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ABSTRACT. A cosymplectic groupoid is a Lie groupoid with a multiplicative co-
symplectic structure. We provide several structural results for cosymplectic grou-
poids and we discuss the relationship between cosymplectic groupoids, Poisson
groupoids of corank 1, and oversymplectic groupoids of corank 1.

1. INTRODUCTION

A cosymplectic groupoid is a Lie groupoid G ⇒ M equipped with a multiplicative
cosymplectic structure (ω,α). This means that ω ∈ Ω2(G ), α ∈ Ω1(G ) are closed
multiplicative forms and α ∧ωm is nowhere vanishing, so it defines a volume form
in G . As we will see later, one must have dimG = 2m+ 1 where m = dimM (we
assume M connected). The notion of cosymplectic groupoid was first studied in [5].

Cosymplectic groupoids lie at the intersection of two well-known, interesting,
classes of Lie groupoids:

• Poisson groupoids, i.e., Lie groupoids with a multiplicative Poisson structure
(see, e.g., [14, 17]). For a cosymplectic groupoid (G ,ω,α) the associated
multiplicative Poisson structure πG ∈ X2(G ) has symplectic foliation kerα

and leafwise symplectic form the restriction of ω .
• Oversymplectic groupoids, i.e., Lie groupoids with a closed multiplicative 2-

form ω satisfying rankω1x = 2dimM, for all x ∈M (see, e.g., [2]). We will
see that the 2-form of a cosymplectic groupoid satisfies this condition.

For both of these classes of Lie groupoids the base M inherits a Poisson structure. For
a cosymplectic groupoid (G ,ω,α) the Poisson structures obtained from πG and from
ω coincide, and will be denoted by πM ∈ X2(M). Our aim in this paper is to give
structural results for cosymplectic groupoids and to establish precise relationships
with these two classes of Lie groupoids.

To describe our main results we observe that, as a consequence of the multiplica-
tivity condition, the standard data associated with a cosymplectic structure satisfies:

(i) kerα ⊂ TG defines an integrable multiplicative distribution in G ;
(ii) ω restricts to a symplectic form on the leaves of kerα , yielding a multiplicative

Poisson structure πG ∈ X2(G );
(iii) The Reeb vector field E ∈ X(G), characterized by iEω = 0 and iEα = 1, is bi-

invariant (i.e., it is both left and right invariant). In particular, it is a complete
vector field.
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These basic facts, to be proved below, give a rich structure to a cosymplectic groupoid.
For example, the collection of all orbits of the Reeb vector field intersecting the iden-
tity section is a bundle of Lie groups K ⊂ G and one has:

Theorem 1.1. For any cosymplectic groupoid (G ,ω,α) there is a short exact se-
quence of topological groupoids over the same base:

(1) 1 // K // G // Σ // 1

where Σ is the orbit space of the Reeb vector field. When this space is smooth, this
is a short exact sequence of Lie groupoids and (Σ,Ω) is a symplectic groupoid for a
unique symplectic structure making the projection G → Σ a Poisson map.

For an arbitrary Poisson groupoid or oversymplectic groupoid, the base Poisson
structure (M,πM) may fail to be integrable. However, for a cosymplectic groupoid
it is always integrable. Indeed, the identity section of a cosymplectic groupoid
(G ,ω,α) is contained in a single symplectic leaf of the Poisson structure πG and
we have:

Proposition 1.2. Let (G ,ω,α) be a cosymplectic groupoid. The symplectic leaf of
πG containing M is a Lie subgroupoid Σ0 ⊂ G , and it yields a symplectic groupoid
(Σ0,ω|Σ0)⇒ M integrating (M,πM).

For a proper cosymplectic groupoid where Σ0 is an embedded submanifold, one
obtains a picture somewhat dual to Theorem 1.1. Namely, the flow of the Reeb vector
field for some fixed time t0 gives a symplectomorphism of Σ0 and one finds that the
cosymplectic groupoid is a symplectic mapping torus.

Theorem 1.3. Let (G ,ω,α) be a proper, source connected, cosymplectic groupoid
and assume that the symplectic leaf Σ0 ⊂ G containing the identity is an embedded
submanifold. Then there is a symplectomorphism ϕ : Σ0→ Σ0 such that G is isomor-
phic to the symplectic mapping torus Σ0×ϕ S1. Moreover, the resulting submersion

q : G → S1,

is a fibration of Lie groupoids.

The short exact sequence (1) may fail to be smooth and, if smooth, it may fail to
split. However, at the infinitesimal level it always splits. In fact, the Lie algebroid
A→M of a cosymplectic groupoid (G ,ω,α) carries a closed IM 2-form µ : A→ T ∗M
and a closed IM 1-form ν : A→M×R, corresponding to ω and α , respectively. We
then obtain the following:

Theorem 1.4. If (G ,ω,α) is a cosymplectic groupoid, its Lie algebroid (A,µ,ν)
is canonically isomorphic to the trivial central extension of the cotangent algebroid
associated with the base Poisson manifold (M,πM):

(A,µ,ν)' (T ∗M⊕R,prT ∗M,prM×R).
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Notice that given a source connected cosymplectic groupoid (G ,ω,α), its source
1-connected cover is a cosymplectic groupoid. Applying the previous result, the latter
are easy to describe:

Corollary 1.5. If (G ,ω,α) is a source 1-connected cosymplectic groupoid then there
is a canonical isomorphism

(G ,ω,α)∼= (Σ(M)×R,pr∗Σ Ω,pr∗R dt)

where (Σ(M),Ω) is the source 1-connected symplectic integration of (M,πM).

In the last part of this note we discuss how far Poisson groupoids and oversym-
plectic groupoids are from being cosymplectic groupoids.

We say that a Poisson groupoid (G ,πG ) is of corank 1 if its Poisson structure
has constant rank equal to dimG − 1, i.e., if its symplectic foliation is regular of
codimension 1. We have the following simple criteria:

Proposition 1.6. Let (G ,πG ) be a Poisson groupoid of corank 1. Then πG is asso-
ciated with a cosymplectic structure if and only if there exists a Poisson vector field
E ∈ X(G ) transverse the symplectic foliation of πG which is bi-invariant.

One the other hand, when (G ,πG ) is a proper Poisson groupoid we will see that
if its leafwise symplectic form admits a multiplicative extension (closed or not) then,
up to a cover, it is homotopic to a cosymplectic groupoid through a homotopy that
does not change the Poisson structure on the base:

Theorem 1.7. Let (G ,πG )⇒ (M,πM) be an orientable proper Poisson groupoid of
corank 1 and assume that there exists a multiplicative 2-form extending its leafwise
symplectic form. If (G̃ , π̃G ) is its universal covering groupoid, then there is a path of
Poisson structures π̃ t

G ∈ X2(G̃ ), starting at π̃ 0
G = π̃G , with the following properties:

(i) each π̃ t
G is multiplicative of corank 1;

(ii) the Poisson structure on M induced by π̃ t
G is πM;

(iii) π̃ 1
G is associated with a multiplicative cosymplectic structure.

Let us turn now to oversymplectic groupoids. Given such a groupoid (G ,ω), if the
foliation given by kerω is simple then the leaf space

Σ := G /kerω

is automatically a symplectic groupoid (this is the origin of the term “oversymplec-
tic”; see [2]). If (G ,ω) is proper and kerω is an orientable line bundle, the quotient
map Φ : G → Σ yields a short exact sequence of Lie groupoids

1 // M×S1 // G
Φ // Σ // 1 .

It follows from recent results in [6] that associated to such a sequence there is a well-
defined multiplicative Chern class, living in the multiplicative de Rham cohomology
of Σ ⇒ M,

c(G ) ∈ H2
M(Σ).

We will show that:
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Theorem 1.8. Let (G ,ω) be a corank 1, orientable, proper oversymplectic groupoid.
If kerω is a simple foliation, then there exists α ∈ Ω1(G ) such that (G ,ω,α) is a
cosymplectic groupoid if and only if the multiplicative Chern class vanishes.

