature of G).

There are two different ways of obtaining a smaller local Lie groupoid G′ from
a given local Lie groupoid G. Both of them are relevant for us:

• We say that G′ is obtained by restricting G, if both local groupoids have
the same manifolds of arrows and objects, the same source and target maps,
and the multiplication and inversion in G′ are obtained by restricting the
ones of G to smaller domains.

• We say that G′ is obtained by shrinking G if G′ is an open neighborhood
of M in G, the source and target maps are the restrictions of s and t to
G′, multiplication is the restriction of m to U ∩ (G′ ×s t G

′)∩m−1(G′), and
inversion is the restriction of i to V ′ = (V ∩G′) ∩ i(V ∩G′).

Example 2.3 (Restriction of a Lie groupoid). Let G ⇒ M be a Lie groupoid. Any
open U ⊂ G(2) containing (G ×s tM)∪(M ×s tG) determines a restriction G of G. On
the other hand, any open neighborhood G′ ⊂ G of the unit section M determines
a local Lie groupoid G′ shrinking G.
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Example 2.4 (One-point compactification). The one-point compactification,
R∞ = R ∪ {∞}, becomes a local Lie group if one extends addition by setting:

g +∞ = ∞ = ∞+ g ∀g ∈ R.

Although we could define ∞ + ∞ = ∞, multiplication would not be smooth at
(∞,∞). So the domain of multiplication is U = R∞ × R∞ \ {(∞,∞)} and the
domain of inversion is V = R.

Example 2.5 (A-path local integration). Let A be a Lie algebroid and let P (A)
denote the space of A-paths. A choice of A-connection ∇ on A determines an
exponential map exp∇ : A → P (A) (see, e.g., [5]). If ∼ denotes the equivalence
relation on P (A) determined by A-homotopy, it is shown in [4] that, for a sufficiently
small neighborhood V ⊂ A of the zero section, the quotient

G := exp∇(V )/ ∼
is a local Lie groupoid with (partial) multiplication defined by concatenation of
A-paths. We will call G an A-path local integration of A. There are other methods
to associate a local groupoid to a Lie algebroid (see, e.g., [2]).

Morphisms between local Lie groupoids are defined in a more or less obvious
way.

Definition 2.6. Suppose that G1 and G2 are local Lie groupoids over M1 and M2,
respectively. A morphism of local Lie groupoids is a pair (F, f), where F : G1 → G2

and f : M1 → M2 are smooth maps such that

• F ◦ u1 = u2 ◦ f ,
• f ◦ s1 = s2 ◦ F and f ◦ t1 = t2 ◦ F ,
• (F × F )(U1) ⊂ U2 and F ◦m1 = m2 ◦ (F × F ) on U1,
• F (V1) ⊂ V2 and F ◦ i1 = i2 ◦ F on V1.

Note that the map f is really just the restriction of F to the unit manifold, so
F completely determines the morphism, and it is therefore natural to think of the
morphism as just F . If G′ is obtained from G by either restricting or shrinking,
the inclusion G′ → G is a morphism of local Lie groupoids.

2.2. Associativity. One can strengthen the associativity axiom in the definition
of a local Lie groupoid in various ways. The following definition is taken from [12],
with group replaced by groupoid.

Definition 2.7. A local Lie groupoid is called associative to order n (or n-associa-
tive) if for every 3 ≤ m ≤ n and every ordered m-tuple of groupoid elements

(x1, . . . , xm) ∈ G ×s t G ×s t · · · ×s t G,

all corresponding defined m-fold products are equal (in other words, if an m-fold
product can be evaluated by putting in brackets in distinct ways, all result in the
same answer).

For example, a local groupoid G is 3-associative if

(gh)k = g(hk) whenever (gh)k and g(hk) are both defined.

This is stronger than the associativity axiom of a local groupoid, where this only
needs to hold in some neighborhood of

(M ×s t M ×s t G) ∪ (M ×s t G ×s t M) ∪ (G ×s t M ×s t M).
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It is a (perhaps surprising) fact that for every n ≥ 3 there are n-associative local
Lie groupoids that are not (n + 1)-associative. This is already true in the case of
local Lie groups ([12, section 3]) and we will discuss more examples later.

Definition 2.8. A local Lie groupoid is called globally associative if it is associative
to every order n ≥ 3.

Clearly, the local Lie groupoids obtained by restricting or shrinking a Lie group-
oid are always globally associative. On the other hand, the A-path local integrations
of a Lie algebroid A may fail to be even 3-associative. However, we have the
following.

Proposition 2.9. Let G be a local Lie groupoid. For each n ≥ 3 there is a restric-
tion of G which is n-associative.

Proof. We will show that any local Lie groupoid G admits a restriction which is
3-associative. The case n > 3 is similar.

Let W ⊂ G ×s t G ×s t G be the region where 3-associativity holds. First we note
that we can assume that the domain of multiplication U ⊂ G ×s t G is such that:

{(g, s(g), h) | (g, h) ∈ U} ⊂ int(W).

This follows because the set,

C = {(g, h) ∈ G ×s t G | (g, s(g), h) ∈ ∂(W)},
is closed and does not intersect (M ×s t G)∪ (G ×s tM), so we can replace U by the
open set U − C. Now we split the proof into two steps.

Step 1 (G compact). Assume that there is no restriction U ′⊂U where 3-associativity
holds, i.e., for every open set U ′

(M ×s t G) ∪ (G ×s t M) ⊂ U ′ ⊂ U =⇒ (U ′ ×G U ′) \W �= ∅.
Choose a sequence of open sets

U ⊃ U1 ⊃ · · · ⊃ Un ⊃ · · · ⊃ (M ×s t G) ∪ (G ×s t M)

such that

(a) Un−1 ⊃ Un;
(b)

⋂∞
n=1 Un = (M ×s t G) ∪ (G ×s t M).

If we pick elements

(gn, hn, kn) ∈ (Un ×G Un) \W
we obtain a sequence which can be assumed to converge to an element:

(gn, hn, kn) → (g, h, k) ∈ (Δ×G Δ) ∩ (U ×G U),
where Δ = (M ×s tG)∪ (G ×s tM). This means that the limit is either of the form:

(g, h, k) = (t(h), h, s(h)) ∈ int(W)

(by the definition of a local topological groupoid) or of the form:

(g, h, k) = (g, s(g), k) ∈ int(W)

(by the remark at the beginning of the proof). This contradicts the fact that
(gn, hn, kn) �∈ W for all n. Hence, there must exist a restriction U ′ ⊂ U for which
3-associativity holds.
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Step 2 (G not compact). We can find a sequence

G1 ⊂ G2 ⊂ · · · ⊂ Gn ⊂ · · ·G

where each Gi is an open, precompact subgroupoid of G (the inclusion is a local
groupoid morphism), and such that:

∞⋃
n=1

Gn = G.

The proof of step 1 shows that for each Gn there is a restriction Un ⊂ Gn ×s t Gn

where 3-associativity holds. But then:

U =
∞⋃

n=1

Un

gives a restriction of G where 3-associativity holds. �

As we shall see later, a local Lie groupoid may fail to have a restriction which is
globally associative or even a shrinking which is globally associative. On the other
hand, by Lie’s Third Theorem, a local Lie group can always be shrunk to a globally
associative one.

From now on, to simplify the discussion, we will assume that local groupoids are
always 3-associative, unless otherwise indicated. The previous result guarantees
that this can always be achieved by restricting.

2.3. The nerve of a local Lie groupoid. Given a local Lie groupoid, we intro-
duce a simplicial set

G(0) G(1)���� G(2) · · ·�� ����

as follows. We let G(0) = M , G(1) = G and for m > 1 we denote by:

G(m) ⊂ G ×s t G ×s t · · · ×s t G,

the set formed by m-tuples (g1, . . . , gm) for which all m-fold products are defined
and are equal. If m = 1, we have d0(g) = s(g) and d1(g) = t(g), while for m > 1
we have the usual formulas for the face maps:

d0(g1, . . . , gm) = (g2, . . . , gm),

di(g1, . . . , gm) = (g1, . . . , gigi+1, . . . , gm), (i = 1, . . . ,m− 1),

dm(g1, . . . , gm) = (g1, . . . , gm−1).

On the other hand, the degeneracy maps are given by:

si(g1, . . . , gm) = (g1, . . . , gi, s(gi), gi+1, . . . , gm), (i = 0, . . . ,m).

Notice that G(m) is, in general, strictly smaller than the subset of m-tuples in
G ×s t G ×s t · · · ×s t G for which m-associativity holds: an m-tuple (g1, . . . , gm) can
satisfy m-associativity but some m-fold products may fail to be defined.

Proposition 2.10. Given a local Lie groupoid G, its nerve G• = {G(m)} is a
simplicial manifold. It is a Kan complex if and only if G is a Lie groupoid.

Proof. We first prove that G(m) is a manifold, by showing that it is open in G ×s t

... ×s t G. We do this by induction: clearly G(0) = M is open in M , G(1) = G is
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open in G, and G(2) = U is open in G ×s t G. Now if G(n) is open in G ×s t ... ×s t G
(n copies), then we see that

G(n+1) =
⋂
i

d−1
i (G(n))

is a finite intersection of open subsets of U ×G ...×G U (n− 1 copies), and therefore
an open subset of G ×s t ... ×s t G. Moreover, because multiplication is assumed
to be a submersion, all the face maps are submersions. The nerve is therefore a
simplicial manifold.

The (differential versions [8] of the) Kan conditions hold for G(2) if and only if
G(2) = G ×s t G and inversion has domain G. This already shows that {G(m)} is
Kan if and only if G is a Lie groupoid (for more details see [8, 17]). �

2.4. Connectedness and bi-regularity for local Lie groupoids. Most of the
material in this section is an adaptation of material in [12] to the groupoid case.
We write T sG for the kernel of the map ds : TG → TM , and T tG for the kernel of
dt : TG → TM .

Definition 2.11. Let G be a local Lie groupoid and fix g ∈ G. We say that G is
right-regular at g if right multiplication by g induces an isomorphism dRg : T s

hG →
T s
hgG for every h such that (h, g) ∈ U . We say that G is left-regular at g if left

multiplication by g induces an isomorphism dLg : T t
hG → T t

ghG for every h such

that (g, h) ∈ U . We say that G is bi-regular at g if it is both left-regular and
right-regular at g. The local groupoid G is called bi-regular if it is bi-regular at all
g ∈ G.

For example, the groupoid R∞ is bi-regular at all points except ∞. Another
peculiarity of the element ∞ is that it is not invertible. Note, however, that an ele-
ment may fail to be invertible, while still being expressible as a product of invertible
elements. For that reason we introduce the following.

Definition 2.12. An element g of a local Lie groupoid is called inversional if it can
be written as a well-defined product of invertible elements. A local Lie groupoid is
called inversional if all of its elements are inversional.

Every Lie groupoid is obviously inversional and every local groupoid has a shrink-
ing which is inversional. The example of R∞ shows that a local groupoid may not
have a restriction which is inversional. Also, restricting a local groupoid can change
it from inversional to not inversional.

Example 2.13. Consider the Lie group R × Z as a local Lie groupoid (with the
usual addition). If we restrict its inversion map to a domain V ′, the resulting local
Lie groupoid is inversional precisely if {n ∈ Z | R×{n} ∩V ′ �= ∅} ⊂ Z generates Z.

Let us turn now to connectedness of local Lie groupoids. There are several
notions that will play a role in what follows. First, we have the following obvious
concepts that already play an important role for Lie groupoids.

Definition 2.14. We say that a local Lie groupoid is source-connected (or s-
connected) if all of its source fibers are connected. We say that a local Lie groupoid
is target-connected (or t-connected) if all of its target fibers are connected.
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In [12], the notion of connectedness of a local Lie group requires that every
neighborhood of the unit generates the local group. We have an analogous notion
for groupoids. First we have the following.

Definition 2.15. Let U be a neighborhood of M in G. We say that U generates
G if every element of G can be written as a well-defined product of elements in U .

The following stronger version of connectedness will play a crucial role.

Definition 2.16. A local Lie groupoid G over M is strongly connected if

(a) M is connected;
(b) the domains U and V of the multiplication and inversion maps are con-

nected;
(c) the set {(g, h) ∈ U | s(g) = t(h) = x} is connected for all x ∈ M ;
(d) G is s-connected and t-connected, and
(e) G is bi-regular.

In the case of a local Lie group, condition (a) is automatic, (c) follows from (b),
and (d) amounts to connectedness of the manifold G.

We have the following result which implies, in particular, that a strongly con-
nected local Lie groupoid is inversional.

Proposition 2.17. If G is right-regular and s-connected, then any neighborhood
of M generates G. If G is left-regular and t-connected, the same conclusion holds.

Proof. We will discuss the case where G is right-regular and s-connected. The other
case is analogous. Let U be a neighborhood of M in G. Pick an element x ∈ M .
We will show that the set

S = {g ∈ s−1(x) | g can be written as a product of elements in U}
is both open and closed in s−1(x) (and therefore, by s-connectedness, it is the entire
source fiber). This suffices to prove the result.

By right-regularity of G, it is clear that S is open. Pick g ∈ ∂S. We will show
that g ∈ S. There is a neighborhood V of t(g) in s−1(t(g)), consisting of invertible
elements, contained in U , such that for all h ∈ V we have

(h, g) ∈ U and (h−1, hg) ∈ U .
By right-regularity of G, the set {hg | h ∈ V } is a neighborhood of g in s−1(x),
and so contains an element of S. Pick such an element k ∈ S. Then k = hg for
some h ∈ V , and by our choice of V , the product g = h−1k is defined. But since k
can be written as a product of elements of U , this last equation shows that g also
can. �

The following lemma shows that, in some sense, little information is lost by
restricting a strongly connected local Lie groupoid.

Lemma 2.18. Suppose that we have two strongly connected 3-associative local Lie
groupoids structures on G over M , with the same source, target, and unit maps, and
the same domains for multiplication and inversion (s, t, u,U ,V ,mj : U → G, ij :
V → G) for j ∈ {1, 2}. If the two structures have a common restriction, i.e., there
are neighborhoods U ′ ⊂ U ⊂ M ×s t G ∪ G ×s t M and V ′ ⊂ V ⊂ M such that
m1�U ′ = m2�U ′ and i1�V′ = i2�V′ , then m1 = m2 and i1 = i2.
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Proof. Let us first show that the multiplication maps agree. Pick a point x ∈ M .
Let F = {(g, h) ∈ U | s(g) = t(h) = x}. We will show that m1�F = m2�F . Since
x was arbitrary, this will prove that m1 = m2. By strong connectedness of G, the
set F is connected, and we argue that the set

F ′ = {(g, h) ∈ F | m1(g, h) = m2(g, h)}

is open and closed (so that it is all of F ). Closedness of F ′ is obvious, so we just
have to show that F ′ is open.

Pick (g, h) ∈ F ′. Let us write gh for m1(g, h) = m2(g, h). Let Nh be a compact
neighborhood of s(h) in t−1(s(h)), small enough such that for all h ∈ Nh we have

• (h, h) ∈ U ′ (so that we can write hh without ambiguity),
• (g, hh) ∈ U ,
• (gh, h) ∈ U ′.

Then

m1(g, hh) = m1(gh, h) = m2(gh, h) = m2(g, hh),

showing that (g, hh) ∈ F ′ (so that we can write ghh without ambiguity). Now let
Ng be a neighborhood of t(g) in s−1(t(g)) small enough such that for all h ∈ Nh

and g ∈ Ng we have

• (g, g) ∈ U ′ (so that we can write gg = m1(g, g) = m2(g, g)),
• (g, ghh) ∈ U ′,
• (gg, hh) ∈ U .

