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PART 1

Lie Algebroids: Basic Concepts
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Basic Definitions

Lie algebroids are geometric vector bundles.
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Basic Definitions

Lie algebroids are geometric vector bundles.

A Lie algebroid over a smooth manifold M is a vector bundle π : A → M with:
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Basic Definitions

Lie algebroids are geometric vector bundles.

A Lie algebroid over a smooth manifold M is a vector bundle π : A → M with:

• a Lie bracket [ , ] : Γ(A)× Γ(A) → Γ(A);
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Basic Definitions

Lie algebroids are geometric vector bundles.

A Lie algebroid over a smooth manifold M is a vector bundle π : A → M with:

• a Lie bracket [ , ] : Γ(A)× Γ(A) → Γ(A);

• a bundle map # : A → TM, called the anchor;
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Basic Definitions

Lie algebroids are geometric vector bundles.

A Lie algebroid over a smooth manifold M is a vector bundle π : A → M with:

• a Lie bracket [ , ] : Γ(A)× Γ(A) → Γ(A);

• a bundle map # : A → TM, called the anchor;

and they are compatible:
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Basic Definitions

Lie algebroids are geometric vector bundles.

A Lie algebroid over a smooth manifold M is a vector bundle π : A → M with:

• a Lie bracket [ , ] : Γ(A)× Γ(A) → Γ(A);

• a bundle map # : A → TM, called the anchor;

and they are compatible:

(i) the map # : Γ(A) → X1(M) is a Lie algebra homomorphism;
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Basic Definitions

Lie algebroids are geometric vector bundles.

A Lie algebroid over a smooth manifold M is a vector bundle π : A → M with:

• a Lie bracket [ , ] : Γ(A)× Γ(A) → Γ(A);

• a bundle map # : A → TM, called the anchor;

and they are compatible:

(i) the map # : Γ(A) → X1(M) is a Lie algebra homomorphism;

(ii) the Leibniz identity holds.



Home Page

Title Page

Contents

JJ II

J I

Page 3 of 39

Go Back

Full Screen

Close

Quit

Basic Definitions

Lie algebroids are geometric vector bundles.

A Lie algebroid over a smooth manifold M is a vector bundle π : A → M with:

• a Lie bracket [ , ] : Γ(A)× Γ(A) → Γ(A);

• a bundle map # : A → TM, called the anchor;

and they are compatible:

(i) the map # : Γ(A) → X1(M) is a Lie algebra homomorphism;

(ii) the Leibniz identity holds.

A morphism of Lie algebroids is a bundle map φ : A1 → A2 which preserves anchors
and Lie brackets.
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Basic Properties

The kernel and the image of the anchor give basic objects associated with any Lie algebroid:
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Basic Properties

The kernel and the image of the anchor give basic objects associated with any Lie algebroid:

The isotropy Lie algebra at x ∈ M is:

gx ≡ Ker #x.
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Basic Properties

The kernel and the image of the anchor give basic objects associated with any Lie algebroid:

The isotropy Lie algebra at x ∈ M is:

gx ≡ Ker #x.

The characteristic foliationF is the singular foliation of M determined by the distribution:

x 7→ Dx ≡ Im #x.
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Basic Properties

The kernel and the image of the anchor give basic objects associated with any Lie algebroid:

The isotropy Lie algebra at x ∈ M is:

gx ≡ Ker #x.

The characteristic foliationF is the singular foliation of M determined by the distribution:

x 7→ Dx ≡ Im #x.

If x and y belong to a leaf L ∈ F , then gx ' gy. Hence, we get a bundle of Lie algebras

gL =
⋃
x∈L

gx → L.
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Basic Properties

The kernel and the image of the anchor give basic objects associated with any Lie algebroid:

The isotropy Lie algebra at x ∈ M is:

gx ≡ Ker #x.

The characteristic foliationF is the singular foliation of M determined by the distribution:

x 7→ Dx ≡ Im #x.

If x and y belong to a leaf L ∈ F , then gx ' gy. Hence, we get a bundle of Lie algebras

gL =
⋃
x∈L

gx → L.