This paper is organized as follows. In Section 2 we recall some basics about
cosymplectic structures, we introduce cosymplectic groupoids, establish its basic
properties, and we prove Theorems 1.1 and 1.3. In Section 3 we construct the in-
finitesimal data associated with a cosymplectic groupoid and we show that its Lie
algebroid fits into a split short exact sequence, proving Theorem 1.4 and Corollary
1.5. In Section 4 we discuss relationships between Poisson groupoids, oversymplec-
tic groupoids and cosymplectic groupoids, deducing in particular Proposition 1.6 and
Theorems 1.7 and 1.8. We mostly follows the conventions and notation of the mono-
graph [3], to which we refer for background on Poisson structures and symplectic
groupoids.

2. COSYMPLECTIC GROUPOIDS

2.1. Background on cosymplectic structures. A cosymplectic structure on a man-
ifold Q of dimension 2m+ 1 is a pair (ω,α), where ω is a closed 2-form, α is a
closed 1-form and ωm∧α is a volume form. These structures were first introduced
by Liberman [11]. We collect here some basic facts about cosymplectic structures.

Associated with a cosymplectic (ω,α) on Q there is a non-vanishing vector field
E ∈ X(Q), called the Reeb vector field, characterized by

(2) iEω = 0, α(E) = 1.

On the other hand, kerα ⊂ T Q is an integrable distribution and the restriction of ω

to its leaves is symplectic. The resulting symplectic foliation determines a regular
Poisson structure πQ ∈ X2(Q) of corank 1. Notice that, by construction, the closed
2-form ω extends the leafwise symplectic form of πQ

ω(π]
Q(β1),π

]
Q(β2)) = 〈β1,π

]
Q(β2)〉, (β1,β2 ∈ T ∗Q).

Moreover, the Reeb vector field is a Poisson vector field everywhere transverse to the
symplectic foliation.

Conversely, assume that (Q,πQ) is a regular Poisson structure of corank 1. If E is
a vector field transverse to the symplectic foliation, then one obtains

(i) a 2-form ω extending the leafwise symplectic form such that kerω = 〈E〉 and
(ii) a 1-form α such that α(E) = 1 and kerα = Imπ

]
Q.

It is not hard to check that ω and α are closed iff E is a Poisson vector field, so we
have ([7, Proposition 18]):

Proposition 2.1. A regular Poisson structure πQ ∈ X2(Q) of corank 1 is defined by
a cosymplectic structure if and only if there a Poisson vector field transverse to the
symplectic foliation.
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Two cosymplectic structures (ω,α) and (ω̃, α̃) define the same Poisson structure
πQ if and only α̃ = f α for a nowhere vanishing Casimir function f ∈ C∞(Q), and
ω̃−ω is a closed two form vanishing on kerα = ker α̃ . In this case, the corresponding
Reeb vector fields are related by Ẽ = 1

f E.
The following examples give some basic constructions of cosymplectic manifolds

related with symplectic manifolds:

Example 2.2. If (S,ωS) is a symplectic manifold then Q = S×R admits the cosym-
plectic structure (pr∗S ωS,pr∗R dt), where t denotes the coordinate on the second factor.
In this case, the vector field E is just ∂

∂ t , while the Poisson structure is πQ = ω−1⊕0.
Obviously, one can replace R by S1 and dt by dθ , obtaining a cosymplectic struc-

ture on S× S1. More generally, one can consider a principal S1-bundle p : Q→ S
over a symplectic manifold (S,ωS) that admits a flat connection 1-form α ∈ Ω1(Q).
Then (p∗ωS,α) is a cosymplectic structure whose underlying Poisson structure has
symplectic foliation the horizontal foliation of α . The Reeb vector field is the infini-
tesimal generator of the S1-action.

Example 2.3. Let (S,ωS) be a symplectic manifold and ϕ : S→ S a symplectomor-
phism. Recall that the corresponding symplectic mapping torus is the fiber bundle

q : Sϕ → S1,

where Sϕ = (S×R)/Z is the orbit space of the free and proper action

Zy S×R, n · (x, t) = (ϕn(x), t +n).

The manifold Sϕ is equipped with the cosymplectic structure (ω,α), where ω is the
2-form obtained from the basic form pr∗S ωS ∈Ω2(S×R) and α = q∗(dθ), with θ the
angle coordinate on S1. The Reeb vector field E ∈ X(Sϕ) is obtained by projecting
the vector field ∂

∂ t .

Remark 2.4. Tischler’s theorem [16] shows that given a nowhere vanishing closed 1-
form α on a compact manifold Q, there exists a fibration q : Q→ S1 with the property
that one can choose c > 0 such that cα and α̃ := q∗dθ are C∞-close. Therefore, if
(Q,ω,α) is a compact cosymplectic manifold, one finds:

(i) The Poisson structure defined by (ω,α) is homotopic to the Poisson structure
defined by (ω,q∗dθ);

(ii) q : Q → S1 can be realized as a symplectic mapping torus with associated
cosymplectic structure (ω̃,q∗dθ) for a modified closed 2-form (see, e.g., [10]).

In this sense, a compact cosymplectic structure (Q,ω,α) is, essentially, a symplectic
mapping torus.

Example 2.5. Let (S,Ω) be a symplectic manifold and ι : Q ↪→ S a submanifold.
If X is a symplectic vector field everywhere transverse to Q, then (ι∗Ω, ι∗(iX Ω))
defines a cosymplectic structure on Q. If f is a function locally defining Q and such
that X( f ) = 1, then the Reeb vector field is given by E = X f |Q, where X f is the
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hamiltonian vector field of f . The associated Poisson structure πQ ∈ X2(Q) is

πQ(β1,β2) := ω
−1(β̃1, β̃2), (β1,β2 ∈ T ∗Q),

where β̃ ∈ T ∗S denotes the unique extension of β ∈ T ∗Q satisfying β (X) = 1.
Every cosymplectic manifold (Q,ω,α) can be realized as a submanifold of a sym-

plectic manifold (S,Ω): one lets S = Q×R with symplectic form Ω = ω +α ∧dt.

2.2. Cosymplectic groupoids. Let G be a Lie groupoid over M. We denote by s
and t the source and target maps, by m : G (2)→ G the multiplication (defined on the
space G (2) of pairs of composable arrows), by i : G → G the inverse map, and by
ε : M → G the identity section. Our convention for the groupoid multiplication is
such that, given two arrows x,y ∈ G , the product x · y := m(x,y) is defined provided
s(x) = t(y). Also, if m ∈ M we write 1m := ε(m) for the unit arrow over m, and if
x ∈ G we write x−1 := i(x) for the inverse arrow. We denote the groupoid by G ⇒ M.

Recall that a form ω ∈Ωk(G ) is said to be multiplicative if

(3) m∗ω = π
∗
1 ω +π

∗
2 ω,

where πi : G (2)→ G are the projections on each factor.

Definition 2.6. A cosymplectic groupoid is a triple (G ,ω,α) where G is a Lie
groupoid and (ω,α) is a cosymplectic structure on G with ω and α multiplicative
forms.

The following proposition gives some basic properties of a cosymplectic groupoid.
It maybe useful to recall that a multiplicative distribution in a groupoid G ⇒ M is a
distribution D⊂ TG with ds(D)= dt(D)=D0 and such that D⇒D0 is a subgroupoid
of the tangent groupoid TG ⇒ T M. We refer to [8] for basic facts about multiplicative
distributions.

Proposition 2.7. Let (G ,ω,α) be a cosymplectic groupoid over M. Then dimG =
2dimM+1 and one has:

(i) kerα ⊂ TG is a multiplicative distribution;
(ii) the induced Poisson structure πG ∈ X2(G ) is multiplicative;

(iii) the Reeb vector field E ∈ X(G ) is bi-invariant;

Proof. It follows easily from the multiplicativity condition that for a cosymplectic
groupoid (G ,ω,α) one has

i∗ω =−ω, i∗α =−α, i∗E =−E,

where E denotes the Reeb vector field. In particular, the pull backs of ω and α along
the identity section vanish and the Reeb vector field is transverse to it. It follows
that the subspace generated by the tangent space to the identity section and the Reeb
vector field is maximally isotropic for ω . Since ω has corank 1, we conclude that for
a cosymplectic groupoid G ⇒ M one must have dimG = 2dimM+1.