Then

m1(gg, hh) = m1(g, ghh) = m2(g, ghh) = m2(gg, hh),

showing that (gg, hh) ∈ F ′. But by bi-regularity of m1 and m2, elements of the
form (gg, hh) form a neighborhood of (g, h) in F . This shows that F ′ is open, and
therefore that the multiplications agree. By uniqueness of inverses, the inversion
maps also agree. �

There is one more type of connectedness that we will need.

Definition 2.19. We say that a local Lie groupoid G has products connected to
the axes if for every (g, h) ∈ U , there is either a path γ from t(h) to g in G such
that (γ(τ ), h) ∈ U for all τ , or there is a path γ from s(g) to h in G such that
(g, γ(τ )) ∈ U for all τ .

Note that every local Lie groupoid has a restriction with products connected
to the axes. The most important consequence of this assumption is stated in the
following proposition, which will be needed later. In particular, it shows that this
property together with bi-regularity implies that the groupoid is inversional.

Proposition 2.20. Let G be a bi-regular local Lie groupoid with products connected
to axes. For any (g, h) ∈ U there are either invertible elements a1, . . . , al ∈ G such
that

(1) g = al(· · · (a2a1)) and h = a−1
1 (· · · (a−1

l (gh)))),

or invertible elements b1, . . . , bm ∈ G such that

(2) h = (((b1b2) · · · )bm and g = ((((gh)b−1
m ) · · · )b−1

1 .
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Proof. Because G has products connected to the axes, there is either a curve in G
from t(h) to g in s−1(t(h)) that can be right-translated by h, or a curve from s(g)
to h in t−1(s(g)) that can be left-translated by g. We will assume the former, and
show that there are invertible elements a1, . . . , al ∈ G such that (1) holds. If one
assumes the latter, then an entirely similar argument will show that (2) holds.

Let γ be such a curve in s−1(t(h)) from t(h) to g and let γ′ be the curve obtained
from γ by right-translating by h. Let T ⊂ [0, 1] be the set of all τ ∈ [0, 1] such that
there is a sequence a1, . . . , al ∈ G such that

γ(τ ) = al(· · · (a1(s(g))))
and

h = a−1
1 (· · · (a−1

l (γ′(τ ))))

are defined and true. We claim that T = [0, 1]. We will prove this by showing that
T ⊂ [0, 1] is both open and closed (clearly it is non-empty, because 0 ∈ T ).

We first prove that T is open. Pick τ0 ∈ T . Let a1, . . . , al be a sequence such
that γ(τ0) = a1(· · · (al(s(g)))) and h = a−1

1 (· · · (a−1
l (γ′(τ0)))). Now t(γ(τ0)) has a

neighborhood in s−1(t(γ(τ0))) of invertible elements such that for every g in this
neighborhood we have

(g, γ(τ0)) ∈ U and (g−1, gγ′(τ0)) ∈ U .
Then by bi-regularity of G, for all τ close enough to τ0 we can write

γ(τ ) = gγ(τ0) = g(al(· · · (a1(s(g)))))
and

h = a−1
1 (· · · (a−1

l (g−1(γ′(τ ))))).

This shows that T is open.
We now show that T is closed. Pick τ0 ∈ ∂T . Now t(γ(τ0)) has a neighborhood

in t−1(t(γ(τ0))) of invertible elements such that for every g in this neighborhood
we have

(g−1, γ′(τ0)) ∈ U and (g−1, γ(τ0)) ∈ U and (g, g−1γ(τ0)) ∈ U .
Using bi-regularity of G and picking τ ∈ T sufficiently close to τ0 we can find a g
in this neighborhood such that γ(τ ) = g−1γ(τ0). If a1, . . . , al are such that

γ(τ ) = al(· · · (a1(s(g))))
and

h = a−1
1 (· · · (a−1

l (γ′(τ )))),

then

γ(τ0) = g(al(· · · (a1(s(g)))))
and

h = a−1
1 (· · · (a−1

l (g−1(γ′(τ0))))).

This shows that τ0 ∈ T , proving that T is closed.
We have proved that 1 ∈ T , so we can find a sequence a1, . . . , al such that

g = al(· · · (a1(s(g)))) = al(· · · (a2a1))
and

h = a−1
1 (· · · (a−1

l (γ′(1)))) = a−1
1 (· · · (a−1

l (gh))).

�
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2.5. The Lie algebroid of a local Lie groupoid. The construction of the Lie
algebroid of a local Lie groupoid follows the same pattern as for a Lie groupoid, but
there are a few subtleties related to left-invariant and right-invariant vector fields
that are relevant for us.

Given a local Lie groupoid G over M , just like for a Lie groupoid, we consider
the vector bundle

A = T s
MG

over M and define the anchor ρ : A → TM to be ρ := dt|A. Given a section
α ∈ Γ(A), we associate to it the vector field α̃ on G given by:

α̃g = dt(g)Rg(αt(g)),

where Rg denotes right-translation by g. This is well-defined since Rg is a smooth
map from a neighborhood of t(g) in the source fiber s−1(t(g)) to a neighborhood
of g in the source fiber s−1(s(g)).

One may wonder if the vector field α̃ is right-invariant. We will say that a vector
field X ∈ X(G) is right-invariant if it is tangent to the source fibers and:

dRh(Xg) = Xgh ∀(g, h) ∈ U .

Clearly, a right-invariant vector field X is of the form α̃, where α = X|M ∈ Γ(A).
The converse holds for a right-regular local Lie groupoid G, and we have the fol-
lowing.

Lemma 2.21. Let G be a right-regular local Lie groupoid. There is a one-to-one
correspondence between right-invariant vector fields in G and sections of A given
by:

XR-inv(G) → Γ(A), X �→ X|M .

The inverse associates to α ∈ Γ(A) the vector field α̃ ∈ XR-inv(G).

Proof. All we have to show is that for any section α ∈ Γ(A) the vector field α̃ is
right-invariant. For a right-regular local Lie groupoid this follows from associativity
in the usual way. �

The Lie bracket of right-invariant vector fields is clearly a right-invariant vector
field. Hence, if G is a right-regular local Lie groupoid we have an induced Lie
bracket [ , ] on the space of sections Γ(A) and the triple (A, ρ, [ , ]) is easily seen
to be a Lie algebroid. Observing that any local Lie groupoid G has a shrinking to
a right-regular local Lie groupoid G′, we define as follows.

Definition 2.22. The Lie algebroid of a local Lie groupoid G is the Lie algebroid
(A, ρ, [ , ]) of any right-regular shrinking of G.

Obviously, all this discussion is valid by replacing “right” by “left” everywhere.
For bi-regular local Lie groupoids there is one-to-one correspondence between left-
invariant and right-invariant vector fields. Moreover, every local Lie groupoid ad-
mits a bi-regular shrinking.

2.6. The Maurer-Cartan form of a local Lie groupoid. For a bi-regular local
Lie groupoid, one can define the Maurer-Cartan form much the same way as one
does in the case of a Lie groupoid (for the latter see, e.g., [6]).
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First of all, since we have chosen to define the Lie algebroid of a local Lie groupoid
using s-fibers and right-invariant vector fields, a right-invariant k-form on local Lie
groupoid G is an s-foliated k-form satisfying

(Rg)
∗ω = ω ∀g ∈ G,

whenever this makes sense. More generally, given a vector bundle E → M , a
right-invariant k-form on G with values in E is given by a bundle map

∧kT sG
ω ��

��

E

��
G

t
�� M

which, for any pair (g, h) ∈ U , satisfies the invariance condition:

ω(dRg · v1, . . . , dRg · vk) = ω(v1, . . . , vk), v1, . . . , vk ∈ T s
hG

(note that both sides are elements of Et(g)). The usual right-invariant forms corre-
spond to the case where E = M × R → M is the trivial line bundle.

A right-invariant k-form ω on G with values in a vector bundle E determines an
A-differential form with values in E:

ω|M ∈ Ωk(A;E).

For a right-regular local Lie groupoid the assignment ω �→ ω|M establishes a bijec-
tion between right-invariant forms on G with values in E and A-differential forms
with values in E.

For a bi-regular local Lie groupoid we define its (right) Maurer-Cartan form
ωMC to be the unique right-invariant 1-form on G with values in the Lie algebroid
A, whose values along the unit section is the identity map A → A. Explicitly, the
Maurer-Cartan form is given by:

ωMC : T sG → A, v �→ (dt(g)Rg)
−1(v).

The left Maurer-Cartan form is defined analogously. If G is not bi-regular, we
can consider the restriction of G to a bi-regular local Lie groupoid and define the
Maurer-Cartan form of G to be the one of the restriction.

The Maurer-Cartan form satisfies a version of the Maurer-Cartan equation for
Lie groupoids/algebroids which reads:

d∇ωMC +
1

2
[ωMC, ωMC] = 0.

We will not get into details here. We refer the reader to [6], where it is proved that
the Maurer-Cartan equation is equivalent to the statement that the bundle map:

T sG
ωMC ��

��

A

��
G

t
�� M

is a morphism of Lie algebroids. We will use the fact that for a local Lie groupoid
this statement still holds (just mimic the proof in [6]).
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Our next result is well known in the case of Lie algebras and (local) Lie groups
(see, e.g., Theorem 8.7 and Remark 8.8 in [13]). However, in the case of Lie alge-
broids and groupoids we do not know of any reference in the literature (but see the
discussion in [6] concerning the universal property of the Maurer-Cartan form of a
Lie groupoid).

Theorem 2.23. Let G and M be manifolds, let s, t : G → M be submersions with
1-connected fibers, and let u : M → G be a section of both s and t. Assume also
that A := T s

MG is an integrable Lie algebroid with anchor ρ := dt|A and one is
given a Lie algebroid morphism:

T sG
ω ��

��

A

��
G

t
�� M

which is a fiberwise isomorphism with values along M the identity A → A. Then
there is a bi-regular local Lie groupoid structure on G with structure maps s, t, u for
which the Maurer-Cartan form is ω, unique up to restriction.

Remark 2.24. The proof below shows that the local groupoid whose existence is
stated in the theorem, in general, will have domain of inversion V a strict subset of
G. This is one of the reasons that in the definition of a local Lie groupoid we do
not require the domain of inversion to be all of G. Also, the groupoid constructed
in the proof is not, in general, 3-associative (this will be clear in Example 3.2).
However, as we observed before, it has a restriction which is 3-associative.

Proof. The Lie algebroid T sG is integrable and has source 1-connected integration
Π1(s), the monodromy groupoid of the s-foliation of G. Since we assume the s-
fibers to be 1-connected, this groupoid coincides with the submersion groupoid of
s : G → M :

Π1(s) = G ×s s G ⇒ G.

We denote by s̄ = pr2 and t̄ = pr1 the source and target maps of G ×s s G.
The Lie algebroid morphism ω : T sG → A integrates to a Lie groupoid morphism

G ×s s G
Φ ��

�� ��

G(A)

�� ��
G

t
�� M

where G(A) is the source 1-connected integration of A. Explicitly, the map Φ takes a
pair (g1, g2) to the A-homotopy class [a] ∈ G(A), with a the A-path a(t) = ω(γ′(t)),
for any choice of path γ : I → G in the s-fiber connecting g1 to g2.

We claim that Φ is a submersion. Indeed, its restriction to the units is t, which
is a submersion onto the unit section of G(A), and its restriction to the tangent to
the source fibers along G is ω, which is an isomorphism onto A, the tangent to the
source fibers of G(A). This shows that Φ is a submersion in a neighborhood of the
unit section, but since it is a groupoid morphism it is a submersion everywhere.

Consider now the embedding:

G ↪→ G ×s s G, g �→ (g, s(g)).
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Composing this embedding with Φ, we obtain an étale map denoted by the same
letter, Φ : G → G(A), which commutes with the unit maps M → G and M → G(A),
and makes the following diagram commute:

G
Φ ��

s
��

t
��

G(A)

s
��

t
��

M
id

�� M .

Next we define a (local) multiplication on G which makes Φ a morphism of
local Lie groupoids. Let M ⊂ V ⊂ V ′ ⊂ G be open sets such that the restriction
Φ|V′ : V ′ → G is an embedding, Φ(V) is invariant under inversion, and the product
of elements in Φ(V) belongs to Φ(V ′). Also we choose a Riemannian metric on G
and we can shrink V further so that for each x ∈ M we have:

(a) V ∩ s−1(x) is a convex neighborhood of x for the induced metric on s−1(x);
(b) V ∩ t−1(x) is a convex neighborhood of x for the induced metric on t−1(x).

If g ∈ V we define its inverse to be g−1 = Φ−1(Φ(g)−1). We define multiplication
in an open subset of (G ×s t V) ∪ (V ×s t G) containing (G ×s t M) ∪ (M ×s t G) as
follows: if (g, h) ∈ G ×s tU let γh(t) be the geodesic in the t-fiber connecting t(h) to
h. The product gh is defined provided the curve Φ(g)Φ(γh(t)) belongs to the image
of Φ and its Φ-lift exists, in which case gh is the endpoint of this lift. One similarly
defines the product on some open subset of V ×s t G. If (g, h) ∈ V ×s t V the two
definitions are compatible, since then Φ(g)Φ(h) ∈ Φ(V ′) and Φ|V′ is an embedding.

This gives a structure of local Lie groupoid to G making Φ : G → G(A) a local
Lie groupoid morphism. Since Φ is étale, this implies that G is bi-regular with Lie
algebroid A and its Maurer-Cartan form is the given 1-form. �

3. Non-globalizable local Lie groupoids

Before we discuss Mal’cev’s theorem, we look at some examples of local Lie
groupoids where associativity fails to some degree. Such groupoids are not global-
izable in the following sense (the term “enlargeable” is also used in the literature).

Definition 3.1. A local Lie groupoid is called globalizable if it is a restriction of
an open neighborhood of the unit section in a Lie groupoid.

Even if we consider only local Lie groups, there are examples where 3-associativity
fails, and which therefore are not globalizable.

Example 3.2 (Failure of 3-associativity [12]). Let X be the plane R2, with a small
ball centered at (1, 0) taken out. Let G be the universal cover of X. Let 0̃ ∈ G (the
unit in G) be a preimage of 0 ∈ X under the projection. Let B ⊂ X be the open

ball of radius 3
4 centered at 0, and let B̃ be the ball above B containing 0̃.

The multiplication will be defined on a subset ofG×B̃∪B̃×G. Let (g̃, h̃) ∈ G×B̃,

and write g and h for the projections to X. The product g̃h̃ will be defined if the
line segment from g to g + h lies entirely in X, in which case the product g̃h̃ is the
endpoint of the lift of this line segment, starting at g̃. Similarly, if (g̃, h̃) ∈ B̃ × G,
the product is the endpoint of the lift of the line segment from h to g + h, starting
at h̃ (if that segment lies entirely in X). Inverses are defined in the obvious way.

This local Lie group is locally associative but not 3-associative. By picking
a, b, c ∈ B̃ appropriately, one can have (ab)c �= a(bc) as illustrated in Figure 1.
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0̃

Figure 1. A local Lie group G that is not 3-associative. G is the
universal cover (shown on top) of the plane with a disk removed
(shown at the bottom). Starting at the unit 0̃, we can evaluate a
triple product in two different ways, ending up over the same point
of the plane, but on different sheets.

Notice that we can view this example as a special case of the construction fur-
nished in the proof of Theorem 2.23, where the Lie algebroid A is just the abelian
2-dimensional Lie algebra. Hence, the local groupoid obtained there is, in gen-
eral, not 3-associative. The resulting group(oid)s always have a restriction that is
3-associative, however.

We now turn to examples of local groupoids which are not globalizable. Besides
the failure of associativity, there is another obvious obstruction to globalizability
of a local Lie groupoid G: the underlying Lie algebroid must be integrable. One of
our main aims will be to relate these two obstructions. Still, the examples in this
section have underlying Lie algebroids which are integrable. In fact, they will all
be local Lie groupoids integrating the so-called pre-quantum Lie algebroid Aω of a
closed 2-form ω ∈ Ω2(M) (see [5, Example 2.26]).