The short exact sequence of a leaf is the short exact sequence of Lie algebroids:

0 −→ gL −→ AL
#−→ TL −→ 0
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EXAMPLES A
Ordinary Geometry
(M a manifold) TM

��
M

Lie Theory
(g a Lie algebra)

g

��
{∗}

Foliation Theory
(F a regular foliation) TF

��
M

Equivariant Geometry
(ρ : g → X(M) an action) M× g

��
M

Presymplectic Geometry
(M presymplectic) TM×R

��
M

Poisson Geometry
(M Poisson) T∗M

��
M
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Lie Algebroid Cohomology

A first example of a global invariant of a Lie algebroid:
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Lie Algebroid Cohomology

A first example of a global invariant of a Lie algebroid:

A-differential forms: Ω•(A) = Γ(∧•A∗)
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Lie Algebroid Cohomology

A first example of a global invariant of a Lie algebroid:

A-differential forms: Ω•(A) = Γ(∧•A∗)

A-differential: dA : Ω•(A) → Ω•+1(A)

dAQ(α0, . . . ,αr) ≡
1

r + 1

r+1

∑
k=0

(−1)k#αk(Q(α0, . . . , α̂k, . . . ,αr))

+
1

r + 1 ∑
k<l

(−1)k+l+1Q([αk,αl ],α0, . . . , α̂k, . . . , α̂l , . . . ,αr).
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Lie Algebroid Cohomology

A first example of a global invariant of a Lie algebroid:

A-differential forms: Ω•(A) = Γ(∧•A∗)

A-differential: dA : Ω•(A) → Ω•+1(A)

dAQ(α0, . . . ,αr) ≡
1

r + 1

r+1

∑
k=0

(−1)k#αk(Q(α0, . . . , α̂k, . . . ,αr))

+
1

r + 1 ∑
k<l

(−1)k+l+1Q([αk,αl ],α0, . . . , α̂k, . . . , α̂l , . . . ,αr).

A-cohomology:

H•(A) ≡ Ker dA
Im dA

In general, it is very hard to compute. . .



Home Page

Title Page

Contents

JJ II

J I

Page 7 of 39

Go Back

Full Screen

Close

Quit

Examples

A H•(A)
Ordinary Geometry
(M a manifold) TM

��
M

de Rham
cohomology

Lie Theory
(g a Lie algebra)

g

��
{∗}

Lie algebra
cohomology

Foliation Theory
(F a regular foliation) TF

��
M

foliated
cohomology

Equivariant Geometry
(ρ : g → X(M) an action) M× g

��
M

gener. foliated
cohomology

Poisson Geometry
(M Poisson) T∗M

��
M

Poisson
cohomology
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Groupoids

A groupoid is a small category where every morphism is an isomorphism.



Home Page

Title Page

Contents

JJ II

J I

Page 8 of 39

Go Back

Full Screen

Close

Quit

Groupoids

A groupoid is a small category where every morphism is an isomorphism.

G ≡ set of morphisms M ≡ set of objects.
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Groupoids

A groupoid is a small category where every morphism is an isomorphism.

G ≡ set of morphisms M ≡ set of objects.

• source and target maps:

•
t(g)

•
s(g)

g
tt

G
s

//
t // M
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Groupoids

A groupoid is a small category where every morphism is an isomorphism.

G ≡ set of morphisms M ≡ set of objects.

• source and target maps:

•
t(g)

•
s(g)

g
tt

G
s

//
t // M

• product:

•
t(h)

•
s(h)=t(g)

h
tt

•
s(g)

g
qq

hg

��

G(2) = {(h, g) ∈ G × G : s(h) = t(g)}

m : G(2) → G

Rg : s−1(t(g)) → s−1(s(g))
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Groupoids

A groupoid is a small category where every morphism is an isomorphism.

G ≡ set of morphisms M ≡ set of objects.

• source and target maps:

•
t(g)

•
s(g)

g
tt

G
s

//
t // M

• product:

•
t(h)

•
s(h)=t(g)

h
tt

•
s(g)

g
qq

hg

��

G(2) = {(h, g) ∈ G × G : s(h) = t(g)}

m : G(2) → G

Rg : s−1(t(g)) → s−1(s(g))

• identity: ε : M ↪→ G

•
x

1x

��
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Groupoids

A groupoid is a small category where every morphism is an isomorphism.

G ≡ set of morphisms M ≡ set of objects.