The kernel of a multiplicative form is a multiplicative distribution (see [4]). Hence
(i) follows. Since Im(πG )

] = kerα and the symplectic forms on the leaves of πG is
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the restriction of the multiplicative form ω , we must have πG multiplicative and (ii)
also follows.

From the multiplicativity of ω we also have that

D := 〈E〉= kerω,

is a multiplicative distribution, i.e., D is a subgroupoid of TG . Since E is transverse to
the identity section, we find that D0 = D∩T M = 0M, i.e., we have D⊂ kerds∩kerdt.
This means that D is a distribution which is both left and right invariant. In order to
conclude that E itself is both left and right invariant, notice that the right invariant
vector field

−→e : G → TG , g 7→ d1s(g)Rg(E1s(g)),

takes values in D, so i−→e ω = 0. On the other hand, using the multiplicativity of α , we
obtain

αg(
−→e ) = αg(dm(E1s(g) ,0g))

= α1x(E1s(g))+αg(0g) = 1.

Hence, by uniqueness, we must have E =−→e . Similarly, we find that E =←−e , so E is
both left and right invariant and (iii) follows. �

Let (G ,ω,α) be a cosymplectic groupoid with underlying multiplicative foliation
FG = kerα . The proof of Proposition 2.7 shows that the identity section is tangent
to this foliation, i.e.,

T M ⊂ kerα.

Since we assume that M is connected, it follows that it is contained in a single sym-
plectic leaf Σ0 of FG . In general, this leaf is only an immersed submanifold. Still,
denoting its symplectic form by ωΣ0 = ω|Σ0 , we have:

Proposition 2.8. Let (G ,ω,α) be a cosymplectic groupoid. Then Σ0 is a Lie sub-
groupoid of G ⇒M and (Σ0,ωΣ0)⇒M is a symplectic groupoid integrating (M,πM).
In particular, (M,πM) is an integrable Poisson manifold.

Proof. The condition that FG is multiplicative amounts to the identities

(4) i∗FG = FG , m∗(FG ×s t FG ) = FG ,

where FG ×s t FG = G (2)∩ (F ×F ) (note that since F + kerds = F + kerdt this
intersection is transverse). Since M is contained in the leaf Σ0, it follows that the
restriction of s and t to Σ0 are surjective submersions.

Now observe that inversion fixes the identity section, so the first condition in (4)
implies that inversion maps leaves of FG to leaves of FG . Since inversion fixes the
identity section, it follows that it maps Σ0 into itself.

Similarly, the second condition in (4) implies that multiplication maps leaves of
F

(2)
G := FG ×s t FG to leaves of FG . Since Σ0 ×s t Σ0 is a leaf of F

(2)
G containing all

the pairs (1x,1x), it follows that Σ0 is closed under multiplication.
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Therefore we have smooth maps i : Σ0 → G and m : Σ0 ×s t Σ0 → G with image
lying in Σ0. The fact that these are also smooth as maps into Σ0 follows from the
general fact that leaves of foliations are regularly immersed submanifolds.

The inclusion Σ0 ↪→ G is a groupoid morphism, so obviously ωΣ0 := ω|Σ0 is a
multiplicative symplectic form, so (Σ0,ωΣ0) ⇒ M is a symplectic groupoid. The
composition of this inclusion with the target of G gives a Poisson map

t : (Σ0,ωΣ0)→ (M,πM),

so this symplectic groupoid integrates (M,πM). �

2.3. Examples of cosymplectic groupoids. The basic examples of cosymplectic
structures mentioned in Section 2.1 all have multiplicative versions, yielding exam-
ples of cosymplectic groupoids.

Example 2.9. Let (Σ,ΩΣ) be a symplectic groupoid over M. Then we can form the
trivial abelian extension

1 // M×R // Σ×R // Σ // 1

and equip G =Σ×R with the cosymplectic structure (prΣ ΩΣ,pr∗R dt), where t denotes
the coordinate in the second factor. This gives a cosymplectic groupoid, called the
trivial central extension of the symplectic groupoid (Σ,ΩΣ) by R.

A similar construction holds with R replaced by S1 and dθ instead of dt. More
generally, one can consider a central extension of Lie groupoids with trivial kernel

1 // M×S1 // G // Σ // 1

where (Σ,ΩΣ) a symplectic groupoid. A multiplicative Ehresmann connection for
this extension is specified by a multiplicative 1-form α ∈Ω1(G ,R) (see [6, 9]). This
connection is flat if and only if the form is closed, and will see in Section 4.4 that in
this case we obtain a multiplicative cosymplectic structure (pr∗

Σ
ΩΣ,α) in G .

Example 2.10. Let (Σ ⇒ M,ω) be a symplectic groupoid and ϕ : Σ→ Σ a symplec-
tomorphism satisfying

s◦ϕ = s, t◦ϕ = t,

ϕ(gh) = gϕ(h) = ϕ(g)h, (g,h) ∈ Σ
(2).

for all (g,h) ∈ Σ(2). Notice that these properties are satisfied by the time-one map
of any bi-invariant vector field on a Lie groupoid (e.g., the Reeb vector field of a
cosymplectic groupoid). These properties ensure that the map

M×Z ↪→ Σ×R, (x,n) 7→ (ϕn(1x),n),

make the trivial bundle of groups M×Z⇒ M a closed, normal, subgroupoid inside
the isotropy of the direct product groupoid Σ×R⇒ M. It follows that the mapping
torus

Σ×ϕ S1 := (Σ×R)/Z,
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has a unique Lie groupoid structure making the following sequence of Lie groupoids
exact

1 // M×Z // Σ×R // Σ×ϕ S1 // 1 .

Since Σ×ϕ S1 is a symplectic mapping torus, it has a cosymplectic structure which
one checks is multiplicative. Hence, it is a cosymplectic groupoid. Notice that the
map

Σ×ϕ S1→ S1, [g, t] 7→ e2πit ,

is a fibration of Lie groupoids.

Example 2.11. Let (Σ,Ω) be a symplectic groupoid over M and let ι : G ↪→ Σ be
a Lie subgroupoid. Assume that there exists a multiplicative symplectic vector field
X ∈ X(Σ) transverse to G . Then ω := ι∗Ω and α := ι∗(iX Ω) define a multiplicative
cosymplectic structure on the groupoid G .

Conversely, given a cosymplectic groupoid (G ,ω,α) we can form a symplectic
groupoid (Σ,Ω) so that (G ,ω,α) is obtained from (Σ,Ω). We let Σ be the product
of the groupoid G ⇒ M with the identity groupoid R⇒ R, so Σ is a groupoid with
space of arrows G ×R and space of objects M×R. The symplectic form on Σ is
given by Ω = ω +α ∧dt. One checks easily that Ω is multiplicative and that ∂

∂ t is a
multiplicative symplectic vector field transverse to G ×{0} ∼= G .

Example 2.12. For a concrete example of a cosymplectic groupoid which is not a
central extension, let Σ = Tn×Rn ⇒Rn be the trivial bundle of Lie groups with fiber
the torus Tn. Denoting by (θ 1, . . . ,θ n) angle coordinates on the torus and (x1, . . . ,xn)
linear coordinates on Rn, we let Ω := ∑

n
i=1 dθ i∧dxi. This is a multiplicative form so

(Σ,Ω) is a symplectic groupoid. Now fix some a = (a1, . . . ,an) ∈ Rn with ||a|| = 1.
The vector field

X :=
n

∑
i=1

ai
∂

∂xi ,

is a symplectic vector field transverse to the subgroupoid G = Tn×M ⇒ M where M
is the hyperplane

M = {(x1, . . . ,xn) ∈ Rn :
n

∑
i=1

aixi = 0}.

Moreover, X is multiplicative since its flow is a 1-parameter group of automor-
phisms of Σ. Hence, we are in the situation of the previous example, so we obtain a
cosymplectic groupoid (G ,ω,α). In particular, we find that α = −∑

n
i=1 aidθ i. The

hamiltonian vector field X f associated with the function f (x,θ) = ∑
n
i=1 aixi satisfies

iX f ω = d f |TG = 0 and α(X f ) =−∑
n
i=1 a2

i =−1. Hence, we conclude that the Reeb
vector field is

E =−X f |G =−
n

∑
i=1

ai
∂

∂θ i .