As a bundle, Aω = TM ⊕R. The anchor is the projection to the first summand
and the Lie bracket is given by

[(X, f), (Y, g)] = ([X,Y ],LX(g)− LY (f) + ω(X,Y )).

The integrability of Aω is controlled by the group of spherical periods of ω:

N =

{∫
η

ω | [η] ∈ π2(M)

}
⊂ R.

It follows from the general integrability criteria that this algebroid is integrable if
and only if N ⊂ R is a discrete subgroup (see [5, example 3.1]). In the examples
below we consider the case where M = S2, equipped with its usual area form ω of
total area 4π, so Aω is integrable.

Example 3.3 (The source 1-connected integration). Let us describe the global
source 1-connected Lie groupoid integrating Aω. We will write A for the map that
calculates the area enclosed by a loop:

A : Ω(S2) → R/4πZ, γ �→
∫
Γ

ω,
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where γ : [0, 1] → S2 is a loop and Γ : [0, 1]×[0, 1] → S2 is any homotopy contracting
γ to the trivial loop at γ(0) = γ(1). Note that this area is well-defined up to 4π,
because any two such homotopies will have areas differing by an element

∫
η
ω ∈ 4πZ

where [η] ∈ π2(S
2).

Now, we set

P = {piecewise smooth paths in S2} × R/4πZ,

and we define an equivalence relation ∼ in P by letting

(γ1, a1) ∼ (γ2, a2) if

⎧⎨⎩
γ1(0) = γ2(0),
γ1(1) = γ2(1), and
a2 = a1 +A(γ−1

2 · γ1).

Here · represents concatenation of paths and γ−1
2 denotes the reverse of γ2. Then

G = P/∼ is a smooth manifold of dimension 5.
We think of an equivalence class [(γ, a)] as an arrow from γ(0) to γ(1), so we

obtain a groupoid

G ⇒ S2

with multiplication

[γ1, a1][γ2, a2] = [γ1 · γ2, a1 + a2].

One checks that the s-fibers of G are diffeomorphic to S3 so that G 	 G(Aω), the
source 1-connected Lie groupoid with Lie algebroid Aω.

Our next example is just an open subset of the previous Lie groupoid. But it
admits an alternative, more geometric, description.

Example 3.4 (A globalizable local Lie groupoid). Let us denote by G′ ⊂ G the
open subset consisting of arrows [(γ, a)] whose source and target are not antipodal:
γ(0) �= −γ(1). This is, of course, a (globalizable) local Lie groupoid.

Each element of G′ has a unique representative whose path is a geodesic for the
usual round metric. Hence, if we represent each G′ by its geodesic representative,
we can write down this local Lie groupoid explicitly as

G′ =
{
(y, x, a) ∈ S2 × S2 × R/4πZ | x+ y �= 0

}
.

The multiplication of (z, y, a), (y, x, a′) ∈ G′ is then defined whenever x + z �= 0,
and is given by

(z, y, a) · (y, x, a′) = (z, x, a+ a′ +A(Δxyz)),

where A(Δxyz) ∈ R/4π is the signed area of the spherical triangle Δxyz.
In this notation the inclusion of G′ in G, establishing its globalizability, becomes:

G′ ↪→ G : (y, x, a) �→ [geodesic from x to y, a].

By introducing a slight variation, we can make the previous local Lie groupoid
non-globalizable.

Example 3.5 (A non-globalizable local Lie groupoid). We now define a local Lie
groupoid G′ over S2, similar to G′ in the previous example, but we will no longer
quotient out the areas by 4π:

G′′ =
{
(x, y, a) ∈ S2 × S2 × R | x+ y �= 0

}
.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

5076 RUI L FERNANDES AND DAAN MICHIELS

1

2

3
4

5

6

7

Figure 2. Demonstrating the lack of 6-associativity. The tetra-
hedron is inscribed in a sphere, and the even-numbered points are
midpoints of the edges they lie on.

We will define the multiplication of (z, y, a) and (y, x, a′) only if x + z �= 0 and
−π < A(Δxyz) < π. In that case, it is defined as above, by the formula

(z, y, a) · (y, x, a′) = (z, x, a+ a′ +A(Δxyz)).

This local Lie groupoid is still 3-associative: if (z, y, a1), (y, x, a2), (x,w, a3) ∈ G′′,
and we assume the products are defined, then

((z, y, a1) · (y, x, a2)) · (x,w, a3) = (z, w, a1 + a2 + a3 +A(Δxyz) +A(Δwxz)),

(z, y, a1) · ((y, x, a2) · (x,w, a3)) = (z, w, a1 + a2 + a3 +A(Δwxy) +A(Δwyz)),

where
A(Δxyz) +A(Δwxz) = A(Δwxy) +A(Δwyz) (mod 4π),

because both sides equal the area of the quadrangle wxyz (which is defined up to
4π). Since we have restricted the areas to be in (−π, π), this implies

A(Δxyz) +A(Δwxz) = A(Δwxy) +A(Δwyz),

proving 3-associativity.
This local Lie groupoid is not globally associative. Consider Figure 2, which

shows a regular tetrahedron inscribed in S2. Let xj ∈ S2 be the normalization of
the jth marked point in the picture (i.e., the radial projection of the point to the
circumscribed sphere). Let

A = (x2, x1, 0), D = (x5, x4, 0),

B = (x3, x2, 0), E = (x6, x5, 0),

C = (x4, x3, 0), F = (x7, x6, 0).

Then

(x7, x1, 2π) = F (E((D(CB))A)) �= ((F ((ED)C))B)A = (x7, x1,−2π).

Of course, global associativity is necessary for globalizability. Our groupoid G′′

is therefore not globalizable. Note, however, that there is a neighborhood of the
unit section in G′′ that is globalizable: if G′′′ = {(y, x, a) ∈ G′′ | −2π < a < 2π},
then G′′′ is globalizable and in fact isomorphic to an open part of G′ and hence of
G. It also follows that the Lie algebroid of G′′ is still Aω.
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4. Mal’cev’s theorem for local Lie groupoids

In this section, we prove Mal’cev’s theorem for local Lie groupoids. It states that
global associativity is the only obstruction for globalizability under the appropriate
connectedness assumptions.

Theorem 4.1 (Mal’cev’s theorem for local Lie groupoids). A strongly connected
local Lie groupoid is globalizable if and only if it is globally associative.

Our proof will be analogous to the proof for local groups (cf. [12, 16]). A little
bit of extra effort is required in proving smoothness of the constructed groupoid.
The main technical ingredient in the proof is the associative completion AC(G) of
a local Lie groupoid G, which we will now study in detail.

4.1. Associative completions. In this section, we review a construction that
associates to a local groupoid a global groupoid. In the case of local groups this
construction is well known (see, e.g., [16]). For groupoids, it appears in [1, appendix
A], where it is called the formal completion of the local groupoid (and it is used
only for globally associative structures).

We will call this construction the associative completion of the local groupoid,
to highlight that it has the effect of

• making the structure globally associative,
• globalizing the structure to a (global) groupoid, so that the multiplication
is complete.

Further justification is provided by the universal property satisfied by the associa-
tive completion (see Proposition 4.4).

Suppose that G is a local groupoid. A word (w1, . . . , wn) ∈ Gn is called well-
formed if s(wi) = t(wi+1) for all i ∈ {1, . . . , n − 1}. Let us denote the set of all
well-formed words on G by:

W (G) =
⊔
n≥1

G ×s t G ×s t · · · ×s t G︸ ︷︷ ︸
n copies

.

Note that if G happens to be an open part of a global Lie groupoid, then a groupoid
globalizing it may be obtained as a quotient of W (G) by an appropriate equivalence
relation, as follows.

Definition 4.2. If w = (w1, . . . , wk, wk+1, . . . , wn) ∈ W (G) is a well-formed word
and (wk, wk+1) ∈ U , we will say that the word

w′ = (w1, . . . , wkwk+1, . . . , wn)

is obtained from w by contraction and that w is obtained from w′ by expansion. If
two words are related by an expansion/contraction, we will say that they are ele-
mentarily equivalent. We denote by ∼ the equivalence relation on W (G) generated
by elementary equivalences. We will also write w′ ≤ w if there is a sequence of
expansions starting at w′ and ending at w (≤ is a partial order relation on W (G)).

Definition 4.3. If G is a local groupoid, then

AC(G) = W (G)/∼
is called the associative completion of G. The completion map G → AC(G) asso-
ciates to an element g ∈ G the equivalence class of the word w = (g).
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When G is a local topological groupoid, W (G) is a disjoint union of topological
spaces, so it is a topological space. We consider on AC(G) the quotient topology.

Proposition 4.4. If G is an inversional local topological groupoid, then AC(G) is
a topological groupoid and G → AC(G) is a morphism of local topological groupoids.
Given any morphism F : G → H, where H is a topological groupoid, there exists a
unique morphism of topological groupoids F̃ : AC(G) → H such that the following
diagram commutes:

G
F ��

��

H

AC(G)
F̃

���
�

�
�

�

Proof. The source and target maps of AC(G) are given by

s([w1, . . . , wn]) = s(wn) and t([w1, . . . , wn]) = t(w1).

The multiplication map is juxtaposition. The unit at x ∈ M is given by [x]. It
remains to show that [w1, . . . , wn] has an inverse. Because G is inversional, every

wi can be written as a product of invertible elements w1
i , . . . , w

ki
i . Then we have

[w1, . . . , wn]
−1 = [(wkn

n )−1, . . . , (w1
n)

−1, . . . , (wk1
1 )−1, . . . , (w1

1)
−1].

These operations turn AC(G) into a groupoid.
Next observe that the projection W (G) → AC(G) is an open map. This means

that if O ⊂ W (G) is an open set, then its saturation:

Õ := {w ∈ W (G) : ∃w′ ∈ O such that w ∼ w′}
is also open and this follows because multiplication is both continuous and an open
map. Now we have commutative diagrams:

W (G)

��

s̄ �� M

AC(G)

s

�����������

W (G)

��

t̄ �� M

AC(G)

t

�����������

W (G) ×s̄ t̄ W (G)

��

m̄ �� W (G)

��
AC(G) ×s t AC(G) m

�� AC(G)

and since s̄, t̄, and m̄ are both open and continuous, it follows that s, t, and m are
also open and continuous. One shows similarly that the unit map and inversion
map are continuous, so that AC(G) is a topological groupoid.

Finally, given a morphism of local topological groupoids F : G → H, where H is
a groupoid, we define F̄ : W (G) → H by:

F̄ (w1, . . . , wn) = F (w1) · · ·F (wn).

This is clearly continuous, so induces a continuous map F̃ : AC(G) → H such that:

W (G)
F̄ ��

��

H

AC(G)

F̃

�����������

It should be clear that F̃ : AC(G) → H is the unique map making the diagram in
the statement commute. �
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If F : G → H is a morphism of local topological groupoids, there is an obvious
map AC(F ) : AC(G) → AC(H), which is a morphism of topological groupoids, and
makes the following diagram commutative:

G

��

F �� H

��
AC(G)

AC(F )
�� AC(H)

Hence, AC is a functor from the category of inversional local topological groupoids
to the category of topological groupoids. By the proposition above, it is left-adjoint
to the forgetful functor from the category of topological groupoids to the category
of inversional local topological groupoids.

4.2. Associators. If G is a local Lie groupoid, then W (G) is a disjoint union of
manifolds (of different dimensions) and it is natural to wonder if AC(G) inherits
a quotient differential structure so that it becomes a Lie groupoid. The answer
to this question is intimately related to the properties of the kernel of the map
G → AC(G) (i.e., those elements that are mapped to a unit), which we now study.

The following elements are clearly in this kernel.

Definition 4.5. Suppose that G is a local Lie groupoid over M and that x ∈ M .
An element g ∈ Gx = s−1(x) ∩ t−1(x) ⊂ G is called an associator at x if there is a
word

w = (w1, . . . , wk) ∈ W (G)

that can be evaluated to both x and g, i.e., such that (x) ≤ w and (g) ≤ w. We
write Assocx(G) for the set of all associators at x. We write Assoc(G) for the set
of all associators in G.

In general the kernel of G → AC(G) will contain other elements. However, under
mild connectedness assumptions, the kernel is made only of associators.

Proposition 4.6. Suppose G is a bi-regular local Lie groupoid that has products
connected to the axes. For any two words w1, w2 ∈ W(G) one has w1 ∼ w2 if and
only if there is w3 ∈ W (G) such that w1 ≤ w3 and w2 ≤ w3.

Proof. One implication is obvious. To prove the other implication, we show that
if w1, w2 ∈ W(G) and w1 ∼ w2, then there is w3 ∈ W (G) using induction on the
number of elementary equivalences that make up the equivalence w1 ∼ w2.

If w1 ∼ w2 are elementary equivalent, then it is clear that either w1 ≤ w2, so we
take w3 = w2, or w2 ≤ w1, so we take w3 = w1, and we are done with the first step
of the induction.

Assume that we proved the result if two words are connected by N elementary
equivalences. Let w1 ∼ w2 through N + 1 elementary equivalences. Then we have
that w1 ∼ w′

1 through N elementary equivalences, and w′
1 ∼ w2 is an elementary

equivalence. By the induction hypothesis, there is a word w′
2 such that w1 ≤ w′

2

and w′
1 ≤ w′

2. Now there are two cases.

Case 1 (w2 ≤ w′
1). We can take w3 = w′

2, so we have w1 ≤ w3 and w2 ≤ w′
1 ≤ w3.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

5080 RUI L FERNANDES AND DAAN MICHIELS

Case 2 (w′
1 ≤ w2). In this case we can write:

w′
1 = (u1, . . . , um),

w2 = (u1, . . . , ui−1, g, h, ui+1, . . . , um) with ui = gh,

w′
2 = v1 · . . . · vm with (uj) ≤ vj for j = 1, . . . ,m,

where uj ∈ G, vj ∈ W (G) and the · means concatenation of words. Now, applying
Proposition 2.20, the pair (g, h) either satisfies (1) in that proposition, in which
case we set:

w3 = v1 · . . . · vi−1 · (al, . . . , a1, a−1
1 , . . . , a−1

l ) · vi · . . . · vm,

or the pair (g, h) satisfies (2) in that proposition, in which case we set:

w3 = v1 · . . . · vi · (b−1
1 , . . . , b−1

l , bl, . . . , b1) · vi+1 · . . . · vm.

For example, in the first case, we check that:

w1 ≤ w′
2 = v1 · . . . · vm

≤ v1 · . . . · vi−1 · (al, . . . , a1, a−1
1 , . . . , a−1

l ) · vi · . . . · vm = w3,

w2 = (u1, . . . , ui−1, g, h, ui+1, . . . , um)

= (u1, . . . , ui−1, al(· · · (a2a1)), a−1
1 (· · · (al(gh))), ui+1, . . . , um)

≤ v1 · . . . · vi−1 · (al, · · · , a1, a−1
1 , . . . , al, ui) · vi+1 · . . . · vm

≤ v1 · . . . · vi−1 · (al, . . . , a1, a−1
1 , . . . , a−1

l ) · vi · . . . · vm = w3.

A similar argument for the second case, shows that w3 satisfies w1 ≤ w3 and
w2 ≤ w3, so the proposition holds. �

Corollary 4.7. For a bi-regular local Lie groupoid G with products connected to
the axes, the kernel of G → AC(G) is precisely Assoc(G).

The product of two associators (if defined) is again an associator. In fact,
Assoc(G) has the structure of a local groupoid (free from topology) where source
and target coincide, so it may be thought of as a bundle of local groups.

Restricting a local Lie groupoid does not change its associators. More precisely,
we have the following.