• source and target maps:

•
t(g)

•
s(g)

g
tt

G
s

//
t // M

• product:

•
t(h)

•
s(h)=t(g)

h
tt

•
s(g)

g
qq

hg

��

G(2) = {(h, g) ∈ G × G : s(h) = t(g)}

m : G(2) → G

Rg : s−1(t(g)) → s−1(s(g))

• identity: ε : M ↪→ G

•
x

1x

��

• inverse: ι : G // G

t(g)•

g−1
33
•s(g)

g
ss
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Lie Groupoids

A Lie groupoid is a groupoid where everything is C∞.

Caution: G may not be Hausdorff, but all other manifolds (M, s and t-fibers,. . . ) are.
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Lie Groupoids

A Lie groupoid is a groupoid where everything is C∞.

Caution: G may not be Hausdorff, but all other manifolds (M, s and t-fibers,. . . ) are.

Proposition 1.1. Every Lie groupoid G
s

//
t // M determines a Lie algebroid π : A → M.
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Lie Groupoids

A Lie groupoid is a groupoid where everything is C∞.

Caution: G may not be Hausdorff, but all other manifolds (M, s and t-fibers,. . . ) are.

Proposition 1.1. Every Lie groupoid G
s

//
t // M determines a Lie algebroid π : A → M.

s-fibers

t-fibers

hg

g

t(h) s(h)=t(g) s(g) M

G
h
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Lie Groupoids

A Lie groupoid is a groupoid where everything is C∞.

Caution: G may not be Hausdorff, but all other manifolds (M, s and t-fibers,. . . ) are.

Proposition 1.1. Every Lie groupoid G
s

//
t // M determines a Lie algebroid π : A → M.

s-fibers

t-fibers

hg

g

t(h) s(h)=t(g) s(g) M

G
h

M
A=Ker d s



Home Page

Title Page

Contents

JJ II

J I

Page 9 of 39

Go Back

Full Screen

Close

Quit

Lie Groupoids

A Lie groupoid is a groupoid where everything is C∞.

Caution: G may not be Hausdorff, but all other manifolds (M, s and t-fibers,. . . ) are.

Proposition 1.1. Every Lie groupoid G
s

//
t // M determines a Lie algebroid π : A → M.

s-fibers

t-fibers

hg

g

t(h) s(h)=t(g) s(g) M

G
h

M
A=Ker d s
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Lie Groupoids

A Lie groupoid is a groupoid where everything is C∞.

Caution: G may not be Hausdorff, but all other manifolds (M, s and t-fibers,. . . ) are.

Proposition 1.1. Every Lie groupoid G
s

//
t // M determines a Lie algebroid π : A → M.

s-fibers

t-fibers

hg

g

t(h) s(h)=t(g) s(g) M

G
h

M
A=Ker d s

#

A
#= dt
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Lie Groupoids

A Lie groupoid is a groupoid where everything is C∞.

Caution: G may not be Hausdorff, but all other manifolds (M, s and t-fibers,. . . ) are.

Proposition 1.1. Every Lie groupoid G
s

//
t // M determines a Lie algebroid π : A → M.

s-fibers

t-fibers

hg

g

t(h) s(h)=t(g) s(g) M

G
h

M
A=Ker d s

#

A
#= dt

Rg
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Lie Groupoids

A Lie groupoid is a groupoid where everything is C∞.

Caution: G may not be Hausdorff, but all other manifolds (M, s and t-fibers,. . . ) are.

Proposition 1.1. Every Lie groupoid G
s

//
t // M determines a Lie algebroid π : A → M.

s-fibers

t-fibers

hg

g

t(h) s(h)=t(g) s(g) M

G
h

M
A=Ker d s

#

A
#= dt

Rg
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Lie Groupoids

A Lie groupoid is a groupoid where everything is C∞.

Caution: G may not be Hausdorff, but all other manifolds (M, s and t-fibers,. . . ) are.