It follows that the orbit space of E is smooth if and only if Za defines a discrete
subgroup of Tn, i.e., if and only if the ratios ai : a j are all rational. Therefore this
yields examples of cosymplectic groupoids which are not central extensions.
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2.4. Central extensions and cosymplectic groupoids. Let (G ,ω,α) be a cosym-
plectic groupoid over M. Let us denote by K ⊂ G the collection of all orbits of the
Reeb vector field E which intersect the identity section of G . We call K the kernel
of the cosymplectic groupoid (G ,ω,α).

Theorem 2.13. The kernel K of a cosymplectic groupoid (G ,ω,α) is a bundle of
abelian groups which fits into a short exact sequence of topological groupoids over
the same base

(5) 1 // K // G // Σ // 1

where Σ is the orbit space of the Reeb vector field. When this space is smooth, this
is a short exact sequence of Lie groupoids and (Σ,Ω) is a symplectic groupoid for a
unique symplectic structure making the projection G → Σ a Poisson map.

Proof. Since E is non-vanishing and transverse to the zero section, it follows that K
is a submanifold of G . By Proposition 2.7, it follows that K is a Lie subgroupoid of
G , which is actually a bundle of Lie groups contained in the isotropy of G . One can
form the quotient groupoid Σ = G /K , which is a topological groupoid, giving the
short exact sequence (5).

Notice that the quotient groupoid Σ = G /K can be identified with the space of
orbits of the R-action defined by the Reeb vector field. When this orbit space is
a smooth manifold, the form ω is basic for the R-action so there is a unique sym-
plectic 2-form Ω in Σ such p∗Ω = ω , where p : G → Σ is the projection. Since ω

is multiplicative, it follows that Ω is also multiplicative, so (Σ,Ω) is a symplectic
groupoid. One checks easily that p : (G ,πG )→ (Σ,Ω) is a Poisson map. Since p is a
submersion, it follows that Ω is the unique symplectic form with this property. �

We will call a cosymplectic groupoid (G ,ω,α) a central extension Lie groupoid
whenever the orbit space of the Reeb vector field is smooth, so G fits into a short
exact sequence of Lie groupoids with abelian one-dimensional kernel.

2.5. Proper cosymplectic groupoids. Recall that a Lie groupoid G ⇒ M is called
proper if its space of arrows is Hausdorff and the map (s, t) : G →M×M is proper.
In this sections we restrict our attention to proper cosymplectic groupoids.

Example 2.14. The cosymplectic groupoids arising as symplectic mapping torus, as
in Example 2.10, are proper whenever one starts with a proper symplectic groupoid
(Σ⇒M,ω). In this case, the symplectic leaves of the resulting cosymplectic groupoid
(G ,ω,α) are the fibers of q : G → S1, hence are embedded submanifolds.

The cosymplectic groupoid (G ,ω,α) constructed in Example 2.12 is also proper,
being a bundle of compact Lie groups. However, in this example the symplectic leaf
through the identity section Σ0 is not embedded.

It turns out that a proper cosymplectic groupoid is a symplectic mapping torus, as
in Example 2.10, if and only if the symplectic leaf Σ0 containing the identity section
is embedded.
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Theorem 2.15. Let (G ,ω,α) be a proper, source connected, cosymplectic groupoid
and assume that the symplectic leaf Σ0 ⊂ G is embedded. Then:

(i) there is a time t0 such that the flow of the Reeb vector field at time t0 maps Σ0 to
itself yielding a symplectomorphism

ϕ := ϕ
t0
E : Σ

0→ Σ
0.

(ii) G is isomorphic to the symplectic mapping torus Σ0×ϕ S1 and the resulting
submersion

q : G → S1,

is a fibration of Lie groupoids.

Proof. The Reeb vector field is a complete Poisson vector field transverse to the
sympletic leaves of (G ,πG ). Hence, for each fix t, its flow ϕ t

E : G → G maps leaves
to leaves. We claim that there exists some smallest t0 > 0 such that ϕ

t0
E (Σ

0) = Σ0.
Since the Reeb vector field E is both left and right invariant, it satisfies

s◦ϕ
t
E = s, t◦ϕ

t
E = t,

ϕ
t
E(gh) = gϕ

t
E(h) = ϕ

t
E(g)h, ((g,h) ∈ Σ

(2)).

It follows that the map

(6) Φ : Σ
0×R→ G , (g, t) 7→ ϕ

t
E(g).

is a Lie groupoid morphism. Since Σ0 is embedded, this map is also a local diffeo-
morphism and the image of Φ is open and closed in G . Since M is connected and G
is source connected, we have that G is connected, so Φ is surjective.

Now observe that, for each x ∈M, the map Φ restricts to a Lie group map

Φx : R→ Gx, t 7→Φ(1x, t),

whose image is closed. Since G is proper, isotropy groups are compact, so the image
of this map is compact. Hence, there exists a first time t0 > 0 such Φ(1x, t0)∈ Σ0∩Gx.
Since, for each t, ϕ t

E : G → G maps leaves to leaves we conclude that

ϕ
t0
E (Σ

0) = Σ
0,

and t0 is the smallest positive real satisfying this property, proving our claim.

Lemma 2.16. The morphism (6) yields a short exact sequence of Lie groupoids:

1 // M×Z // Σ0×R Φ // G // 1

where the first map is (x,n) 7→ (ϕnt0
E (1x),−nt0). In particular, the groupoid G is

isomorphic to a mapping torus:

G ' (Σ0×R)/Z,

where the Z-action is generated by (g, t) 7→ (ϕ t0
E (g), t− t0).
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Assuming this lemma, it remains to prove is that Φ pulls back the cosymplectic
structure (ω,α) to the cosymplectic structure (pr∗

Σ0 ωΣ0 ,pr∗R dt). This follows be-
cause:
(a) Φ is a map of the underlying foliations;
(b) The Reeb vector fields ∂t and E are Φ-related

d(g,t)Φ(∂t) =
d
ds

∣∣∣∣
s=t

ϕ
s
E(g) = E|Φ(g,t).

In fact, from (b), we find that

i∂t Φ
∗
ω = Φ

∗iEω = 0.

Since ω is closed, it follows that Φ∗ω is basic relative to prΣ0 : Σ0×R→ Σ0. On the
other hand, for the section s : Σ0→ Σ0×R, g 7→ (g,0), we have

s∗Φ∗ω = (Φ◦ s)∗ω = ωΣ0 ,

so we conclude that
Φ
∗
ω = pr∗

Σ0 ωΣ0 .

Similarly, from (a), we find that for any tangent vector (v,0) ∈ T (Σ0×R)
i(v,0)Φ

∗
α = Φ

∗(idΦ(v,0)α) = 0.

Since α is closed, it follows that Φ∗α is basic relative to pr∗R : Σ0×R→R. But using
(b) again we find

i∂t Φ
∗
α = Φ

∗iEα = 1,
so we conclude that

Φ
∗
α = pr∗R dt.

�

Proof of Lemma 2.16. Observe that for each x there is a smallest positive integer n0
such that

ϕ
n0t0
E (1x) = 1x.

Note that n0 is independent of x. This follows, e.g., because n0 is the order of the
group

Σ
0∩Φx(R) = {1x,ϕ

t0
E (1x), . . . ,ϕ

(n0−1)t0
E (1x)},

and these groups form a Lie group bundle when x vary in M. From this it follows
also that

g ∈ Σ
0, ϕ

t
E(g) = 1x ⇔

 g = ϕ
nt0
E (1x)

for some n,k ∈ Z,
t =−nt0 + k(n0t0).

Since ϕ
nt0
E (1x) =ϕ

(n−kn0)t0
E (1x) we conclude that the kernel of the groupoid morphism

(6) is
KerΦ = {(ϕmt0

E (1x),−mt0) : m ∈ Z}.
This proves the lemma and completes also the proof of the theorem. �
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3. THE INFINITESIMAL PICTURE

3.1. Infinitesimal data of a cosymplectic groupoid. Let (G ,ω,α) be a cosymplec-
tic groupoid, with Reeb vector field E and associated Poisson structure πG . All these
geometric structures have infinitesimal versions, as we now explain.