Lemma 4.8. Let G be a bi-regular local Lie groupoid over M , with multiplication
m : U → G and inversion map i : V → G. Let G′ be a restriction of G with
multiplication map m′ : U ′ → G and inversion map i′ : V ′ → G. If both G and G′

have products connected to the axes, then for all x ∈ M we have

Assocx(G) = Assocx(G
′).

Proof. We consider two equivalence relations on W (G): we will write ∼ for the
equivalence relation on W (G) generated by contractions and expansions for the
multiplication m on G, and ∼′ for the equivalence relation on W (G) generated by
contractions and expansions for the multiplication m′ on G′. These are precisely
the equivalence relations that were considered in the construction of the associative
completions of G and G′. Proposition 4.6 tells us that

g ∈ Assocx(G) ⇐⇒ (g) ∼ (x) and g ∈ Assocx(G
′) ⇐⇒ (g) ∼′ (x).

It therefore suffices to show that ∼ and ∼′ are the same equivalence relation.
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Clearly, w ∼′ v ⇒ w ∼ v. We claim that the converse implication also
holds, so that the two equivalence relations are equal. It suffices to show that
two words that are elementarily equivalent for ∼ are also equivalent for ∼′. Let
(w1, . . . , wk, wk+1, . . . , wn) ∈ W (G) such that (wk, wk+1) ∈ U and write wkwk+1

for m(wk, wk+1). Following along with the proof of Proposition 2.20 for the local
groupoid G′, we find that we can expand, for the multiplication m′, the subword
(wk, wk+1) into

(al, . . . , a1, a
−1
1 , . . . , a−1

l , wkwk+1) or (wkwk+1, b
−1
1 , . . . , b−1

l , bl, . . . , b1),

where the inverses are inverses for G′ (and thus also for G, but that is not impor-
tant). We can then contract this word for the multiplication m′ into (wkwk+1), so
that

(w1, . . . , wk, wk+1, . . . , wn) ∼′ (w1, . . . , wkwk+1, . . . , wn).

This shows that ∼ and ∼′ coincide, proving the result. �

We note, however, that shrinking a local Lie groupoid (i.e., replacing it with a
neighborhood of M in G) can change the associators drastically (see Section 6.1).

4.3. Smoothness of AC(G). For a bi-regular local Lie groupoid G with products
connected to the axes, we have the following relations:

G →AC(G) is injective

⇐⇒ G is globally associative

=⇒ Assoc(G) is trivial.

Note that triviality of Assoc(G) does not imply that G is globally associative: a
morphism of local Lie groupoids with trivial kernel is not necessarily injective. For
example, the restriction of the morphism of Lie groups R → R/Z to the interval
(−0.6, 0.6) has trivial kernel, but it is not injective.

Definition 4.9. We say that Assoc(G) ⊂ G is uniformly discrete if there is an
open neighborhood U of M in G such that U ∩ Assoc(G) = M .

We can now describe a necessary and sufficient condition for AC(G) to be a Lie
groupoid. The proof will be given in the next section.

Theorem 4.10 (Smoothness of AC(G)). If G is a bi-regular local Lie groupoid with
products connected to the axes, then AC(G) is smooth if and only if Assoc(G) is uni-
formly discrete in G. Moreover, in that case, G → AC(G) is a local diffeomorphism
so G and AC(G) have isomorphic Lie algebroids.

By “AC(G) is smooth”, we mean, of course, that AC(G) has a smooth structure
as a quotient of W (G), where W (G) is considered as a manifold with components
of various dimensions (so the restriction of the projection to each component of
W (G) is a submersion).

The following corollary characterizes globalizable local Lie groupoids. The result
is entirely analogous to the situation for local Lie groups.

Corollary 4.11 (Mal’cev’s theorem for local Lie groupoids). A strongly connected
local Lie groupoid is globalizable if and only if it is globally associative.
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Proof. Call the local Lie groupoid G. If G is globalizable, it is clearly globally
associative. If G is globally associative, then restrict it to get a local Lie groupoid
G′ with products connected to the axes. Then G′ ↪→ AC(G′) is the inclusion of
G′ onto an open set U of a global Lie groupoid (injectivity follows from global
associativity). This means that G and U have a common restriction G′, so that
by strong connectedness and Lemma 2.18 the inclusion G ↪→ AC(G′) is also the
inclusion of a restriction of U . The Lie groupoid AC(G′) therefore globalizes G. �

Remark 4.12. In [16], a version of Mal’cev’s theorem is proved for local groups
(free from topology). The authors observe that their proof works for groupoids.
Our version differs from the result in this paper in two significant ways: (i) our
notion of local groupoid does not assume that every element is invertible (unlike
[16]) and (ii) our result concerns smooth local Lie groupoids. For these reasons,
our result also requires different assumptions and is similar in spirit to the version
proved in [12].

Every Lie algebroid can be integrated to a local Lie groupoid [4, Corollary 5.1].
Because the globalizability of a local Lie groupoid is related to its higher associa-
tivity, this points to a link between associativity and integrability. The following
corollary is a first indication.

Corollary 4.13. A Lie algebroid is integrable if and only if there is a local Lie
groupoid integrating it that has uniformly discrete associators.

Proof. Suppose a Lie algebroid is integrable. Then by definition, there is a Lie
groupoid integrating it, and this is a local Lie groupoid with uniformly discrete
(indeed, trivial) associators.

Suppose that a Lie algebroid has a local Lie groupoid integrating it, with uni-
formly discrete associators. Then by taking a small enough open neighborhood of
the units in this local Lie groupoid, we can get a bi-regular local Lie groupoid, with
products connected to the axes and trivial associators, which integrates the Lie
algebroid. The associative completion of this local Lie groupoid is a Lie groupoid
integrating our Lie algebroid. �

4.4. Proof of smoothness of AC(G). We now turn to the proof of Theorem 4.10.
Suppose first that AC(G) has a smooth structure for which W (G) → AC(G)
is a submersion. Note that the fibers of G → AC(G) are countable, so that
dim(AC(G)) ≥ dim(G). Because W (G) has a component of dimension dim(G)
and AC(G) is a quotient of W (G), we must have dim(AC(G)) ≤ dim(G), and
therefore dim(AC(G)) = dim(G) (this is of course the only reasonable dimension
to expect). The map G → AC(G) is therefore a local diffeomorphism. The inverse
image of M ⊂ AC(G) under G → AC(G), which is precisely Assoc(G), is therefore
an embedded submanifold of G. This shows that Assoc(G) is uniformly discrete in
G.

Suppose now that Assoc(G) is uniformly discrete. We will prove that AC(G) is
smooth. Given an element h ∈ AC(G), represented by a word (x1, . . . , xn), we will
construct a chart near h modeled on an open part of G. For each xi, take a small
submanifold Ni ⊂ G of the same dimension as M through xi that is transverse to
both source and target fibers (i.e., a local bisection of the local Lie groupoid near
xi). Then s and t define diffeomorphisms between the Ni and open subsets of M .
Write si = s�Ni

and ti = t�Ni
for these diffeomorphisms.
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Let k ∈ {1, . . . , n}. Let U be a small neighborhood of xk. Then the chart we
use near h is defined as

ϕ : U → AC(G) : y �→ [y1, . . . , yk−1, y, yk+1, . . . , yn],

where

yk+1 = t−1
k+1(s(y)), yk+2 = t−1

k+2(s(yk+1)), . . . , yn = t−1
n (s(yn−1)),

and

yk−1 = s−1
k−1(t(y)), yk−2 = s−1

k−2(t(yk−1)), . . . , y1 = s−1
1 (t(y2)).

If we pick U sufficiently small, this is well-defined. Note that it maps xk to h.
We claim that ϕ is injective, if we pick U small enough (this is where we need the
uniform discreteness). Indeed, suppose that ϕ(y) = ϕ(z). Write the representatives
of ϕ(y) and ϕ(z) as given above as

(y1, . . . , yk−1, y, yk+1, . . . , yn) and (z1, . . . , zk−1, z, zk+1, . . . , zn).

Because ϕ(y) = ϕ(z), we must have s(ϕ(y)) = s(ϕ(z)) and therefore s(yn) = s(zn).
But then yn and zn are both on Nn, and have the same source. Therefore, yn = zn.
This implies that s(yn−1) = s(zn−1). But then yn−1 and zn−1 are both on Nn−1,
and have the same source. Therefore, yn−1 = zn−1. Continuing this way, we find
that yi = zi for i > k. The same argument applied starting from the left and using
the target map shows that yi = zi for i < k. We conclude that

[y1, . . . , yk−1, y, yk+1, . . . , yn] = ϕ(y) = ϕ(z) = [y1, . . . , yk−1, z, yk+1, . . . , yn].

Multiplying both sides by [y1, . . . , yk−1]
−1 (from the left) and by [yk+1, . . . , yn]

−1

(from the right) shows that [y] = [z]. If B is a neighborhood of M in G such that
B ∩ Assoc(G) = M , then for U small enough, we must have z = yδ for δ in B.
But then [δ] must be trivial in AC(G) so that, by Corollary 4.7, it is an associator.
Therefore δ ∈ M and we conclude that y = z.

Let us check smoothness of the transition maps. Given a point in AC(G), a chart
is determined by

• a choice of representative,
• a choice of k,
• a choice of local bisections.

We will show smoothness for each of the following types of transition maps:

(T1) for a fixed representative and index k, the transition between charts coming
from different choices of local bisections,

(T2) for a fixed representative, the transition between charts for two different
choices of k,

(T3) the transition between charts constructed using different representatives of
the same element of AC(G).

Together, these show that all the transitions are smooth.
Let us start by checking the first type of transition map (T1). Suppose (x1, . . . , xn)

represents h ∈ AC(G). Pick k ∈ {1, . . . , n}. Making one choice of local bisections
Ni leads to a chart

ϕ : y �→ [y1, . . . , yk−1, y, yk+1, . . . , yn].

Note that the yi depend smoothly on y. Now make a different choice of local
bisections N ′

i , leading to a second chart. We will calculate the transition map
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between the two charts. Suppose y is near xk and let zn be the point on N ′
n with

source s(yn) = s(h). Then
zn = εnyn

for some invertible εn near t(yn) (on the condition that y is sufficiently close to xk).
Note that εn = εn(y) depends smoothly on y and εn(xk) = t(yn). The product
yn−1ε

−1
n is defined for y close enough to xk. Let zn−1 be the point on N ′

n−1 with
source t(zn). Then

zn−1 = εn−1(yn−1ε
−1
n )

for some invertible εn−1 near t(yn−1) (on the condition that y is sufficiently close
to xk). Note that εn−1 depends smoothly on y, and εn−1 = t(yn−1) if y = xk. Con-
tinuing this way, we construct a sequence zn, . . . , zk+1 on the N ′

i and εn, . . . , εk+1

such that
zi = εi(yiε

−1
i+1),

where we will set εn+1 = s(yn) for ease of notation. All the εi depend smoothly on
y (we may have to restrict y to be in a smaller and smaller neighborhood of xk).
Similarly, we start from the left and construct a sequence z1, . . . , zk−1 on the N ′

i

and ε1, . . . , εk−1 such that

zi = (ε−1
i−1yi)εi

with all the εi depending smoothly on y. Note now that

ϕ(y) = [y1, . . . , yk−1, y, yk+1, . . . , yn]

= [y1, ε1, . . . , ε
−1
k−2, yk−1, εk−1, y, εk+1, yk+1, ε

−1
k+2, . . . , εn, yn]

= [z1, . . . , zk−1, (εk−1yεk+1), zk+1, . . . , zn],

where the product in the middle will be defined if y is sufficiently close to xk. This
shows that the transition map between our two charts is given by

y �→ εk−1yεk+1,

which is smooth in y (because the εi are). This proves smoothness for type (T1).
Let us now check smoothness for type (T2). We consider transition between

charts for the same representative, but different choices of k. Clearly, it is enough
to consider the case where the two choices for k differ by 1, so we look at two charts
associated to the same representative (x1, . . . , xn) of h for index k and index k+1.
Again, write

y �→ [y1, . . . , y, yk+1, . . . , yn]

for the chart associated to index k. Suppose that y is near xk. Let yk be the point
on Nk with target t(y). This point depends smoothly on y. For y sufficiently close
to xk, we may write yk = yε where ε is near s(xk) and depends smoothly on y.
Then

[y1, . . . , y, yk+1, . . . , yn] = [y1, . . . , y, ε, ε
−1, yk+1, . . . , yn]

= [y1, . . . , yk, (ε
−1yk+1), . . . , yn]

for y sufficiently close to xk. This shows that the transition map is y �→ ε−1yk+1,
which is smooth.

We now check the smoothness of the third type of transition (T3). So we now
have different representatives of the same point h. This type is the easiest to check.
Indeed, we only need to check smoothness for the transition for a single contraction
or expansion, but that is clear from the smoothness of multiplication in G.
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Note, finally, that AC(G) is second-countable because W (G) is. It may fail to
be Hausdorff (as does G), but its source fibers and target fibers, as well as unit
manifold, are Hausdorff. Hence, we have proved that AC(G) is smooth and this
completes the proof of Theorem 4.10. �

5. Classification of local Lie groupoids

In this section, we classify bi-regular local Lie groupoids with integrable alge-
broids. By “classifying” we mean that we give a construction that, starting from a
global Lie groupoid, can be used to obtain all bi-regular local Lie groupoids with
the same Lie algebroid. This section is a generalization to groupoids of results by
Olver [12, Theorems 19 and 21].

5.1. Coverings of local Lie groupoids. Just like in the theory of Lie groups and
Lie groupoids, coverings play an important role for local Lie groupoids.

For groupoids, the notion of cover does not refer to the space of arrows, but
rather to its source/target fibers. In this section we will assume that source and
target maps have connected fibers, as do their covers in the sense of the following
definition.

Definition 5.1. Suppose G is a local Lie groupoid over M , with source and target
maps s and t, and unit section u. A covering (resp., generalized covering) of G is
a tuple (G′, s′, t′, u′) and a map ϕ : G′ → G, where:

• u′ : M ↪→ G′ is an embedding,
• s, t : G′ → M are surjective submersions such that s′ ◦ u′ = t′ ◦ u′ = Id,
• ϕ : G′ → G is a smooth map such that s′ = s ◦ ϕ, t′ = t ◦ ϕ, u = ϕ ◦ u′,
• for eachm ∈ M , the map ϕ�(s′)−1(m) : (s

′)−1(m) → s−1(ϕ(m)) is a covering
map (resp., local diffeomorphism).

An important fact is the following.

Theorem 5.2. Any generalized covering ϕ : G′ → G of a bi-regular local Lie
groupoid G has a structure of a local Lie groupoid for which ϕ is an étale morphism
of local Lie groupoids. Moreover, G′ is also bi-regular.

Corollary 5.3. Every bi-regular local Lie groupoid G has a source-simply connected

cover ϕ : G̃ → G which is unique up to restriction.

Proof of the corollary. The construction of the source-simply connected cover of a
local groupoid is entirely similar to the case of Lie groupoids (see, e.g., [5]). Let
Π1(F(s)) be the fundamental groupoid of the source-foliation of G. It is a smooth
Lie groupoid over G with source map

p : Π1(F(s)) → G, [γ] �→ γ(0).

We set G̃ := p−1(M) and define the maps:

s′ : G̃ → M, [γ] �→ s(γ(0)), t′ : G̃ → M, [γ] �→ t(γ(1)),

u′ : M → G̃, x �→ [x].

Then ϕ : G̃ → G, [γ] → γ(1), is a cover of G with 1-connected source fibers, so the
result follows from the theorem. �
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Remark 5.4. One can give a proof of the corollary independent of the theorem, by
following the same method as in the proof of Theorem 2.23, with G replacing G(A).
In what follows, we will only make use of the corollary. However, since the theorem
is interesting on its own, and the proof in [12] of the corresponding statement for
local Lie groups contains a gap (see Remark 5.8 below), we will give a complete
proof of the theorem.