Proposition 1.1. Every Lie groupoid G
s

//
t // M determines a Lie algebroid π : A → M.

s-fibers

t-fibers

hg

g

t(h) s(h)=t(g) s(g) M

G
h

M
A=Ker d s

#

A
#= dt

Rg

[α,β]= α[X , X ]
β
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Examples

A H•(A) G
Ordinary Geometry
(M a manifold) TM

��
M

de Rham
cohomology M× M

�� ��
M

Lie Theory
(g a Lie algebra)

g

��
{∗}

Lie algebra
cohomology G

�� ��
{∗}

Foliation Theory
(F a regular foliation) TF

��
M

foliated
cohomology Hol

�� ��
M

Equivariant Geometry
(ρ : g → X(M) an action) M× g

��
M

gener. foliated
cohomology G × M

�� ��
M

Poisson Geometry
(M Poisson) T∗M

��
M

Poisson
cohomology ???
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PART 2

The Weinstein Groupoid and Integrability
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A-Homotopy
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A-Homotopy

Proposition 2.1. For every Lie groupoid G there exists a unique source simply-connected Lie
groupoid G̃ with the same associated Lie algebroid.
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A-Homotopy

Proposition 2.1. For every Lie groupoid G there exists a unique source simply-connected Lie
groupoid G̃ with the same associated Lie algebroid.

Construction is similar to Lie group case:
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A-Homotopy

Proposition 2.1. For every Lie groupoid G there exists a unique source simply-connected Lie
groupoid G̃ with the same associated Lie algebroid.

Construction is similar to Lie group case:

• P(G) = {g : I → G| s(g(t)) = x, g(0) = 1x};



Home Page

Title Page

Contents

JJ II

J I

Page 12 of 39

Go Back

Full Screen

Close

Quit

A-Homotopy

Proposition 2.1. For every Lie groupoid G there exists a unique source simply-connected Lie
groupoid G̃ with the same associated Lie algebroid.

Construction is similar to Lie group case:

• P(G) = {g : I → G| s(g(t)) = x, g(0) = 1x};

• g0 ∼ g1 iff there exists homotopy gε ∈ P(G), ε ∈ [0, 1];
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A-Homotopy

Proposition 2.1. For every Lie groupoid G there exists a unique source simply-connected Lie
groupoid G̃ with the same associated Lie algebroid.

Construction is similar to Lie group case:

• P(G) = {g : I → G| s(g(t)) = x, g(0) = 1x};

• g0 ∼ g1 iff there exists homotopy gε ∈ P(G), ε ∈ [0, 1];

• The product g · g′ is defined if t(g′(1)) = s(g(0)). It is given by:

g · g′(t) =

 g′(2t), 0 ≤ t ≤ 1
2

g(2t− 1)g′(1), 1
2 < t ≤ 1.
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A-Homotopy

Proposition 2.1. For every Lie groupoid G there exists a unique source simply-connected Lie
groupoid G̃ with the same associated Lie algebroid.

Construction is similar to Lie group case:

• P(G) = {g : I → G| s(g(t)) = x, g(0) = 1x};

• g0 ∼ g1 iff there exists homotopy gε ∈ P(G), ε ∈ [0, 1];

• The product g · g′ is defined if t(g′(1)) = s(g(0)). It is given by:

g · g′(t) =

 g′(2t), 0 ≤ t ≤ 1
2

g(2t− 1)g′(1), 1
2 < t ≤ 1.

The quotient gives the monodromy groupoid:

G̃ ≡ P(G)/ ∼ //// M
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A-Homotopy (cont.)

Lemma 2.2. The map DR : P(G) → P(A) defined by

(DRg)(t) ≡ d
ds

g(s)g−1(t)
∣∣∣∣
s=t

is a homeomorphism onto

P(A) ≡
{

a : I → A| d
dt

π(a(t)) = #a(t)
}

(A-paths).
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A-Homotopy (cont.)

Lemma 2.2. The map DR : P(G) → P(A) defined by

(DRg)(t) ≡ d
ds

g(s)g−1(t)
∣∣∣∣
s=t

is a homeomorphism onto

P(A) ≡
{

a : I → A| d
dt

π(a(t)) = #a(t)
}

(A-paths).

s-fibers

t-fibers

M

G
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A-Homotopy (cont.)

Lemma 2.2. The map DR : P(G) → P(A) defined by

(DRg)(t) ≡ d
ds

g(s)g−1(t)
∣∣∣∣
s=t

is a homeomorphism onto

P(A) ≡
{

a : I → A| d
dt

π(a(t)) = #a(t)
}

(A-paths).

s-fibers

t-fibers

M

G

g(t)
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A-Homotopy (cont.)