In general, will denote by A a Lie algebroid with bundle projection p : A→ M,
anchor ρA : A → T M, and Lie bracket [ , ]A on its space of sections Γ(A). Our
conventions are such that if G ⇒M is a Lie groupoid, then its Lie algebroid A=A(G )
has fiber Ax := Kerd1xs and anchor ρA|x := d1xt. Moreover, its space of sections Γ(A)
is identified with the space Xr(G ) of right invariant vector fields on G and we will
denote by

−→
X ∈ Xr(G ) the right invariant vector field corresponding to X ∈ Γ(A). A

multiplicative form ω ∈ Ωk(G ) induces a pair of bundle maps µ : A→ ∧k−1T ∗M,
µ̃ : A→∧kT ∗M, defined by

µ(a)(v1, . . . ,vk−1) = ω(a,dε(v1), . . . ,dε(vk−1)),

µ̃(a)(v1, . . . ,vk) = dω(a,dε(v1), . . . ,dε(vk)).

These maps satisfy the following conditions that characterize infinitesimal multi-
plicative (IM) forms (see, e.g., [1, 2]):

iρA(b)µ(a) =−iρA(a)µ(b),

µ([a,b]A) = LρA(a)µ(b)− iρA(b)(dµ(a)+ µ̃(a)),(7)

µ̃([a,b]A) = LρA(a)µ̃(b)− iρA(b)dµ̃(a),

for all sections a,b ∈ Γ(A). For a closed IM form the component µ̃ vanishes.
After these preliminaries we can now list the infinitesimal data corresponding to

a cosymplectic groupoid. Let (G ,ω,α) be a cosymplectic groupoid and denote by
A→M its Lie algebroid. Then:

(i) The multiplicative closed 1-form α induces a closed IM 1-form ν : A→ R;
(ii) The multiplicative closed 2-form ω induces a closed IM 2-form µ : A→ T ∗M;

(iii) The Reeb vector field E induces a central section e ∈ Γ(A), i.e., E = −→e =←−e
where ρ(e) = 0 and [e,a] = 0, for all a ∈ Γ(A);

(iv) The multiplicative Poisson structure πG induces a unique Poisson structure
πM ∈ X2(M), for which the target is a Poisson map, and the source is an anti-
Poisson map.

Only the last item needs some justification. One can show directly from the condition
that πG is multiplicative that the Poisson bracket of functions locally constant on the
t-fibers is a function locally constant on the t-fibers (see, e.g., [17]), so that there is a
unique Poisson structure on M for which the submersion t : G →M is Poisson.

The infinitesimal data above has various relationships between themselves, which
can be stated in a concise form as follows:
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Proposition 3.1. The Lie algebroid A→M of a cosymplectic groupoid (G ,ω,α) is
a central extension

(8) 0 // k // A
ν

hh
µ // T ∗M // 0

where T ∗M is equipped with the cotangent Lie algebroid structure associated with
the Poisson manifold (M,πM) and k is the trivial line bundle generated by the central
section e ∈ Γ(A). This extension has a natural splitting given by:

ν : A→ k, a 7→ ν(a)e.

Proof.

(i) µ : A→ T ∗M is a surjective Lie algebroid map: The definition of µ shows that
we have a commutative diagram:

TG

��

ω[
// T ∗G

��
T M
�� µ∗ // A∗

��

where µ∗ is the transpose of µ . By Proposition 2.7, we know that E = kerω[ is
transverse to the identity section, so we conclude that µ∗ is injective.

Now observe that since t : (G ,πG )→ (M,πM) is a Poisson map, using the defini-
tion of πG and µ , we obtain

π
]
M(µ(a)) = d1xt ·π#

G · (d1xt)
∗(µ(a)) = ρA(a)

where a ∈ Ax. On the other hand, since µ is a closed IM form, relations (7) give

µ([a,b]A) = LρA(a)µ(b)− iρA(b)dµ(a)

= L
π
]
M(µ(a))µ(b)− i

π
]
M(µ(b))dµ(a) = [µ(a),µ(b)]πM ,

so µ : A→ T ∗M is a Lie algebroid morphism.

(ii) ker(µ) = 〈e〉: Since µ is surjective, its kernel is a rank 1 vector sub-bundle.
Since e ∈ Γ(A) is a non-vanishing section, all we have to check is that µ(e) = 0. This
is clear from the definition of µ since µ(e) = (iEω)|T M = 0.

(iii) ν : A→ 〈e〉, a 7→ ν(a)e, splits the short exact sequence (8): Notice that we
have ν(e) = 1, since

ν(e)(x) = α1x(E1x) = 1.
This shows that ν is a splitting as a short exact sequence of vector bundles. As-
sociated with this splitting there is a T ∗M-connection on the bundle k. Because e
commutes with any section of A, we have that e is a flat section

∇β e = 0.

On the other hand, the curvature 2-form of this splitting is given by

c(β1,β2) = ν([a1,a2]A),
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where ai ∈Kerν is the unique element such that µ(ai)= βi. But this curvature 2-form
vanishes since ν is a closed IM form and from (7) find

ν([a1,a2]A) = LρA(a1)ν(a2)− iρA(a2)dν(a1) = 0,

whenever a1,a2 ∈ Γ(Kerν). �

The previous proposition shows that the space of objects of a cosymplectic groupoid
is a Poisson manifold, and that we have a canonical isomorphism:

(9) A∼= T ∗M⊕R, a 7→ (µ(a),ν(a)).

Under this isomorphism, the anchor becomes

ρA : T ∗M⊕R→ T M, (β ,λ ) 7→ π
]
M(β ),

while the bracket on sections (βi, fi) ∈Ω1(M)×C∞(M) can be written as:

[(β1, f1),(β2, f2)]A = ([β1,β2]πM ,π
]
M(β1)( f2)−π

]
M(β2)( f1)).

In other words, we have:

Corollary 3.2. If (G ,ω,α) is a cosymplectic groupoid, its Lie algebroid (A,µ,ν)
is canonically isomorphic via (9) to the trivial central extension of the cotangent
algebroid associated with the base Poisson manifold (M,πM):

(A,µ,ν)' (T ∗M⊕R,prT ∗M,prM×R).

The only missing piece on the infinitesimal side is what corresponds to the multi-
plicative Poisson structure πG . At the infinitesimal level such a structure corresponds
to a Lie bialgebroid ([14]). The Lie bialgebroid of a cosymplectic groupoid is again
rather special.

Proposition 3.3. If (G ,ω,α) is a cosymplectic groupoid (9) gives an isomorphism
of Lie bialgeboids

(A,A∗)' (T ∗M⊕R,T M⊕R),
where T ∗M denotes the cotangent Lie algebroid of the base Poisson manifold (M,πM).

Proof. By Corollary 3.2, we already know that the IM forms corresponding to (ω,α)
give a Lie algebroid isomorphism:

A∼= T ∗M⊕R, a 7→ (µ(a),ν(a)).

On the other hand, the central section e ∈ Γ(A) satisfies:

dA∗e = 0,

since the Reeb vector field E = −→e is a Poisson vector field on G (see, [13, Thm
11.4.7]). This implies that the transpose of the map (µ,ν) is also a Lie algebroid
isomorphism:

T M⊕R∼= A∗, (u,λ ) 7→ (µ∗(u),ν∗(λ )).

�
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3.2. Source 1-connected cosymplectic groupoids. By the results in the previous
section, source 1-connected cosymplectic groupoids are very easy to describe:

Theorem 3.4. The base of any cosymplectic groupoid (G ,ω,α) is an integrable
Poisson manifold (M,πM). If G is source 1-connected then there is a canonical iso-
morphism

(G ,ω,α)∼= (Σ(M)×R,pr∗Σ Ω,pr∗R dt)
where (Σ(M),Ω) the source 1-connected symplectic integration of (M,πM).