The remainder of this section is concerned with the proof of Theorem 5.2. Sup-
pose G and M are manifolds, and we have maps

• u : M → G, an embedding,
• s : G → M , a surjective submersion such that s ◦ u = Id,
• t : G → M , a surjective submersion such that t ◦ u = Id.

We will show, roughly speaking, that a bi-regular local Lie groupoid structure on G
(with the given s, t, u) is equivalent to specifying left- and right-invariant Maurer-
Cartan forms. From this the theorem follows immediately.

Definition 5.5. An s-framing for the tuple (G,M, s, t, u) is an isomorphism of
vector bundles ωs : T

sG → t∗(T s
MG) over the unit section such that ωs�M = Id. A

t-framing is an isomorphism of vector bundles ωt : T
tG → s∗(T t

MG) over the unit
section such that ωt�M = Id.

If G is a bi-regular local Lie groupoid, the left-invariant (respectively, right-
invariant) Maurer Cartan form is an s-framing (respectively, t-framing). For a
bi-regular groupoid we will always use these framings.

Once framings are specified one can talk about invariant vector fields.

Definition 5.6. Suppose we are given an s-framing ωs and a t-framing ωt for the
tuple (G,M, s, t, u). Then:

(i) A vector field X tangent to the s-fibers is called right-invariant if its image
under the s-framing is of the form t∗σ for some σ ∈ Γ(T s

MG).
(ii) A vector field X tangent to the t-fibers is called left-invariant if its image

under the t-framing is of the form s∗σ for some σ ∈ Γ(T t
MG).

Notice that in the case of a bi-regular local Lie groupoid this definition of right-
and left-invariant vector field coincides with the one given in Section 2.5. In par-
ticular, for a local Lie groupoid we always have that:

• the Lie bracket of right-invariant vector fields is right-invariant,
• the Lie bracket of left-invariant vector fields is left-invariant,
• the Lie bracket of a right-invariant and a left-invariant vector field is zero.

The following is the characterization of local Lie groupoids we are aiming for. It
is a direct generalization of [12, Theorem 18].

Proposition 5.7. Let ωs and ωt be s- and t-framings for the tuple (G,M, s, t, u).
There is a bi-regular local Lie groupoid structure on (G,M, s, t, u) whose Maurer-
Cartan forms coincide with these framings if and only if:

(i) the Lie bracket of left-invariant vector fields is left-invariant,
(ii) the Lie bracket of right-invariant vector fields is right-invariant,
(iii) the Lie bracket of a left- and a right-invariant vector field is zero.

If we demand that the local Lie groupoid be strongly connected, the structure is
unique up to restriction.
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Remark 5.8. Theorem 18 in [12] claims that giving a local Lie group structure in G
is equivalent to prescribing right-invariant vector fields, without specifying the left-
invariant vector fields. Explicit examples show, however, that this is not sufficient,
and the left-invariant vector fields need to be specified as well. More precisely, if
only right-invariant vector fields are specified, it may happen that no compatible
left-invariant vector fields exist. This is related to the fact that the Maurer-Cartan
form on a local Lie group(oid) is not only invariant but satisfies an extra condition:
the Maurer-Cartan equation.

The mistake in the proof in [12] is that the multiplication does not get defined
near G × {e}. For an explicit example, one can look at G = R>0 × S1, with
coordinates (x, θ). The vector fields X = x ∂

∂x and Y = x ∂
∂θ satisfy [X,Y ] = Y .

If we try to prescribe X and Y as right-invariant vector fields on G, there is no
way to find corresponding left-invariant vector fields to make G into a local Lie
group: if Z is a left-invariant vector field that equals ∂

∂x at (1, 1), we must have
[Y, Z] = 0, but the flow of Y maps the point (1, 1) to itself after time 2π, mapping
∂
∂x to ∂

∂x + 2π ∂
∂θ . This shows that Z cannot be invariant under the flow of Y .

Proof of Proposition 5.7. The “only if” part of the proof is clear. For the proof of
the “if” part, suppose that we have framings that satisfy the above conditions. We
will prescribe the multiplication and inversion maps. Let us start by defining the
multiplication on a neighborhood of G ×s t M . Pick g ∈ G and write x = s(g). If
h ∈ t−1(x) is sufficiently close to x, then

h = φ1
ω−1

t (s∗σ)
(x)

for some local section σ of T t
MG near x (here φ1 denotes the time-1 flow of a vector

field). Note that ω−1
t (s∗σ) is left-invariant. We set

(3) g · h = φ1
ω−1

t (s∗σ)
(g)

if this flow exists. This product g · h is well-defined for h small, in the sense that
it does not depend on the choice of σ, as we now explain. Because the bracket of
right-invariant vector fields is right-invariant, we can define a Lie algebroid A → M

from these right-invariant vector fields. This algebroid A acts on G
t−→ M via the

right-invariant vector fields. We can integrate this Lie algebroid action to an action
of a local Lie groupoid H integrating A. Using this action H � G, we can identify
a neighborhood of M in H with a neighborhood of M in G, by h �→ h · s(h). Under
this identification, the multiplication (3) corresponds to the one in H. This shows
that g · h is indeed well-defined using (3). We have defined the multiplication near
G ×s t M . Similarly, one defines g · h = φ1

ω−1
s (t∗τ)

(h) if g = φ1
ω−1

s (t∗τ)
(x) is small,

and τ is a local section of T s
MG.

One thing remains to check to ensure we have a well-defined multiplication: if
g = φ1

ω−1
s (t∗τ)

(x) and h = φ1
ω−1

t (s∗σ)
(x) for local section τ and σ as above, we need

to ensure that the two definitions of g · h agree. The first definition defines g · h as

φ1
ω−1

t (s∗σ)
(g) = φ1

ω−1
t (s∗σ)

(φ1
ω−1

s (t∗τ)
(x))

and the second as

φ1
ω−1

s (t∗τ)
(h) = φ1

ω−1
s (t∗τ)

(φ1
ω−1

t (s∗σ)
(x)).
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Because left- and right-invariant vector fields commute, these definitions coincide
for g, h sufficiently close to x. Therefore, by restricting if necessary, we have defined
a multiplication map on G ×s t G near G ×s t M ∪M ×s t G.

We leave it to the reader to check that this multiplication is locally associative
(possibly after restricting further), and to define an inversion map near M . The
uniqueness up to restriction follows immediately from Lemma 2.18. �

We can now give a very short proof of the existence of a groupoid structure on
covers.

Proof of Theorem 5.2. Let G be a bi-regular local Lie groupoid over M and let
ϕ : G′ → G be a generalized cover. If ωL

MC and ωR
MC denote the left- and right-

invariant Maurer-Cartan forms on G, then we obtain s- and t-framings on G′ by
setting:

ωs := ϕ∗ωL
MC and ωt := ϕ∗ωR

MC.

The left- and right-invariant vector fields on G′ defined by these framings are ϕ-
related to the left- and right-invariant vector fields on G. It follows that they satisfy
conditions (i)-(iii) of Proposition 5.7, and we conclude that G′ has the required bi-
regular local groupoid structure for which ϕ : G′ → G is an étale morphism of local
Lie groupoids. �

Remark 5.9. The local groupoid structure constructed in Proposition 5.7 has an
inverse map with domain, in general, strictly smaller than G. Therefore, even if
every element in the local Lie groupoid G has an inverse, elements in a cover G′ of
G may fail to have an inverse. This is yet another reason we have to allow for the
domain of the inverse map of a local Lie groupoid G to be strictly smaller than G.

5.2. Classification result. In [12], Olver shows roughly speaking that every local
Lie group is covered by a cover of a globalizable local Lie group. We prove the
analogous result for groupoids, and strengthen it slightly.

Theorem 5.10. Suppose G ⇒ M is a bi-regular s-connected local Lie groupoid
with product connected to axes and integrable Lie algebroid A. Let G̃ be its source-
simply connected cover, and let G(A) be the source-simply connected integration of
A. Then there is a commutative diagram:

G̃

G U ⊆ G(A)

AC(G)

p1 p2

Here, p1 is the covering map and G → AC(G) is the completion map. The map p2
is a generalized covering of local Lie groupoids, which sends a point g ∈ G̃ to the
class of the A-path associated to a G̃-path from s(g) to g.

Proof. Our first step is to show the existence of the upper half of the diagram. This
is the statement that is proved in [12, Theorem 21] for the case of local groups,
and the proof is analogous. We use Cartan’s method of the graph. The argument
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is similar to the usual argument for integrability of Lie algebroid morphisms to Lie
groupoid morphisms [11, Proposition 6.8].

On the fibered product G̃ ×t t G(A) we consider the foliation F given by

F(g1,g2) =
{
(ξ · g1, ξ · g2) | ξ ∈ At(g1)

}
.

Integrability of this distribution follows from the fact that G̃ and G(A) have the
same Lie algebroid.

Fix a point x ∈ M and let Nx be the leaf of F through (x, x). We claim that

the projection π1 : Nx → s−1(x) is a covering of the source fiber in G̃. Note
that π1 : Nx → s−1(x) is a local diffeomorphism by bi-regularity of the local
groupoid. Now if (g1, g2) ∈ Nx, and U1 is a neighborhood of (g1, g2) in Nx that
gets mapped diffeomorphically to a neighborhood U2 of g1 in s−1(x), then U2 is
uniformly covered. Indeed, if (g1, g3) is another point on Nx, then by invariance
of F under right multiplication in the G(A)-direction, the translated submanifold
U1 · g−1

2 · g3 is a neighborhood of (g1, g3) in Nx that gets mapped diffeomorphically
to U1. Hence, π1 : Nx → s−1(x) is a covering map, and since s−1(x) is simply
connected, it is a diffeomorphism. The inverse is a diffeomorphism φx : s−1(x) →
Nx.

If N =
⋃

x∈M Nx, we have a map φ : G̃ → N , g → φs(g)(g). This map is
smooth, because it is the extension by holonomy of the map x �→ (x, x). We define

p2 := π2 ◦ φ : G̃ → G(A) and let U be the image of p2, so we obtain the required
diagram:

G̃

G U ⊆ G(A)

p1 p2

Now, to establish the existence of the lower half of the diagram we apply the
functor AC to p1:

G̃

G AC(G̃)

AC(G)

p1

AC(p1)

We claim that AC(G̃) ∼= G(A), and that under this identification the natural map

G̃ → AC(G̃) corresponds to p2.

Note that the associators of G̃ are discrete since they lie in the fiber of G̃ → U
over the unit section. Since G has product connected to the arcs, so does G̃ and
hence AC(G̃) is a Lie groupoid. We have morphisms of Lie groupoids

AC(G̃) → AC(U) → AC(G(A)) ∼= G(A),
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which induce isomorphisms at the level of Lie algebroids. Since G(A) is source-
simply connected, we must in fact have

AC(G̃) ∼= AC(U) ∼= AC(G(A)) ∼= G(A).

Following along these maps, we see that an element g ∈ G̃ is mapped to G(A) as
follows:

g ∈ G̃ �→ [g] ∈ AC(G̃) �→ [p2(g)] ∈ AC(U) �→ [p2(g)] ∈ AC(G(A)) �→ p2(g) ∈ G(A).

Hence, the diagram in the statement of the theorem follows. �

Corollary 5.11. If G is an s-simply connected, bi-regular, local Lie groupoid with
product connected to the axes and integrable algebroid, then Assoc(G) is uniformly
discrete (and, in particular, AC(G) is smooth).

Proof. The above result shows that G is a generalized cover of a globalizable lo-
cal Lie group. The associators of G are therefore contained in the fiber of this
generalized covering over the unit section, and this fiber is discrete. �

Note that this corollary is false without the assumption of s-simply connected-
ness. For example, there are local Lie groups with non-discrete associators. An
example is given is the next section.

6. Associativity and integrability

In this section, we discuss the relationship between the integrability of a Lie alge-
broid and the associativity of a local groupoid integrating it. Starting with a local
Lie groupoid G with Lie algebroid A, we would like to give a precise relationship
between the monodromy groups Ñx(A), controlling the integrability of A, and the

associators Assocx(G). Since Ñx(A) and Assocx(G) only depend on the restrictions
of G and A to the orbit through x, in this section we will make the following:

• Assumption. G ⇒ M is a transitive local Lie groupoid, i.e., for every
x, y ∈ M there exist a well-formed word w = (g1, . . . , gk) with t(g1) = x
and s(gk) = y.

This is equivalent to assuming that A has surjective anchor (i.e., is transitive). Of
course, our results are also valid for a non-transitive local Lie groupoid G: in the
statements one must replace M by an orbit of G.

Before we turn to the general theory, in Section 6.1 we discuss examples exhibit-
ing properties that motivate our results. In particular, one of these examples shows
that it is possible to have Ñx(A) trivial (hence, A integrable) and Assocx(G) ⊂ Gx

non-discrete. Hence, in order to relate Ñx(A) and Assocx(G) one needs some extra
assumptions on G. We will see that these can always be achieved by shrinking G.

6.1. Examples. We have seen in Lemma 4.8 that restricting a local Lie groupoid
does not change its associators. On the other hand, shrinking a local Lie groupoid
can change the associators drastically. To illustrate this we will give an example
of a local Lie group G such that Assoc(G) is not discrete. Because every local Lie
group has a neighborhood of the unit section that is globalizable (and therefore has
trivial associators), this shows that the associators can change from non-discrete to
discrete by shrinking the local groupoid!
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Example 6.1. Let B ⊂ R2 be the ladder-shaped set

B = ({0} × R) ∪ ({1} × R) ∪ ([0, 1]× Z)

and let G be its thickening

G =

{
p ∈ R2 | ∃ q ∈ B such that d(p, q) <

1

10

}
.

(Here, d is the Euclidean distance.) We will equip G with the structure of a local
Lie group in such a way that Assoc(G) is not discrete.

For each n ∈ Z>0, let fn : R → R>0 be a smooth function that is 1 outside
of [ 13 ,

2
3 ] and such that the time- 8

10 flow of the vector field fn
∂
∂x on R maps 1

10 to
9
10 +

1
100n . In other words, the flow of fn

∂
∂x is just a little bit faster than that of ∂

∂x .

For each n ∈ Z≤0, let fn be the function on [ 1
10 ,

9
10 ] that takes value 1 everywhere.

Now consider the following vector fields on G:

X(x, y) =

{
fn(x)

∂
∂x if x ∈ [ 1

10 ,
9
10 ] and y ∈ (n− 1

10 , n+ 1
10 ),

∂
∂x otherwise,

Y (x, y) =
∂

∂y
.

Figure 3. The vector field X is obtained by slightly modifying
∂
∂x . The origin is the black dot. If we flow the origin along Y

(= ∂
∂y ) for time 1, then along X for time 1, then along −Y for

time 1, and finally along −X for time 1, we end up slightly away
from the origin, at the white dot. This white dot is an associator.
The gap is exaggerated in the picture for clarity.

There is a unique local Lie group structure on G over M such that X and Y
are bi-invariant (more precisely, unique up to restriction if we ask that the local
groupoid has with products connected to the axes). We claim that for this local
Lie group structure, Assoc(G) is not discrete.

Let a = ( 1
20 , 0) ∈ G and b = (0, 1

20 ) ∈ G. Then consider the product

a−1 · · · a−1︸ ︷︷ ︸
20

b−1 · · · b−1︸ ︷︷ ︸
20n

b · · · b︸ ︷︷ ︸
20n

a · · · a︸ ︷︷ ︸
20

,

where the numbers under the braces indicate the number of repetitions. Clearly,
this product results in the neutral element (0, 0) when evaluated from the inside
out. However, evaluating first the second half c = b · · · ba · · · a from left to right, and
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then evaluating the rest a−1 · · · a−1b−1 · · · b−1c from right to left, we get
(

1
100n , 0

)
.