Lemma 2.2. The map DR : P(G) → P(A) defined by

(DRg)(t) ≡ d
ds

g(s)g−1(t)
∣∣∣∣
s=t

is a homeomorphism onto

P(A) ≡
{

a : I → A| d
dt

π(a(t)) = #a(t)
}

(A-paths).

s-fibers

t-fibers

M

G

g(t)
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A-Homotopy (cont.)

Lemma 2.2. The map DR : P(G) → P(A) defined by

(DRg)(t) ≡ d
ds

g(s)g−1(t)
∣∣∣∣
s=t

is a homeomorphism onto

P(A) ≡
{

a : I → A| d
dt

π(a(t)) = #a(t)
}

(A-paths).

s-fibers

t-fibers

M

G

g(t)
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A-Homotopy (cont.)

Lemma 2.2. The map DR : P(G) → P(A) defined by

(DRg)(t) ≡ d
ds

g(s)g−1(t)
∣∣∣∣
s=t

is a homeomorphism onto

P(A) ≡
{

a : I → A| d
dt

π(a(t)) = #a(t)
}

(A-paths).

s-fibers

t-fibers

M

G

g(t)
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A-Homotopy (cont.)

Lemma 2.2. The map DR : P(G) → P(A) defined by

(DRg)(t) ≡ d
ds

g(s)g−1(t)
∣∣∣∣
s=t

is a homeomorphism onto

P(A) ≡
{

a : I → A| d
dt

π(a(t)) = #a(t)
}

(A-paths).

s-fibers

t-fibers

M

G

g(t)

DR
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A-Homotopy (cont.)

Lemma 2.2. The map DR : P(G) → P(A) defined by

(DRg)(t) ≡ d
ds

g(s)g−1(t)
∣∣∣∣
s=t

is a homeomorphism onto

P(A) ≡
{

a : I → A| d
dt

π(a(t)) = #a(t)
}

(A-paths).

s-fibers

t-fibers

M

G

g(t)

DR

a(t)
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A-Homotopy (cont.)

Can transport “∼” and “·” to P(A):
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A-Homotopy (cont.)

Can transport “∼” and “·” to P(A):

• The product of A-paths:

a · a′(t) =

 2a′(2t), 0 ≤ t ≤ 1
2

2a(2t− 1), 1
2 < t ≤ 1.
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A-Homotopy (cont.)

Can transport “∼” and “·” to P(A):

• The product of A-paths:

a · a′(t) =

 2a′(2t), 0 ≤ t ≤ 1
2

2a(2t− 1), 1
2 < t ≤ 1.

• A-homotopy of A-paths:

a0 ∼ a1 iff

∣∣∣∣∣∣∣∣∣∣∣∣

there exists homotopy aε ∈ P(A), ε ∈ [0, 1], s.t.

∫ t
0 φt,s

ξε

dξε
dε (s, γε(s))ds = 0

where ξε(t, ·) is a time-depending section of A
extending aε and γε(S) = π(aε(s)).
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A-Homotopy (cont.)

Can transport “∼” and “·” to P(A):

• The product of A-paths:

a · a′(t) =

 2a′(2t), 0 ≤ t ≤ 1
2

2a(2t− 1), 1
2 < t ≤ 1.

• A-homotopy of A-paths:

a0 ∼ a1 iff

∣∣∣∣∣∣∣∣∣∣∣∣

there exists homotopy aε ∈ P(A), ε ∈ [0, 1], s.t.

∫ t
0 φt,s

ξε

dξε
dε (s, γε(s))ds = 0

where ξε(t, ·) is a time-depending section of A
extending aε and γε(S) = π(aε(s)).

G

s-fiber

M
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A-Homotopy (cont.)

Can transport “∼” and “·” to P(A):

• The product of A-paths:

a · a′(t) =

 2a′(2t), 0 ≤ t ≤ 1
2

2a(2t− 1), 1
2 < t ≤ 1.

• A-homotopy of A-paths:

a0 ∼ a1 iff

∣∣∣∣∣∣∣∣∣∣∣∣

there exists homotopy aε ∈ P(A), ε ∈ [0, 1], s.t.