Proof. Since A ∼= T ∗M⊕R, a 7→ (µ(a),ν(a)), is a Lie algebroid isomorphism, it
follows that A is integrable iff and only if T ∗M is integrable. When G is source
1-connected, the integration of this isomorphism gives the desired groupoid isomor-
phism. This groupoid isomorphism maps pr∗

Σ
Ω to ω and pr∗R dt to α . �

In general, if (G ,ω,α) is only source connected, we have

(Σ(M)×R)/Λ,

where i : Λ ↪→ Σ(M)×R is an embedded discrete bundle of Lie groups such that
i∗Ω = 0 and i∗dt = 0. If we assume that the orbit space of the Reeb vector field
E ∈ X(G ) is smooth, we obtain that G is a central extension of some symplectic
integration Σ of (M,πM):

1 // K // G // Σ // 1 .

In general, this sequence fails to split. Moreover, it may have a groupoid splitting, so
that G ∼= Σ×K , while the cosymplectic structure may not be the trivial one (as in
Example 2.9). This is illustrated in the next example.

Example 3.5. Let G =R2×S1 ⇒ R be the trivial bundle of Lie groups with projec-
tion (x,y,θ) 7→ x and fiber R×S1. The forms

ω := dx∧dy+dx∧dθ , α :=
1
2
(dy−dθ) ,

define a multiplicative cosymplectic structure on G . The corresponding Reeb vector
field is

E = ∂y−∂θ .

It follows that the kernel of this cosymplectic groupoid is a trivial bundle R×R→R
and the leaf space of this vector field can be identified with R×S1, giving rise to the
central extension:

1 // R×R // R2×S1 // R×S1 // 1

Here the first map is given by (x,y) 7→ (x,y,−y) while the second map is given by
(x,y,θ) 7→ (x,y+θ). This sequence has the splitting (x,θ) 7→ (x,0,θ).

We claim that although G ∼= Σ×K as a groupoid, the cosymplectic structure
structure is not isomorphic to (p∗

Σ
Ω, p∗K dθ). In fact, the symplectic leaves of G

are the leaves of the distribution dy−dθ = 0, so admit the parametrization (x,y) 7→
(x,y,y+c), with c ∈ S1. Hence, the symplectic leaves are diffeomorphic to R2, while
a trivial extension Σ×K has symplectic leaves diffeomorphic to R×S1.
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4. POISSON GROUPOIDS

4.1. Poisson groupoids of corank 1. Let G ⇒ M be a Lie groupoid equipped with
a regular multiplicative Poisson structure πG of corank 1. First we show that the
dimension of M and G are related as follows:

Proposition 4.1. If (G ⇒ M,πG ) is a Poisson groupoid of corank 1 then

dimG = 2dimM+1.

In particular, its Lie bialgebroid (A,A∗) has a surjective anchor ρA∗ : A∗→ T M.

Proof. Let ω ∈Ω2(G ) be an extension of the leafwise symplectic form, i.e.,

ω(π]
G (α),π]

G (β )) = 〈α,π]
G (β )〉.

We claim that −i∗ω is also an extension of the leafwise symplectic form. Indeed,
using that i is an anti-Poisson map, we find

−i∗ω(π]
G (α),π]

G (β )) =−ω(di ◦π]
G (α),di ◦π]

G (β ))

=−ω(π]
G (i
∗(α)),π]

G (i
∗(β )))

=−〈i∗(α),π]
G (i
∗(β ))) = 〈α,π]

G (β )〉.

It follows that ω̃ = 1
2 (ω− i∗ω) is also an extension satisfying additionally:

i∗ω̃ =−ω̃.

Since i◦ε = ε , we deduce that ε∗ω̃ = 0. In addition, rank ω̃ = dimG −1 implies that
2dimM ≤ dimG −1.

Now observe that since πG is multiplicative, the identity section is coisotropic, i.e.,
we have π

]
G (T M)0 ⊂ T M. So we also have 2dimM ≥ dimG − 1 and we conclude

that dimG = 2dimM+1. �

Given a Poisson groupoid (G ,πG ) we have a morphism of Lie groupoids:

T ∗G

��

π
]
G // TG

��
A∗
��

ρA∗ // T M
��

Proposition 4.1 shows that if πG is of corank 1 the base map is surjective. Then
the transpose ρ∗A∗ : T ∗M→ A is an injective Lie algebroid morphism from the cotan-
gent bundle algebroid T ∗M associated with the base Poisson manifold (M,πM) (see
[13]). In particular, ρ∗A∗ is a Poisson map for the associated fiberwise linear Poisson
structures and we find (alternatively, one can also apply the argument in the proof of
Proposition 2.8):

Corollary 4.2. Let (G ,πG ) be a Poisson groupoid of corank 1. Then the symplectic
leaf Σ0 of πG containing the identity section is a (symplectic) subgroupoid of (G ,πG )
integrating (M,πM). In particular, (M,π) is an integrable Poisson manifold.
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4.2. Poisson groupoids vs cosymplectic groupoids. When is a Poisson groupoid of
corank 1 a cosymplectic groupoid? By Proposition 3.3, its Lie bialgebroid must be a
central extension. A necessary and sufficient condition is the following multiplicative
version of the criteria for a Poisson manifold of corank 1 to be cosymplectic:

Proposition 4.3. A Poisson groupoid (G ,πG ) is cosymplectic if and only if πG is
regular of corank 1 and there exists a non-vanishing, bi-invariant, Poisson vector
field E ∈ X(G ) transverse to the symplectic foliation.

Proof. In one direction, we already know that the Reeb vector field of a cosymplectic
groupoid is a Poisson vector field transverse to the symplectic foliation, which is both
left and right invariant.

To prove the reverse direction, assume that (G ,πG ) is a Poisson groupoid of corank
1 that admits a non-vanishing Poisson vector field E ∈ X(G ) transverse to the sym-
plectic foliation, which is both left and right invariant. We extend the symplectic
forms on the leaves to a 2-form ω by requiring iEω = 0. Also, we define a 1-form
α by requiring α(E) = 1 and kerα = Imπ

]
G . Since E is a Poisson vector field, one

checks easily that ω and α are closed. All we need to show is that ω and α are
multiplicative.

Take (X1,X2) ∈ TG (2). Since E is tranverse to the symplectic foliation Xi = λiE +

π
]
G (γ

i), i = 1,2. Moreover, the fact that E is left and right invariant implies that
ds(π]

G (γ1)) = dt(π]
G (γ2)). Since πG is multiplicative, Imπ

]
G ⊆ TG is a multiplicative

distribution, so we find

dm(X1,X2) = (λ1 +λ2)E +π
]
G (γ1 · γ2).

Using that α(E) = 1, Kerα = Imπ
]
G , and that ω is an extension of πG with iEω = 0,

we can conclude that ω and α are multiplicative. For instance, for α ,

m∗α(X1,X2) = α(dm(X1,X2)) = α((λ1 +λ2)E +π
]
G (γ1 · γ2)) = λ1 +λ2.

On the other hand,

(π∗1 α +π
∗
2 α)(X1,X2) = α(λ1E +π

]
G (γ

1))+α(λ2E +π
]
G (γ

2)) = λ1 +λ2.

Thus, α is multiplicative. �

4.3. Proper Poisson groupoids of corank 1. Proposition 4.3 shows that given a
Poisson groupoid (G ,πG ) of corank 1, in order to have a compatible multiplicative
cosymplectic structure one needs a vector field E ∈ X(G ) transverse to symplectic
foliation satisfying two properties:
(a) E is bi-invariant;
(b) E is a Poisson vector field.
We now analyze these properties for the important special case of proper Poisson
groupoids.

First, as a general remark, note that the existence a vector field transverse to the
symplectic foliation means that this foliation is co-orientable. Since the leaves are
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oriented (being symplectic), this is equivalent to G being orientable. Hence, we will
assume this condition throughout this discussion.

We start by looking into condition (a).

Proposition 4.4. Let (G ,πG ) be an orientable Poisson groupoid of corank 1 with
symplectic foliation FπG . The following conditions are equivalent:

(i) There exists a bi-invariant vector field transverse to FπG ;
(ii) There exists a multiplicative 1-form whose kernel is FπG ;

and they imply that
(iii) There exists a multiplicative 2-form extending the leafwise symplectic form.
If G is proper then the 3 conditions are equivalent.

Proof. (i) ⇔ (ii) A vector field E ∈ X(G ) transverse to FπG determines a unique
1-form 1-form α ∈Ω1(G ) by

iEα = 1, kerα = TFπG .