This shows that
(

1
100n , 0

)
∈ Assoc(G) for all positive n, so that the associators do

not form a discrete set.

All the examples of local Lie groupoids we have discussed so far have integrable
Lie algebroid. We consider now an example of a local Lie groupoid with non-
integrable algebroid. It is a local Lie groupoid integrating a pre-quantum Lie alge-
broid Aω where ω has a non-discrete group of spherical periods.

Example 6.2. Let M = S2×S2, where each copy of S2 is equipped with the usual
round metric. Let

G′ = {((y, y′), (x, x′)) ∈ M ×M | x+ y �= 0 �= x′ + y′} × R.

We prescribe the source and target maps as

s((y, y′), (x, x′), a) = (x, x′) ∈ M

and
t((y, y′), (x, x′), a) = (y, y′) ∈ M.

In a similar fashion to what we did in the examples in Section 3, we introduce a
multiplication on H by the formula

((z, z′), (y, y′), a1) · ((y, y′), (x, x′), a2)

= ((z, z′), (x, x′), a1 + a2 +A(Δxyz) + λA(Δx′y′z′)),

where λ ∈ R is a fixed parameter, and which is defined whenever

A(Δxyz) ∈ (−π, π) and A(Δx′y′z′) ∈
(
− π

|λ| ,
π

|λ|

)
,

with the convention that the condition on A(Δx′y′z′) is void if λ = 0. The algebroid
of this local Lie groupoid is Aω where ω = dS⊕λdS, and so it is integrable precisely
if λ is rational.

To check that H is 3-associative assume ((z, z′), (y, y′), a1), ((y, y
′), (x, x′), a2)

and ((x, x′), (w,w′), a3) are in H. Then

(((z, z′), (y, y′), a1) · ((y, y′), (x, x′), a2)) · ((x, x′), (w,w′), a3)

= ((z, z′), (x, x′), a1+a2+a3+A(Δxyz)+A(Δwxz)+λA(Δx′y′z′)+λA(Δw′x′z′))

and

((z, z′), (y, y′), a1) · (((y, y′), (x, x′), a2) · ((x, x′), (w,w′), a3))

= ((z, z′), (x, x′), a1+a2+a3+A(Δwxy)+A(Δwyz)+λA(Δw′x′y′)+λA(Δw′y′z′)).

Now
A(Δxyz) +A(Δwxz) = A(Δwxy) +A(Δwyz) (mod 4π)

because both equal the area of the quadrangle wxyz (which is defined up to π). By
the restriction on the areas of these triangles, equality must hold in R (not just in
R/4π). Similarly, we will have

λA(Δx′y′z′) + λA(Δw′x′z′) = λA(Δw′x′y′) + λA(Δw′y′z′).

This proves 3-associativity.
This local Lie groupoid is not globally associative. The counterexample to 6-

associativity in Section 3.5 also works here, by considering G′′ as the local Lie
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subgroupoid {(y, y′), (N,N)} × R of G′, where N ∈ S2 is the north pole. Recall,
however, that there was a neighborhood of M ⊂ G′′ that was globally associative.
This is not the case for G′. Indeed, the following result will be a consequence of
Theorem 6.19 below.

Proposition 6.3. There is an open neighborhood of M ⊂ G′ that is globally asso-
ciative if and only if λ ∈ Q (i.e., iff the Lie algebroid is integrable).

6.2. Monodromy groups. The integrability of a Lie algebroid A → M is con-
trolled by its monodromy groups [4, 5]. The monodromy group Ñx(A) at x ∈ M
is a subgroup of G(gx) contained in the center Z(G(gx)). Its construction uses the
language of A-paths, which we will assume the reader is familiar with. A detailed
exposition can be found in [4] and [5, sections 2.2, 3.3, and 3.4] and we refer to
these works for details.

Let A be a Lie algebroid over M . We write I for the interval [0, 1]. Recall that
an A-path is a C2-path a : I → A with base path γ : I → M , satisfying:

ρ(a(t)) =
d

dt
γ(t).

Alternatively, this condition states that a dt : TI → A is a Lie algebroid morphism.
Two A-paths a0, a1 : I → A are said to be A-homotopic if there exists a Lie

algebroid morphism a dt+ b ds : TI × TI → A satisfying the boundary conditions:

• a(0, t) = a0(t) and a(1, t) = a1(t);
• b(s, 0) = b(s, 1) = 0.

The space of A-paths is a Banach manifold P (A) and A-homotopy defines an equiv-
alence relation ∼ on P (A). The quotient space:

G(A) := P (A)/ ∼,

is a topological groupoid over M with composition given by concatenation of paths
(after possible reparameterization). The main result of [4] states that:

(i) A is an integrable Lie algebroid if and only if G(A) is a smooth quotient,
in which case it is the source 1-connected integration of A;

(ii) G(A) is smooth if and only if the monodromy groups Ñx(A) are uniformly
discrete.

Let us briefly recall the construction of Ñx(A).

Definition 6.4. Suppose a, a′ : I → A are A-paths over the same base path. We
say that a and a′ are A-homotopic along a trivial sphere if there is an A-homotopy
between a and a′ whose base homotopy determines a trivial element in π2(M).

Then one can show the following.

Lemma 6.5. Suppose a0 : I → A is an A-path with base path γ0 : I → M and
S : I × I → M is such that

• S(0, t) = γ0(t),
• S(s, 0) = γ0(0) and S(s, 1) = γ0(1) for all s.

Then there is an A-homotopy a dt+ b ds : TI × TI → A covering S. Moreover, the
class of the A-path a1(t) := a(1, t) modulo A-homotopies along trivial spheres only
depends on the homotopy class (rel boundary) of S.
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The proof of this lemma is contained in the proof of Proposition 3.21 in [5]. We

will write ∂̃(a0, S) for the class of a1 modulo A-homotopy along trivial spheres.
If in the lemma above the path t �→ S(1, t) is constant, say at x ∈ M , then

∂̃(a0, S) is (the class of) a gx-path, hence it determines an element of G(gx). If we
write 0x for the trivial A-path at x, then we have the following.

Definition 6.6. The monodromy group Ñx(A) is defined as the image of

∂ : π2(M,x) → G(gx) : [α] �→ ∂̃(0x, α),

where an element [α] ∈ π2(Ox, x) is represented by a smooth map α : I × I → M
mapping the boundary to x.

The monodromy map has the following interpretation ([4]). The short exact
sequence of algebroids (recall we are assuming that A is transitive):

(4) 0 �� Ker ρ �� A
ρ �� TM �� 0

can be seen as a “fibration” to which one can apply the integration functor G(−).
The result is a long exact sequence of “isotropy groups” whose connecting homo-
morphism is the monodromy map:

(5) · · · �� π2(M,x)
∂ �� G(gx) �� Gx(A) �� π1(M,x) �� · · · .

In particular, this leads to the short exact sequence of groups:

(6) 0 �� Ñx(A) �� G(gx) �� Gx(A) �� 0 .

6.3. Simplicial complexes and associative completions. The associative com-
pletion of a local Lie groupoid G admits a simplicial description that turns out to
be quite useful to relate associators and monodromy.

Let Wk be the ordered simplicial complex (see Figure 4)

{{0}, . . . , {k}} ∪ {{0, 1}, {1, 2}, . . . , {k − 1, k}}.

We will use the same letter to denote the associated simplicial set. If G = {G(n)}
is the nerve of a local Lie groupoid G ⇒ M (cf. Section 2.3), a simplicial map
Wk → G is nothing but a well-formed word on G of length k. Moreover, we can
also express equivalence of words using simplicial notions, as we now explain.

k edges

Figure 4. The simplicial complexWk is just a sequence of k edges,
head to tail.

For the following discussion we consider only ordered simplicial complexes S
which are 2-dimensional. Moreover, we assume that each edge has at most two
faces attached to it. We will say that an edge is a boundary edge of S if it has at
most one face attached to it.
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If {u,w} is a boundary edge of S with u < w, we can obtain a new ordered
simplicial complex S′ by

(1) adding a new vertex v to the simplicial complex with u < v < w,
(2) adding edges {u, v} and {v, w}, and a face {u, v, w}.

We will say that S′ can be obtained from S by expansion.
If {u, v} and {v, w} are boundary edges of S, with u < v < w, and {u,w} is not

an edge of S, we can obtain a new ordered simplicial complex S′ by

(1) adding the edge {u,w},
(2) adding the face {u, v, w}.

We will say that S′ can be obtained from S by contraction.

Definition 6.7. We say that an ordered simplicial complex S is a good complex
if there is an integer k ≥ 1 such that S can be obtained from Wk by repeated
expansion or contraction.

Note that a good complex comes with a choice of two vertices: there is one
vertex that is minimal among boundary vertices (we will call it the source of the
good complex) and one vertex that is maximal among boundary vertices (we will
call it the target of the good complex).

Definition 6.8. If S is a good complex, a boundary path of S is an ordered subcom-
plex S′ of S that is contained in its boundary, and for which there is an isomorphism
of ordered complexes Wk → S′ that maps the source of Wk to the source of S, and
the target of Wk to the target of S′.

In other words, a boundary path of S is just a path from source to target along
the boundary of S such that the vertices are increasing along the path.

Figure 5. A good complex. This one can be obtained from the
yellow-marked W3 on the bottom by (for example) an expansion,
a contraction, an expansion, a contraction, an expansion, two con-
tractions, and an expansion. The source is the rightmost vertex,
the target is the leftmost vertex. This complex has two boundary
paths (one on the top, one on the bottom). They are highlighted
in green and yellow.

Remark 6.9. A good complex can have many boundary paths. For example, the
complex shown in Figure 6 has eight of them. The good complexes that will be most
relevant for us are those that are homeomorphic to a disk. These have precisely
two boundary paths.

Definition 6.10. Let S be a good complex (considered as a simplicial set) and
let φ : S → G be a simplicial map. The boundary words of φ are the words
corresponding to the restriction of φ to the boundary paths of S.
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Figure 6. A good complex that is not homeomorphic to a disk.
This one has eight boundary paths. One of them is highlighted.

The following result now holds more or less by construction.

Proposition 6.11. Two well-formed words w1, w2 ∈ W (G) are equivalent if and
only if there is a good complex S and a simplicial map φ : S → G such that both
words are boundary words of φ.

Proof. If the two words w and w′ are equivalent, then there is a sequence of expan-
sions and contractions of words turning w into w′. Let w = w0, w1, . . . , wn = w′

be the shortest sequence of expansions and contractions from w to w′. We can use
this sequence to build a good complex S and a map φ : S → G, as we explain now.

Start with a map φ0 : Wk → G representing w0. If w1 is an expansion of w0,
we can expand Wk in the corresponding edge to get a map φ1 : S1 → G with
boundary words w0 and w1. If w1 is a contraction of w0, we can contract Wk in the
corresponding edge to get a map φ1 : S1 → G with boundary words w0 and w1.
(Note that the edge that we need to add to the complex for the contraction is not
already present. This edge can only be present if we have an expansion followed by
a contraction undoing that expansion, but we chose the shortest sequence of words
linking w to w′.)

Conversely, if we have a good complex S and a map φ : S → G with boundary
words w1 and w2, we obtain a sequence of expansions and contractions of words
turning w1 into w2. �
6.4. Associators are monodromy elements. We would like to give a precise
connection between the associators of a local Lie groupoid G and the monodromy
groups of the Lie algebroid A = A(G). For that, we need to be able to compare
the isotropy Gx (where the associators live) with the 1-connected Lie group G(gx)
integrating the isotropy Lie algebra gx = Ker ρx (which contains the monodromy
groups). For this reason, henceforth we will assume that G has been shrunk so
that:

(H1) Gx is a 1-connected local Lie group.

Under this assumption, we have a local Lie group homomorphism Gx → G(gx)
defined as follows. If g ∈ Gx, choose a path in Gx from x to g. Differentiate this
path to get a gx-path and hence an element of G(gx). Since Gx is simply connected,
this map is well-defined: any two paths in Gx from x to g are homotopic, and such
a homotopy induces a gx-homotopy.

By shrinking G further, we can also assume that:

(H2) the map Gx → G(gx) is injective.
Actually, by shrinking G even further, we can also assume that:

(H3) the source fibers of G are 1-connected.

Again, this allows us to construct a local homomorphism of topological groupoids
G → G(A): if g ∈ G has source x, choose a path in s−1(x) from x to g. Differentiate
this path to get an A-path and hence an element of G(A). Since s−1(x) is simply
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connected, this map is well-defined, because any two paths in s−1(x) from x to g
are homotopic, and this homotopy induces an A-homotopy.

Proposition 6.12. Let G be a local Lie groupoid satisfying (H1)-(H3). Then under

the natural map Gx → G(gx) we have Assocx(G) ⊂ Ñx(A).

Proof. Applying the functor AC(−) to the morphism G → G(A) we obtain a com-
mutative triangle:

G ��

���
��

��
��

��
G(A)

AC(G)

�����������

Passing to isotropies, it follows that the map Gx → Gx(A) takes the associators
Assocx(G) to the unit. But the last map factors as:

Gx
��

���
��

��
��

� Gx(A)

G(gx)

�����������

and the kernel of the morphism G(gx) → Gx(A) is the monodromy group Ñx(A),
so the result follows. �

6.5. Monodromy elements are associators. We would like to improve Propo-
sition 6.12 and show that we actually have Assocx(G) = Ñx(A) ∩Gx. For this, we
will need to construct a lift of the map G → G(A) to the space of A-paths:

P (A)

��
G

��������� �� G(A)

which is multiplicative in the following sense: if w = (g1, . . . , gk) ∈ W (G) is a well-
formed word on G, write P (w) = P (gk) ◦ · · · ◦ P (g1) (concatenation of A-paths).
Then if w1 and w2 are equivalent words we would like P (w1) and P (w2) to be
A-homotopic paths. This will require slightly stronger hypotheses than (H1)-(H3)
which can still be achieved by shrinking G further.

The construction of a multiplicative lift requires the choice of some auxiliary
data, namely:

• a reparameterization function, i.e., a smooth, non-decreasing function f :
[0, 1] → [0, 1] that is 0 near 0 and 1 near 1;

• a Riemannian metric on M ;
• an A-connection ∇ on A.

The connection yields an exponential map exp∇ : A → G, defined and injective
in some neighborhood of the zero section M ([5, section 4.4]). Hence, if g ∈ G is
sufficiently close to M , then it is in the image of exp∇, say g = exp(ξ). Writing
x = s(g), we then have the G-path τ �→ exp(f(τ )ξ) and its associated A-path

P̃ (g) : I → A (obtained by differentiating and applying the Maurer-Cartan form).
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Moreover, if g ∈ G is sufficiently close to M , the base path γ̃(t) of P̃ (g) is contained
completely in a uniformly normal subset of M1.

Now we modify the A-path P̃ (g), which lies over γ̃(t), into an A-path P (g) that
lies over the geodesic γs(g),t(g) from s(g) to t(g). We do this by prescribing

P (g) = ∂(P̃ (g), [α]),

where [α] : [0, 1] × [0, 1] → M is the map such that s �→ α(t, s) is the geodesic
from γ̃(t) to γs(g),t(g)(t). This way, we have associated to each g ∈ G sufficiently
close to M an A-path P (g) that lies over the geodesic from s(g) to t(g). If w =
(g1, . . . , gk) ∈ W (G) is a well-formed word on G, we write P (w) = P (gk)◦· · ·◦P (g1)
(the concatenation of P (gk), . . . , P (gk)).

Write Δ[k] for the standard k-simplex:

Δ[k] =

{
(λ0, . . . , λk) ∈ Rk+1 | λi ≥ 0,

∑
i

λi = 1

}
.