∫ t
0 φt,s

ξε

dξε
dε (s, γε(s))ds = 0

where ξε(t, ·) is a time-depending section of A
extending aε and γε(S) = π(aε(s)).

G

s-fiber

M

0a (t)
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A-Homotopy (cont.)

Can transport “∼” and “·” to P(A):

• The product of A-paths:

a · a′(t) =

 2a′(2t), 0 ≤ t ≤ 1
2

2a(2t− 1), 1
2 < t ≤ 1.

• A-homotopy of A-paths:

a0 ∼ a1 iff

∣∣∣∣∣∣∣∣∣∣∣∣

there exists homotopy aε ∈ P(A), ε ∈ [0, 1], s.t.

∫ t
0 φt,s

ξε

dξε
dε (s, γε(s))ds = 0

where ξε(t, ·) is a time-depending section of A
extending aε and γε(S) = π(aε(s)).

G

s-fiber

M

0a (t) D-1
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A-Homotopy (cont.)

Can transport “∼” and “·” to P(A):

• The product of A-paths:

a · a′(t) =

 2a′(2t), 0 ≤ t ≤ 1
2

2a(2t− 1), 1
2 < t ≤ 1.

• A-homotopy of A-paths:

a0 ∼ a1 iff

∣∣∣∣∣∣∣∣∣∣∣∣

there exists homotopy aε ∈ P(A), ε ∈ [0, 1], s.t.

∫ t
0 φt,s

ξε

dξε
dε (s, γε(s))ds = 0

where ξε(t, ·) is a time-depending section of A
extending aε and γε(S) = π(aε(s)).

G

s-fiber

M

0a (t) D-1

g (t)
0
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A-Homotopy (cont.)

Can transport “∼” and “·” to P(A):

• The product of A-paths:

a · a′(t) =

 2a′(2t), 0 ≤ t ≤ 1
2

2a(2t− 1), 1
2 < t ≤ 1.

• A-homotopy of A-paths:

a0 ∼ a1 iff

∣∣∣∣∣∣∣∣∣∣∣∣

there exists homotopy aε ∈ P(A), ε ∈ [0, 1], s.t.

∫ t
0 φt,s

ξε

dξε
dε (s, γε(s))ds = 0

where ξε(t, ·) is a time-depending section of A
extending aε and γε(S) = π(aε(s)).

G

s-fiber

M

0a (t) D-1

g (t)
0

a (t)
1
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A-Homotopy (cont.)

Can transport “∼” and “·” to P(A):

• The product of A-paths:

a · a′(t) =

 2a′(2t), 0 ≤ t ≤ 1
2

2a(2t− 1), 1
2 < t ≤ 1.

• A-homotopy of A-paths:

a0 ∼ a1 iff

∣∣∣∣∣∣∣∣∣∣∣∣

there exists homotopy aε ∈ P(A), ε ∈ [0, 1], s.t.

∫ t
0 φt,s

ξε

dξε
dε (s, γε(s))ds = 0

where ξε(t, ·) is a time-depending section of A
extending aε and γε(S) = π(aε(s)).

G

s-fiber

M

0a (t) D-1

g (t)
0

a (t)
1

g (t)
1
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The Weinstein Groupoid

Observe that:
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The Weinstein Groupoid

Observe that:

• An A-path is a Lie algebroid map TI → A;
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The Weinstein Groupoid

Observe that:

• An A-path is a Lie algebroid map TI → A;

• An A-homotopy is a Lie algebroid map T(I × I) → A;
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The Weinstein Groupoid

Observe that:

• An A-path is a Lie algebroid map TI → A;

• An A-homotopy is a Lie algebroid map T(I × I) → A;

Both notions do not depend on the existence of G. They can be expressed solely in terms
of data in A!
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The Weinstein Groupoid

Observe that:

• An A-path is a Lie algebroid map TI → A;

• An A-homotopy is a Lie algebroid map T(I × I) → A;

Both notions do not depend on the existence of G. They can be expressed solely in terms
of data in A!