Conversely, given α these conditions determine E. By an argument entirely similar
to the last part of the proof of Proposition 4.3, one checks that α is multiplicative if
and only if E is both left and right invariant.

(i) ⇒ (iii) Given a vector field E ∈ X(G ) transverse to FπG which is both right
and left invariant, we define an extension ω ∈Ω2(G ) of the leafwise symplectic form
ωFπG

by requiring
iEω = 0.

Again, one checks easily that ω is multiplicative.
(iii)⇒ (i) We assume now that G is proper and we let ω ∈Ω2(G ) be a multiplica-

tive 2-form extending the leafwise symplectic form. Since kerω is multiplicative, it
is a distribution which is both right and left invariant and, as a consequence,

k := kerω|M ⊂ kerρA

is invariant under the adjoint action of G . In addition, since FπG is co-orientable,
there exists a non-vanishing section ẽ ∈ Γ(k). The corresponding right-invariant vec-
tor field Ẽ =

−→̃
e may fail to be left-invariant. To correct this we use properness of G .

Since k is Ad-invariant, the function c : G → R+ defined by

dLg(Ẽs(g)) = c(g)Ẽg,

is multiplicative:
c(gh) = c(g)c(h), ((g,h) ∈ G (2)).

Since G is proper, there is function f : M→ R+ such that

c(g) = f (t(g))/ f (s(g)).
The section e := f ẽ ∈ Γ(k) gives the desired vector field E :=−→e =←−e . �

We now turn to condition (b) assuming than condition (a) holds. We show that,
up to a cover, a proper Poisson groupoid satisfying (a) is homotopic to one satisfying
also (b) through a homotopy that does not change the Poisson structure on the base:
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Theorem 4.5. Let (G ,πG )⇒ (M,πM) be an orientable proper Poisson groupoid of
corank 1 and assume that there exists a multiplicative 2-form extending its leafwise
symplectic form. If (G̃ , π̃G ) is its universal covering groupoid, then there is a path of
π̃ t

G ∈ X2(G̃ ) of Poisson structures starting at π̃ 0
G = π̃G with the following properties:

(i) each π̃ t
G is multiplicative of corank 1;

(ii) the Poisson structure on M induced by π̃ t
G is πM;

(iii) π̃ 1
G is associated with a multiplicative cosymplectic structure.

The rest of this section will be dedicated to the proof of this theorem.
Since πG is a Poisson groupoid of corank 1, ρA∗ is surjective and there is a short

exact sequence

(10) 0 // k∗ // A∗
ρA∗ // T M // 0 ,

and a dual sequence

(11) 0 // T ∗M
ρ∗A∗ // A // k // 0 .

Let ω ∈ Ω2(G ) be the multiplicative 2-form extending the leafwise symplectic
form, and α ∈Ω1(G ) and E ∈ X(G ) be the corresponding multiplicative 1-form and
bi-invariant vector field, given by Proposition 4.4. At the infinitesimal level these
give:

(i) an IM 2-form (µ, µ̃) : A→ T ∗M⊕∧2T ∗M;
(ii) an IM 1-form (ν , ν̃) : A→ R⊕T ∗M;

(iii) a section e ∈ Γ(kerρA) which is central: [e,X ]A = 0, for any X ∈ Γ(A).
This data make the second short exact sequence (11) a split exact sequence of Lie

algebroids. Indeed, one has k= Re, µ(e) = 0 and (11) becomes

0 // M×R i // A
µ //

ν

ee T ∗M

ρ∗A∗

cc
// 0 .

where i(x,λ ) = λe. Because e is central and ρ∗A∗ : T ∗M→ A is a Lie algebroid map,
we conclude that we have a Lie algebroid isomorphism

(µ,ν) : A ∼−→ T ∗M⊕R,
where the right-hand side has anchor and bracket

ρA(α, f ) = π
]
M(α),(12)

[(α, f ),(β ,g)]A = ([α,β ]πM ,π
]
M(α)(g)−π

]
M(β )( f )).,(13)

Now let us look at the exact sequence (10). If e∗ is the section of k∗ defined by
〈e∗,e〉= 1, then k∗ = Re∗ and we have a vector bundle splitting

0 // M×R ν∗ // A∗
ρA∗ //

i∗
ee T M

µ∗

cc
// 0
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The Lie algebroid structure of A∗ can be described in terms of the central section e.

Lemma 4.6. There is a Lie algebroid isomorphism

(ρA∗ , i∗) : A∗ ∼−→ T M⊕R,

where the right-hand side has anchor and Lie bracket given by

ρA∗(X ,a) = X ,(14)

[(X ,a),(Y,b)]A∗ = ([X ,Y ],∇X b−∇Y a+Ω(X ,Y )),(15)

with ∇ the flat connection on the trivial line bundle M×R→M given by

∇X a = X(a)+aγ(X), γ(X) := 〈d∗e,X ∧ e∗〉,

and Ω ∈Ω2(M) given by

Ω(X ,Y ) := 〈d∗e,X ∧Y 〉.

Moreover, for all α ∈Ω1(M) one has

i
π
]
M(α)

γ = 0, i
π
]
M(α)

Ω = 0.

Remark 4.7. Note that Jacobi identity for a Lie bracket of the form (15) is equivalent
to the connection ∇ being flat, i.e., to γ being a closed 1-form, and the 2-form Ω

being d∇-closed

dγ = 0, d∇
Ω = 0.

One can also expressed ∇ and Ω in terms of the 2nd components of the IM forms
associated with (ω,α) as follows

γ = ν̃(e), Ω = µ̃(e).

Hence, A∗ becomes the trivial extension of T M precisely when (ω,α) is cosymplec-
tic, in agreement with Proposition 3.3.

Proof of the Lemma 4.6. Under the identification (ρA∗ , i∗) : A∗ ∼−→ T M⊕R, one has
∇X e∗ = [X ,e∗]A∗ and Ω(X ,Y )e∗ = [X ,Y ]A∗ . Hence, using the definition of d∗, we find

γ(X) = 〈e, [X ,e∗]A∗〉
= 〈d∗e,X ∧ e∗〉+X(〈e,e∗〉)−ρA∗(e∗)(〈e,X〉) = 〈d∗e,X ∧ e∗〉.

Ω(X ,Y ) = 〈e∗, [X ,Y ]A∗〉
= 〈d∗e,X ∧Y 〉+X(〈e,Y 〉)−Y (〈e,X〉) = 〈d∗e,X ∧Y 〉.

On the other hand, by [14, Cor. 3.9], we have

iρ∗A(α)d∗e = [e,ρ∗A∗(α)]A−d∗(〈α,ρA(e)〉)−ρ
∗
A∗(iρA(e)dα).

Observing that ρ∗A(α) =−π
]
M(α) and ρA(e) = 0, the result follows. �
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Next, we will see that (A∗,A) is a triangular Lie bialgebroid in the sense of Macken-
zie and Xu [14], i.e., there exists an element Λ ∈ Γ(∧2A∗) satisfying

[Λ,Λ]A∗ = 0,

such that the anchor and Lie bracket on A = (A∗)∗ are given by

ρA(ξ ) = Λ
](ξ ),(16)

[ξ1,ξ2]A = [ξ1,ξ2]Λ := LΛ](ξ1)ξ2−LΛ](ξ2)ξ1−dA(Λ(ξ1,ξ2)).(17)

In fact, we have the following general result which is an analogue for central ex-
tensions of the fact that for any Poisson structure (M,πM) the pair (T M,T ∗M) is a
triangular Lie bialgebroid.

Proposition 4.8. Let γ ∈Ω1(M), Ω ∈Ω2(M) and πM ∈X2(M), and denote by ∇ the
connection on the trivial line bundle given by γ . Assume that:

(i) γ is closed: dγ = 0;
(ii) Ω is d∇-closed: d∇Ω = 0;

(iii) πM is Poisson: [πM,πM] = 0.
Then A∗ = T M⊕R, with anchor (14) and Lie bracket (15), and A = T ∗M⊕R with
anchor (12) and Lie bracket (13) are both Lie algebroids. If, additionally, one has

i
π
]
M(α)

γ = 0, i
π
]
M(α)

Ω = 0, (α ∈Ω
1(M)),

then (A∗,A) is a triangular Lie bialgebroid for the section Λ ∈ Γ(∧2A∗) given by

Λ((α, f ),(β ,g)) := πM(α,β ).