The boundary of Δ[2] consists of three line segments. If (g, h) ∈ U , we will write
β(g,h) : ∂Δ[2] → M for the map that sends the first edge of Δ[2] to the base path
of P (g), the second edge to the base path of P (gh), and the third edge to the base
path of P (h).

Let S′′ be a neighborhood of the diagonal in M ×M such that for all (x, y) ∈ S′′

there is a unique shortest geodesic from x to y. Let

S′ = {(x, y, z) ∈ M ×M ×M | (x, y), (y, z), (x, z) ∈ S′′}.

If (x, y, z) ∈ S′, we will write β(x,y,z) : ∂Δ[2] → M for the map that sends the edges
of Δ[2] to the three geodesics between x, y, and z.

Consider now the space

S =

{
(x, y, z, [α]) ∈ S′ ×

(
maps Δ[2] → M

homotopy rel ∂

)
: α�∂Δ[2] = β(x,y,z)

}
.

For the natural topology on S, the map π : S → M3, (x, y, z, [α]) �→ (x, y, z)
is continuous. For each (x0, y0, z0, [α0]) there is an open neighborhood U ⊂ M3

of (x0, y0, z0) and unique continuous section s : U → S of π with s(x0, y0, z0) =
(x0, y0, z0, , [α0]). Hence, S has a unique smooth structure for which π is a local
diffeomorphism. Note that

T = {(x, y, z) ∈ M ×M ×M | x = y or y = z or x = z}

naturally sits inside S by

(x, y, z) �→ (x, y, z, [maps whose image is contained in the image of β(x,y,z)]).

We can choose a map ϕ2 : U → S from a neighborhood U of T in M3 such that

• π ◦ ϕ2 = IdU ,
• ϕ2�T = IdT .

1Recall that an open subset of a Riemannian manifold is uniformly normal if there exists some
δ > 0 such that the subset is contained in a geodesic ball of radius δ around each of its points.
See [9, lemma 5.12]. Important for us will be the fact that between any two points in a uniformly
normal neighborhood, there is a unique minimizing geodesic, and it lies in this neighborhood.
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Definition 6.13. Suppose that G is a local Lie groupoid over M , and that we have
chosen auxiliary information (f, 〈·, ·〉,∇, ϕ2) as above. We say that G is shrunk if

(1) the isotropy groups Gx are simply connected,
(2) for each x ∈ M , the map Gx → G(gx) is injective,
(3) the path P (g) is defined for every g ∈ G,
(4) if (g, h) ∈ U , then {s(h), t(h) = s(g), t(g)} ∈ U , so that we may write

ϕ2(g, h) := ϕ2(s(h), t(h), t(g)),
(5) for every (g, h) ∈ U , the class of P (gh) (as A-path modulo A-homotopy

along trivial spheres) equals

∂̃(P (g, h), ϕ2(g, h)).

Every transitive local Lie groupoid has an open neighborhood of the identities
that is shrunk (after restricting). The first three conditions can be satisfied by
shrinking G. The fourth can be satisfied by restricting the multiplication. The last
condition can be satisfied by shrinking and restricting: it is automatically satisfied
for a global Lie groupoid, and over every contractible neighborhood U , the algebroid
is integrable (and over U and near M , the local groupoid is isomorphic to a global
integration of A�U , so that the condition holds for these small groupoid elements).
Note that if a local Lie groupoid is shrunk it satisfies (H1)-(H3).

Proposition 6.14. Suppose that G is a shrunk local Lie groupoid over M . If
w = (w1, . . . , wk) and w′ = (w′

1, . . . , w
′
k′) are equivalent words, then the A-paths

P (w1, . . . , wk) and P (w′
1, . . . , w

′
k′) are A-homotopic.

Proof. It suffices to prove this if w and w′ are elementarily equivalent, so we will
assume that w′ is obtained from w by multiplying the letters wi and wi+1. The
A-path

∂̃(P (wi, wi+1), ϕ2(wi, wi+1))

is homotopic to P (wi, wi+1) by construction. Because G is shrunk, it is also A-
homotopic to the A-path P (wiwi+1). We conclude that P (wi, wi+1) and P (wiwi+1)
are A-homotopic, which suffices to prove the result. �

Remark 6.15. The monodromy group Ñx consists precisely of the gx-homotopy
classes of gx-paths that are A-homotopic to the trivial path 0x. Hence, the previous
proposition gives another proof of the inclusion Assocx(G) ⊂ Ñx for a local Lie
groupoid that is shrunk.

Suppose that G is shrunk. We denote by [n] (n ∈ N0) the objects of the simplicial
category Δ, so [n] is a non-empty linearly ordered set of the form

[n] = {0, 1, . . . , n}.
To each simplicial map [1] → G, we can associate a curve in M as before: we take
the base curve P (g) where g is the image of the 1-cell. If we have a simplicial map
[2] → G, we get a homotopy class of maps Δ[2] → M rel boundary, namely ϕ2(g, h)
as before, where (g, h) ∈ U is the image of the 2-cell. More generally, if we have a
good complex S and a simplicial map φ : S → G, we get a homotopy class of maps
[φ] : |S| → M rel boundary, where |S| is the geometric realization of S, by mapping
each 1-cell and 2-cell as above.
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Proposition 6.16. Suppose that G is a shrunk local Lie groupoid over M and fix
x ∈ M . Consider Gx as a subset of G(gx) using the natural map Gx → G(gx).
Suppose that S is a good complex homeomorphic to a disk, and that

φ : S → G

is a simplicial map sending the boundary to x, so φ induces a class [φ] ∈ π2(M,x).
If one of the boundary words of φ is (x), and the other boundary word is (g1, . . . , gk)
with g1, . . . , gk ∈ Gx and g1 · · · gk ∈ Gx, then ∂([φ]) ∈ Assocx(G).

For the proof we need the following two lemmas.

Lemma 6.17. Let G be a shrunk local Lie groupoid. Suppose S is a good complex
homeomorphic to a disk, and φ : S → G is a simplicial map with boundary words
w and w′. Then

∂̃(P (w), [φ]) and P (w′)

are A-homotopic along a trivial sphere.

Proof. If S has only one face, this follows immediately from condition (5) in the
definition of a shrunk local groupoid. By induction on the number of faces of S,
the statement follows. �

Lemma 6.18. Let G be a source-simply connected Lie groupoid, and let U ⊂ G be
an open neighborhood of the identities, considered as a local Lie groupoid. Suppose
that g1, . . . , gn ∈ U are such that their product g = g1 · · · gn lies in U . Then in
W (U) we have

(g1, . . . , gn) ∼ (g).

Proof. Apply the functor AC to the inclusion U ↪→ G. We get AC(U) → AC(G) ∼=
G, which is a morphism of Lie groupoids. It is an isomorphism at the level of
Lie algebroids, and G is source-simply connected, so this map is an isomorphism.
In particular, it is an injection. Because the words (g1, . . . , gn), (g) ∈ W (U) are
mapped to the same element of G, they must represent the same element of AC(U).
This means that they are equivalent. �

Note that the last lemma is false if G is not s-simply connected. For example,
if we take U = (−0.5, 0.5)/Z ⊂ R/Z = G, then 0.25 + 0.25 + 0.25 + 0.25 = 0 in G,
but (0.25, 0.25, 0.25, 0.25) �∼ (0) as words in W (U).

Proof of Proposition 6.16. Let w = (w1, . . . , wk) be the other boundary word of φ.
By Lemma 6.17, ∂([φ]) is the gx-homotopy class of the gx-path P (w). Now working
in G(gx), we see that

∂([φ]) =
k∏

i=1

wi.

By Lemma 6.18 applied to Gx ⊂ G(gx), we have

(∂([φ])) ∼ (w1, . . . , wk) in W (Gx).

In particular, this equivalence holds in W (G). However, the map φ shows that
(w1, . . . , wk) ∼ (x) in W (G) (by Proposition 6.11). This implies that (∂([φ])) ∼ (x)
in W (G), and so ∂([φ]) ∈ Assocx(G). �

We now state and prove the main theorem relating associators to monodromy.
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Theorem 6.19. Suppose that G is a shrunk local Lie groupoid over M with Lie
algebroid A. For x ∈ M , consider Gx as a subset of G(gx) using the natural map
Gx → G(gx). Then

Assocx(G) = Ñx(A) ∩Gx.

Proof. The inclusion ⊂ was Proposition 6.12. We now prove the inclusion ⊃. By
Proposition 6.16, it suffices to show that for every [α] ∈ π2(M,x), there is a good
complex S, homeomorphic to a disk, and a simplicial map φ : S → G, such that

(1) the boundary of S is mapped to x,
(2) one of the boundary words of φ is (x),
(3) [φ] = [α] as elements of π2(M,x).

Write Δ = {(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x + y ≤ 1}. Represent [α] as a map
α : Δ → M , mapping the boundary of Δ to x. Fix a splitting σ : TM → A of the
anchor. If e is a sufficiently short oriented line segment in Δ, from a point v1 to a
point v2, we will associate to it an element ge of G, as follows. There is a tangent
vector Ve in Tα(v1)M such that t(exp(σ(Ve))) = α(v2) (if e is sufficiently short).
Take ge = exp(σ(Ve)). The base path of P (ge) is then a geodesic from α(v1) to
α(v2).

If k is a positive integer, we can subdivide Δ into k2 triangles, as shown in
Figure 7. By choosing k large enough, we can ensure that

(a) every edge e of the triangulation is short enough to ensure that ge is defined,
(b) if e3, e2, e1 are the edges of a face, the products (ge3ge2)ge1 and ge3(ge2ge1)

are both defined,
(c) if e3, e2, e1 are the edges of a face, and fm, . . . , f1 are edges of the triangu-

lation forming a path of total Euclidean length at most 10 (as measured in
R2) with t(e3) = s(e1) = t(fm), then the product

(7) (g−1
f1

· · · (g−1
fm

(ge3ge2ge1)gfm) · · · gf1)
is defined (the brackets that are not specified may be put in any way).

Figure 7. The triangulation of Δ, shown here for k = 8.

If k is large enough to guarantee these properties, we get an induced element
of π2(M,x), as follows: we can map the 1-skeleton of the triangulated Δ to M
by mapping each vertex of the triangulation to its image under α, and mapping
each edge e to the base path of P (ge). For each face of the triangulation, there is a
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preferred homotopy class of map into M (rel boundary), namely the one determined
by ϕ2. All in all, we get a well-defined homotopy class of map from Δ to M , rel
1-skeleton. In particular, this defines a homotopy class of map from Δ to M , rel
boundary, and hence an element of π2(M,x). After choosing k larger if necessary,
we may assume that this class is precisely [α].

Let us write ε3k, . . . , ε1 for the 3k edges at the circumference of Δ, in counter-
clockwise order starting at the origin (0, 0), and with the corresponding orienta-
tion (so εk, . . . , ε1 are oriented to the right, ε2k, . . . , εk+1 to the upper left, and
ε3k, . . . , ε2k+1 down). We will work with ordered sequences of oriented edges of the
triangulation. Such a sequence of oriented edges (en, . . . , e1) is well-formed if ei
ends where ei+1 starts (for all i). A block will be a well-formed sequence (possibly
empty) of the form

(e−1
1 , . . . , e−1

n , en, . . . , e1),

where e−1
i is the edge ei with its opposite orientation. This name is chosen to be the

same as in the proof of Theorem 4.10. If F is one of the faces of the triangulation,
a lace around F will be a sequence of the form

(e−1
1 , . . . , e−1

n , c, b, a, en, . . . , e1),

where a, b, c are the three sides of F , oriented counterclockwise, and e1 starts
at (0, 0). (So it loops around F once, and encloses nothing else.) The words
(en, . . . , e1) and (e−1

1 , . . . , e−1
n ) are the ends of the lace.

Now let (en, . . . , e1) be a sequence of oriented edges of the triangulation that
simultaneously satisfies the conditions

(a) the sequence can be obtained from (ε3k, . . . , ε2, ε1) by repeated insertion of
blocks,

(b) the sequence is a concatenation of laces �N , . . . , �1, one around each face
of the triangulation, and each end of a lace has at most 2k edges (which
certainly ensures that the total euclidean length of the edges of that end is
less than 10).

Such a sequence always exists. Figure 8 shows an example for k = 2.
The video at http://math.uiuc.edu/~michiel2/edge-sequence/ illustrates

an appropriate sequence of edges for k = 5, which can immediately be generalized
to work for any value of k. Note that for each of the laces, the product of the
elements associated to the edges is defined if we use the order as in (7). We will
call this the product of the lace.

Now this sequence allows us to build up the required good complex S and the
simplicial map φ : S → G. Start with the complex W1, mapped to the element x.
Expand 3k − 1 times, to get a good complex with two boundary paths: one is the
original W1, the other is a copy of W3k. On the complex we have so far, φ will still
map everything to x.

Recall that (en, . . . , e1) can be obtained from (ε3k, . . . , ε1) by insertion of blocks.
This means that the word (gen , . . . , ge1) can be obtained from (x, . . . , x) by expan-
sion. Expanding our good complex further, we therefore get a complex and a map
φ with boundary words (x) and (gen , . . . , ge1).

Now we group the (en, . . . , e1) by laces. Because the corresponding products are
defined, we may now continue building our good complex using contractions. This
results in a complex and map φ with boundary words (x) and (pN , . . . , p1), where

http://math.uiuc.edu/~michiel2/edge-sequence/
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F1

F2

F3

F4

Figure 8. A sequence of edges that satisfies the conditions in
the proof of Theorem 6.19, for k = 2, from the black dot to the
white dot. The sequence is both of the form (lace around F1,
lace around F2, lace around F3,lace around F4), and of the form
(ε1, ε2, ε3, block, ε4, ε5, block, block, ε6).

pi is the product of the ith lace. By construction, this simplicial map φ induces
[α], proving the result. �

7. Simplicial monodromy groups

The results of the previous section have an even more conceptual simplicial
interpretation as we now explain. We will continue to assume that G ⇒ M denotes
a transitive local Lie groupoid.

7.1. The simplicial viewpoint. The nerve G = {G(n)} of a groupoid is a sim-
plicial set, so we have its geometric realization |G| (we are ignoring the manifold
structure of G, treating it simply as a set). Since M sits naturally inside |G|,
for each x ∈ M we have the n-homotopy group of |G| based at x which we de-
note by πn(G, x). As for any topological space, we also have the fundamental
groupoid Π1(|G|) ⇒ |G| and we consider its restriction to M which we denote by
Π1(G) ⇒ M . Note that the isotropy group at x of Π1(|G|) is precisely π1(G, x).

Because, in general, G is not Kan the usual combinatorial description of the
groups πn(G, x) does not apply. One could consider the Kan completion and then
proceed with the usual description. For our purposes, we only need to deal with
π1 and π2 for which one has a relatively simple combinatorial description due to
Moore and Smith (see [14,16]), which we will recall below. Using these descriptions
we give simplicial interpretations of our previous constructions. For example, the
associative completion has the following interpretation.

Theorem 7.1. If G is a strongly connected local Lie groupoid, then there is an
isomorphism of groupoids:

AC(G) 	 Π1(G).
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Now, given a local Lie groupoid G ⇒ M , we can consider the short exact se-
quence associated with the map (t, s) : G → M ×M : if U ⊂ (M ×M) is the image
of (t, s) (a local subgroupoid of the pair groupoid), then this exact sequence is:

(8) 1 �� I(G) �� G �� U �� 1 ,

where I(G) =
⋃

x∈M Gx denotes the bundle of isotropies. Assuming that this
induces a fibration of the associated simplicial sets, we obtain a long exact sequence:

· · · �� π2(U, x) �� π1(I(G), x) �� π1(G, x) �� π1(U, x) �� · · · .

By Theorem 7.1, this can be rewritten as:

(9) · · · �� π2(U, x) �� AC(Gx) �� ACx(G) �� ACx(U) �� · · · .

Comparing these exact sequences with the sequences (4), (5), and (6), it is tempting
to call the connecting homomorphism

∂s : π2(U, x) → AC(Gx)

the simplicial monodromy map. The main issue with this approach is whether (8)
actually defines a simplicial fibration.

Below, for a general transitive local groupoid, we will construct a monodromy
map ∂s : π2(U, x) → K1/δ(K2), for which we have a long exact sequence as above.
We will see also that that there is a natural group homomorphism AC(Gx) →
K1/δ(K2). For a strongly connected groupoid we show that this map is surjective
and we conjecture that it is also injective. We are able to prove this for a shrunk
groupoid, in which case we also show the following.

Theorem 7.2. Let G be a local Lie groupoid which is shrunk. Then there is a
map ∂s : π2(U, x) → AC(Gx) giving a long exact sequence (9), and fitting into a
commutative diagram:

π2(M,x)
∂ ��

��

G(gx)

π2(U, x)
∂s

�� AC(Gx)

		

where the vertical arrows are isomorphisms.

The second vertical arrow in the square above is just the isomorphism induced
from the canonical map Gx → G(gx) that exists for a shrunk local Lie groupoid.

Then this result explains more conceptually the equality Assocx(G) = Ñx(A)∩Gx

stated in Theorem 6.19. In fact, the proof of Theorem 7.2 will use arguments from
the proof of Theorem 6.19.

The following is an interesting consequence of Theorem 7.2. We will give the
proof later.

Corollary 7.3. If G is a local Lie groupoid which is shrunk, then there is an
isomorphism of topological groupoids AC(G) 	 G(A).
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7.2. Simplicial homotopy groups. We recall the combinatorial description of
the simplicial homotopy groups in degree 1 and 2 for a (possibly non-Kan) simplicial
set, due to Moore and Smith (see [14, 16]).

First, for a set S we will denote by F (S) the free group on S. More generally, for
a quiver X1 ⇒ X0, we have the associated free groupoid F (X1) ⇒ X0 (sometimes
also called the path groupoid of the quiver): it consists of reduced well-formed
words of elements of X1 and their formal inverses, with multiplication obtained by
concatenation of reduced words (note that a set S can be thought of as a quiver
with X1 = S and X0 = {∗}). A typical element of F (X1) is written as:

w = wε1
1 • · · · • wεk

k , (wi ∈ X1, εi = ±1),

where one defines: t(w−1
i ) := s(wi) and s(w−1

i ) := t(wi). For each x ∈ X0 one
denotes by 1x the “empty word” at x, which by definition has source and target
x and is such that wi • w−1

i = 1t(wi) and w−1
i • wi = 1s(wi). We denote by · the

groupoid multiplication on F (X1). Note also that if X1 ⇒ X0 is a topological
quiver, then F (X1) ⇒ X0 is a topological groupoid in a natural way.

Now, given any simplicial set X = {Xn}, fix x ∈ X. One defines groups Γi(x)
as follows:

• Γ1(x) := F (X1)x (the isotropy group of F (X1) ⇒ X0 at x);
• Γ2(x) := F (Yx)/ ∼, where Yx is the set:

Yx :=
{
(w, σ) ∈ F (X1)×X2 : t(w) = x, s(w) = d0d1σ

}
,

and ∼ is the equivalence relation generated by:

(w1, σ1) • (w1 · w2, σ2) ∼ (w1 · dσ1 · w2, σ2) • (w1, σ1).

Here, given σ ∈ X2, we denote by dσ ∈ F (X1)d0d1σ its boundary:

dσ := d0σ • d2σ • (d1σ)−1.

• Γ3(x) = F (Zx)/ ∼, where Zx is the set:

Zx :=
{
(ξ, (w, τ )) ∈ Γ2(x)× (F (X1)×X3) : t(w) = x, s(w) = d0d1d2τ

}
,

and ∼ is the equivalence relation generated by:

(ξ · (w1, σ), (w1 · w2, τ )) ∼ (ξ, (w1 · dσ1 · w2, τ )).

We also define a group homomorphism δ : Γ2(x) → Γ1(x) by setting on genera-
tors:

(w, σ) �→ w · dσ · w−1,

and another group homomorphism δ : Γ3(x) → Γ2(x), by setting on generators:

(ξ, (w, τ )) �→ ξ · (w, d3τ ) · (w, d1τ )−1 · (w, d2τ ) · (w · (d2d3τ )−1, d0τ ) · ξ−1.

These homomorphisms define a complex of groups:

Γ3(x)
δ �� Γ2(x)

δ �� Γ1(x)

such that Im δ ⊂ Γi(x) are normal subgroups, Ker δ ⊂ Γ2(x) is a central subgroup
and one has:

π1(|X|, x) = Γ1(x)/ Im δ, π2(|X|, x) = Ker δ/ Im δ.

Moreover, one can define a groupoid over X0 by setting:

Π1(X) = F (X1)/ ≈,
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where ≈ is the equivalence relation

w1 ≈ w2 if and only if

⎧⎨⎩
s(w1) = s(w2),
t(w1) = t(w2),
w2 = w1 · δ(Γ2(s(w1))),

and one finds that this coincides with the restriction of the fundamental groupoid
of |X| to X0.

Theorem 7.1 now follows from the following.

Proposition 7.4. Let G be a strongly connected local Lie groupoid and let w1, w2 ∈
W (G). Then w1 ∼ w2 if and only if w̄1 ≈ w̄2, where for a word w, we denote by w̄
the corresponding element in F (G(1)).

Proof. The proof is similar to the group case, which is given in [16]. We redo here
the direct implication and leave the reverse implication for the reader.

In order to prove the direct implication, we can assume that w1 and w2 differ by
an elementary contraction:

w1 = (g1, . . . , gi, . . . , gk), w2 = (g1, . . . , u, v, . . . , gk),

where gi = uv. Now define an element in η ∈ Γ2(s(w1)) by setting:

η := ((gi • · · · • gk)−1, (u, v)).

Then:

δ(η) = (gi • · · · • gk)−1 • u • v • (uv)−1 • gi • · · · • gk.
Hence, we find:

w̄2 = w̄1 · δ(η) ⇔ w̄1 ≈ w̄2.

�

7.3. Simplicial monodromy groups. Consider a (transitive) local groupoidG ⇒
M . The map

φ := (t, s) : G → M ×M,

has as image an open U ⊂ M ×M containing the diagonal. We can view U as a
local groupoid over M (a subgroupoid of the pair groupoid). Fixing x ∈ M , the
surjective local groupoid morphism φ induces surjective group homomorphisms:

φ∗ : ΓG
i (x) → ΓU

i (x) (i = 1, 2, 3).

Denoting the kernel of this map by Ki and omitting the reference to the base point
x, we obtain a commutative diagram with exact rows:

ΓG
3

δ

��

φ∗
�� ΓU

3

δ

��

�� 1

1 �� K2
��

δ

��

ΓG
2

δ

��

φ∗
�� ΓU

2

δ

��

�� 1

1 �� K1
�� ΓG

1 φ∗
�� ΓU

1
�� 1.

It follows that we have a long exact sequence:

· · · �� π2(U, x)
∂s

�� K1/δ(K2) �� π1(G, x) �� π1(U, x) �� · · · .
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Definition 7.5. The morphism ∂s : π2(U, x) → K1/δ(K2) is called the simplicial
monodromy map of G at x. Its image is called the simplicial monodromy group of
G at x.

Note that, in general, Ki �= ΓGx
i . However, we have the following.

Lemma 7.6. Assume that G is strongly connected. Then the map:

Gx → K1/δ(K2), g �→ (g • x−1)δ(K2),

defines a morphism of local groupoids that extends to a surjective group homomor-
phism AC(Gx) → K1/δ(K2).

Proof. First we check that the map is a local group homomorphism. If g1, g2 ∈ Gx

and g1g2 is defined, we need to show that:

(g1 • x−1)δ(K2) · (g2 • x−1)δ(K2) = (g1g2 • x−1)δ(K2).

This follows because δ(K2) ⊂ ΓG
1 is a normal subgroup and we have:

(g1 • x−1) • (g2 • x−1) • (g1g2 • x−1)−1 = g1 • x−1 • g2 • x−1 • x • (g1g2)−1

= g1 • x−1 • g2 • (g1g2)−1

= g1 • x−1 • g1−1 • g1 • g2 • (g1g2)−1

= δ((g1, x)
−1 • (g1, g2)) ∈ δ(K2),

since φ∗((g1, x)
−1 • (g1, g2)) = (x, x)−1 • (x, x) = empty word.

To show that the map is surjective, we will check that:

(i) K1/δ(K2) is a topological group which is connected.
(ii) The image of Gx → K1/δ(K2) is an open neighborhood of the unit.

It follows that the image of Gx generates K1/δ(K2), so AC(Gx) → K1/δ(K2) is a
surjective group homomorphism.

The topology on K1/δ(K2) is the quotient topology induced from the subspace
topology on K1 ⊂ ΓG

1 (x) (F (G) is a topological groupoid, so ΓG
1 (x) := F (G1)x is a

topological group). The image of the map Gx → AC(Gx) is an open neighborhood
of the unit and this map factors through the map Gx → K1/δ(K2). Hence, the
image of Gx → K1/δ(K2) is an open neighborhood of the unit. To check that
K1/δ(K2) is connected, choose any word w ∈ K1

w = gε11 • · · · • gεkk , (gi ∈ G, εi = ±1).

Here k must be even and there exists an involution σ ∈ Sk such that for each gi
with εi = 1 there exists a gσ(i) with εσ(i) = −1, s(gi) = s(gσ(i)) and t(gi) = t(gσ(i)).
Since G is strongly connected, we can find a path of words w(t) ∈ K1 with w(1) = w
and

w(0) = xε1 • · · · • xεk .

Now, w(0) ∈ δ(K2) since we have that x = δ(x, x) and (x, x)ε1 • · · · • (x, x)εk ∈ K2.
So any element in K1/δ(K2) can be connected to the unit. �

We conjecture that the map AC(Gx) → K1/δ(K2) is also injective, so that
AC(Gx) 	 K1/δ(K2). This would mean that we could view the simplicial mon-
odromy map as a homomorphism:

∂s : π2(U, x) → AC(Gx).

We do not know how to prove injectivity for a general strongly connected local
groupoid.
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7.4. Simplicial monodromy for shrunk G. When G is shrunk we have the
following.

Proposition 7.7. If G is a shrunk local Lie groupoid, then there are group iso-
morphisms:

K1/δ(K2) 	 AC(Gx) 	 G(gx).

Proof. Since G is shrunk, we have a local group morphism Gx → G(gx). Applying
the functorAC(−) we obtain a morphism of topological groupoidsAC(Gx) → G(gx).
But Gx is a 1-connected local Lie group, so by Corollary 5.11 we have that AC(Gx)
is a Lie group and AC(Gx) → G(gx) is a Lie group homomorphism. Since AC(Gx)
and G(gx) have the same Lie algebra and the latter is 1-connected, it follows that
this map is actually an isomorphism.

We show that the isomorphism AC(Gx) 	 G(gx) factors into group homomor-
phisms:

K1/δ(K2)



��
���

���
��

AC(Gx)

������������
�� G(gx)

The morphism AC(Gx) → K1/δ(K2) was given in Lemma 7.6 and it is surjective.
So to complete the proof it remains to construct a morphism K1/δ(K2) → G(gx)
making the diagram commute.

Write an element w ∈ K1 in the form:

w = gε11 • · · · • gεkk , (gi ∈ G, εi = ±1).

Using the fact that φ∗(w) is the empty word (the unit in ΓU
1 (x)), we associate to

w a gx-path (which represents an element in G(gx)) by proceeding inductively as
follows.

Step 1. We first choose all the successive pairs of arrows in w of the form:

y
g �� z y

h�� .

Notice that, since φ∗(w) is the empty word, there must exist at least one such pair.
The A-paths P (g) and P (h) have opposite base paths (the geodesics connecting y
and z). Hence, we can find an A-homotopy along trivial spheres from P (g)◦P (h)−1

to a gy-path p(t). In this way, we have “removed” all such vertices z from the word
w and replaced them by gy-paths.

Step 2. After step 1, we will have new successive pairs of arrows (at least one, since
φ∗(w) is the empty word), but now the vertices will have gy-paths and/or gz-paths
attach to them:

y

p1(t)

�� g �� z

p2(t)

��
y

p3(t)

��h�� .

Again, the A-paths P (g) and P (h) have opposite base paths, while pi(t) are A-paths
with constant base paths, so we can find an A-homotopy along trivial spheres from
p1 ◦ P (g) ◦ p2 ◦ P (h)−1 ◦ p3 to a gy-path p(t).
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After applying step 2 as many times as possible, we are left in the end with a
gx-path whose gx-homotopy class defines an element [p(t)] ∈ G(gx).

In order to have a well-defined morphism K1/δ(K2) → G(gx) we need to check
that this construction associates to an element in δ(K2) a gx-path which is gx-
homotopic to the trivial path. But this follows from property (5) in the definition
of a shrunk Lie groupoid (see Definition 5) and the fact that every element in
K2 contains pairs (w1, (g1, h1)) and (w2, (g2, h2)

−1), where (g1, h1), (g2, h2) ∈ G(2)

satisfy ϕ2(g1, h1) = ϕ2(g2, h2). �

Using this result, we can now complete the proof of Theorem 7.2.

Proof of Theorem 7.2. From the previous proposition, we already know that there
is a well-defined map ∂s : π2(U, x) → AC(Gx) giving a long exact sequence (9).
We turn to the proof of the existence of a commutative diagram:

π2(M,x)
∂ ��

��

G(gx)

π2(U, x)
∂s

�� AC(Gx)

		

with vertical arrows which are isomorphisms. Note that the only map that is
missing is the right vertical arrow.

Since G is shrunk, for every pair (x, y) ∈ U there is a unique geodesic connecting
x to y, so the source fibers of U ⇒ M are simply connected. It follows that:

AC(U) 	 Π1(M),

and, in particular, π1(U, x) 	 π1(M,x). We are looking for the degree 2 version of
this isomorphism.

Given an element [α] ∈ π2(M,x), represented by a map α : Δ → M , we subdivide
Δ into k2 triangles as in the proof of Theorem 6.19. The subdivision is such that
e3, e2, and e1 are the edges of a face; then (e2, e1) ∈ U (2). For the resulting
triangulation, we can associate to each lace around a face F :

(e−1
1 , . . . , e−1

n , c, b, a, en, . . . , e1),

the element (wF , σF ) where wF = e−1
1 • · · · • e−1

n and σF = (b, a). If F1, . . . , Fk2 is
the ordered list of faces of Δ, then we obtain an element:

(wF1
, σF1

) • · · · • (wFk2 , σFk2 ) ∈ ΓU
2 (x).

We leave it as an exercise to check that this defines a morphism π2(M,x) →
π2(U, x).

Now consider the construction in the proof of Theorem 6.19 which to [α] asso-
ciates a simplicial map φ : S → G with [φ] = [α]. One of the boundary words of φ is
(x) and the other gives an element (g1, . . . , gk) ∈ AC(Gx). In the present language,
this yields the composition of the map π2(M,x) → π2(U, x) that we have just con-
structed with the simplicial monodromy map ∂s : π2(U, x) → AC(Gx). Hence, the
proof of Theorem 6.19 shows that the diagram above is commutative and that the
first vertical arrow must be an isomorphism. �

Proof of Corollary 7.3. We already know that the morphism AC(G) → G(A) is
surjective. We only need to show that it is injective, i.e., that it restricts to an
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isomorphism on isotropy groups. But the two exact sequences (5) and (9), together
with the diagram in Theorem 7.2, show that this is indeed the case. �
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