In particular, in this case one has

[Λ,Λ]A∗ = 0.

Proof of Proposition 4.8. The fact that both A and A∗ are Lie algebroids is standard.
To check that under the additional assumptions on γ and Ω the pair (A∗,A) is a trian-
gular bialgebroid, notice that

ρA(α, f ) = π
]
M(α) = Λ

](α, f ), ((α, f ) ∈ Γ(A)),

so (16) holds. On the other hand, we find

〈LΛ](α, f )(β ,g),(Y,b)〉= 〈L(π]
M(α),0)(β ,g),(Y,b)〉

= π
]
M(α)(〈(β ,g),(Y,b)〉)−〈(β ,g), [π]

M(α,0),(Y,b)]A〉

= π
]
M(α)(〈β ,Y 〉)+π

]
M(α)(gb)+

−〈β , [π]
M(α),Y ]〉−g∇](α)b−gΩ(π]

M(α),Y )

= 〈L
π
]
M(α)

β −gi
π
]
M(α)

Ω,Y 〉+bπ
]
M(α)(g)−gb(i

π
]
M(α)

γ)

= 〈L
π
]
M(α)

β ,Y 〉+bπ
]
M(α)(g)〉,
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where in the last line we have used the extra assumptions on on γ and Ω. Using this
we find that the Lie bracket on A is indeed given by (17), namely

[(α, f ),(β ,g)]Λ = LΛ](α, f )(β ,g)−LΛ](β ,g)(α, f )−dA(Λ((α, f )(β ,g)))

= (L
π
]
M(α)

β ,π]
M(α)(g))− (L

π
]
M(β )

α,π]
M(β )( f ))− (d(πM(α,β )),0)

= ([α,β ]πM ,π
]
M(α)(g)−π

]
M(β )( f ))

= [(α, f ),(β ,g)]A.

To complete the proof we show that [Λ,Λ]A∗ = 0. For this we observe that by the
computation above we have

[Λ,Λ]]A∗((α, f ),(β ,g)) = Λ
]
(
[(α, f ),(β ,g)]Λ

)
− [Λ](α, f ),Λ](β ,g)]

= Λ
]
(
[(α, f ),(β ,g)]A

)
− [Λ](α, f ),Λ](β ,g)]

= π
]
M([α,β ]πM)− [π]

M(α),π]
M(β )]

= [πM,πM]](α,β ) = 0,

where the first identity is Lemma 2.2 in [12]. �

We can now complete the proof of Theorem 4.5. We perform two consecutive
homotopies of Lie bialgebroids as follows:

(1) Starting with the original Poisson groupoid, its Lie bialgebroid is a triangular
Lie bialgebroid (A∗,A) as in Proposition 4.8 with associated data (γ,Ω,πM).
We can rescale the 2-form Ω, obtaining a family of triangular Lie bialge-
broids (A∗t ,A) with data (γ,(1− t)Ω,πM), t ∈ [0,1] (note that this triple still
satisfies for each t all the conditions in the proposition).

(2) The previous homotopy gives at t = 1 a Lie bialgebroid with corresponding
triple (γ,Ω = 0,πM). Now we can rescale the connection 1-form γ , obtaining
a family of triangular Lie bialgebroids (A∗t ,A) with data ((1− t)γ,0,πM),
t ∈ [0,1] (notice again that this triple still satisfies for each t all the conditions
in the proposition).

The result of these two consecutive deformations is a Lie bialgebroid (A∗,A) whose
associated triple has both γ and Ω equal to zero, i..e, it is of cosymplectic type
(cf. Proposition 3.3).

Finally, we observe that in these deformations (A∗t ,A) the Lie algebroid A and
the anchors are both fixed, and so is the underling Poisson structure. Using the
Mackenzie-Xu correspondence between Lie bialgebroids and source 1-connected Lie
groupoids [15], we conclude that at the level of the Lie groupoid G̃ we have a path of
multiplicative Poisson structures π̃ t

G ∈X2(G̃ ) as in the statement of Theorem 4.5. �

Remark 4.9. A geometric way of thinking about the two deformations in the proof
is as follows. We start with a Poisson groupoid (G ,πG ) which can be described
by a pair (ω,α) consisting of a multiplicative 2-form and a multiplicative 1-form,
which fail to be closed but, nonetheless, kerα is an integrable distribuition and the
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restriction of ω to the leaves of kerα is symplectic. After replacing G by G̃ , we are
able to construct homotopies as follows:

(1) the first homotopy consists of a deformation (ωt ,α) where the 1-form α is
fixed, the 2-form ωt is multiplicative, at t = 0 equals ω and at t = 1 is closed;

(2) the second homotopy consists of a deformation (ω1,αt) where the 2-form
ω1 is fixed, the 1-form αt is multiplicative, at t = 0 equals α and at t = 1 is
closed;

Moreover, through out these deformations the 1-form always defines an integral dis-
tribution and the restriction of the 2-form to its leaves is symplectic, so they define a
multiplicative Poisson structure πt on G .

4.4. Proper over-symplectic groupoids of corank 1. Consider an oversymplectic
groupoid (G ,ω) of corank 1 for which kerω is a simple foliation. Then we obtain an
extension

1 // K // (G ,ω)
q // (Σ,ΩΣ) // 1

where (Σ,ΩΣ) is a symplectic groupoid and ω = q∗ΩΣ. If G is proper and orientable,
then K is the trivial S1-bundle of groups and we have a S1-central extension

1 // M×S1 // G
q // Σ // 1 .

Notice that this also makes G into a S1-principal bundle and we denote the generator
of the S1-action by ∂θ ∈ X(G ). A multiplicative Ehresmann connection for such an
extension is given by a multiplicative 1-form α ∈Ω1(G ) with the property that:

(18) i∂θ
α = 1.

We refer the reader to [6, 9] for the theory of such connections and its relation to
ordinary principal bundle connections.

It is proved in [6] that a S1-central extension of a proper groupoid always admits
a multiplicative Ehresmann connection α . Its curvature 2-form is the multiplicative
2-form

Ω := dα ∈Ω
2(G ).

This form is closed and so by (18) it is basic. Hence, we have a multiplicative, closed,
2-form Ω ∈Ω2(Σ) such that:

Ω = q∗Ω.

Denoting by H•M(Σ) the multiplicative de Rham cohomology of Σ ⇒ M, we have:

Proposition 4.10. Given a S1-central extension of a proper Lie groupoid Σ

1 // M×S1 // G
q // Σ // 1 ,

the class of the basic curvature of a multiplicative Ehresmann connection

[Ω] ∈ H2
M(Σ)

is independent of the choice of connection.
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Proof. If α1 and α2 are two multiplicative Ehresmann connections then their differ-
ence α1−α2 is a basic multiplicative 1-form, i.e., we have

α1−α2 = q∗β , with β ∈Ω
1(Σ) multiplicative.

It follows that their basic curvature 2-forms differ by an exact multiplicative form:

Ω1−Ω2 = q∗dβ .

�

We call the class [Ω] ∈ H2
M(Σ) the multiplicative Chern class of the extension.

This class vanishes if and only if the extension admits a flat multiplicative Ehresmann
connection.

Theorem 4.11. Let (G ,ω) be a corank 1, orientable, proper oversymplectic groupoid.
If kerω is a simple foliation, then there exists α ∈ Ω1(G ) such that (G ,ω,α) is a
cosymplectic groupoid if and only if the corresponding S1-central extension has van-
ishing multiplicative Chern class.

Proof. If we can complete ω to a multiplcative cosymplectic stucture (ω,α) then
obviously α is a flat multiplicative Ehresmann connection.

For the reverse direction, assume that the multiplicative Chern class vanishes so
the extension admits a multiplicative Ehresmann connection α . Let dimG = 2n+1,
where 2n = dimΣ. From (18) and the fact that ω = q∗ΩΣ, with ΩΣ non-degenerate, it
follows that α ∧ωn is nowhere vanishing. Hence, (ω,α) is a multiplicative cosym-
plectic structure. �
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