For any Lie algebroid A, the Weinstein Groupoid of A is:

G(A) = P(A)/ ∼ where

∣∣∣∣∣∣∣∣∣∣
s : G(A) → M, [a] 7→ π(a(0))

t : G(A) → M, [a] 7→ π(a(1))

M ↪→ G(A), x 7→ [0x]



Home Page

Title Page

Contents

JJ II

J I

Page 15 of 39

Go Back

Full Screen

Close

Quit

The Weinstein Groupoid

Observe that:

• An A-path is a Lie algebroid map TI → A;

• An A-homotopy is a Lie algebroid map T(I × I) → A;

Both notions do not depend on the existence of G. They can be expressed solely in terms
of data in A!

For any Lie algebroid A, the Weinstein Groupoid of A is:

G(A) = P(A)/ ∼ where

∣∣∣∣∣∣∣∣∣∣
s : G(A) → M, [a] 7→ π(a(0))

t : G(A) → M, [a] 7→ π(a(1))

M ↪→ G(A), x 7→ [0x]

• G(A) is a topological groupoid with source simply-connected fibers;
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Examples

A H•(A) G G(A)
Ordinary Geometry
(M a manifold) TM

��
M

de Rham
cohomology M× M

�� ��
M

π1(M)

�� ��
M

Lie Theory
(g a Lie algebra)

g

��
{∗}

Lie algebra
cohomology G

�� ��
{∗}

Duistermaat-Kolk
construction of G

Foliation Theory
(F a regular foliation) TF

��
M

foliated
cohomology Hol

�� ��
M

π1(F )

�� ��
M

Equivariant Geometry
(ρ : g → X(M) an action) M× g

��
M

gener. foliated
cohomology G × M

�� ��
M

G(g)× M

�� ��
M

Poisson Geometry
(M Poisson) T∗M

��
M

Poisson
cohomology ??? Poisson σ-model

(Cattaneo & Felder)
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Integrability of Lie Algebroids

A Lie algebroid A is integrable if there exists a Lie groupoid G with A as associated Lie
algebroid.
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Integrability of Lie Algebroids

A Lie algebroid A is integrable if there exists a Lie groupoid G with A as associated Lie
algebroid.

Lemma 2.3. A is integrable iff G(A) is a Lie groupoid.
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Integrability of Lie Algebroids

A Lie algebroid A is integrable if there exists a Lie groupoid G with A as associated Lie
algebroid.

Lemma 2.3. A is integrable iff G(A) is a Lie groupoid.

In general, G(A) is not smooth: there are obstructions to integrate A.
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Integrability of Lie Algebroids

A Lie algebroid A is integrable if there exists a Lie groupoid G with A as associated Lie
algebroid.

Lemma 2.3. A is integrable iff G(A) is a Lie groupoid.

In general, G(A) is not smooth: there are obstructions to integrate A.

Fix leaf L ⊂ M and x ∈ L:

0 −→ gL −→AL
#−→ TL −→ 0
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Integrability of Lie Algebroids

A Lie algebroid A is integrable if there exists a Lie groupoid G with A as associated Lie
algebroid.

Lemma 2.3. A is integrable iff G(A) is a Lie groupoid.

In general, G(A) is not smooth: there are obstructions to integrate A.

Fix leaf L ⊂ M and x ∈ L:

0 −→ gL −→AL
#−→ TL −→ 0

⇓

· · · π2(L, x) ∂−→ G(gL)x →G(A)x −→ π1(L, x) −→ 1
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Integrability of Lie Algebroids

A Lie algebroid A is integrable if there exists a Lie groupoid G with A as associated Lie
algebroid.

Lemma 2.3. A is integrable iff G(A) is a Lie groupoid.

In general, G(A) is not smooth: there are obstructions to integrate A.

Fix leaf L ⊂ M and x ∈ L:

0 −→ gL −→AL
#−→ TL −→ 0

⇓

· · · π2(L, x) ∂−→ G(gL)x →G(A)x −→ π1(L, x) −→ 1

The monodromy group at x is

Nx(A) ≡ Im ∂ ⊂ Z(gL).
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Integrability of Lie Algebroids

A Lie algebroid A is integrable if there exists a Lie groupoid G with A as associated Lie
algebroid.

Lemma 2.3. A is integrable iff G(A) is a Lie groupoid.

In general, G(A) is not smooth: there are obstructions to integrate A.

Fix leaf L ⊂ M and x ∈ L:

0 −→ gL −→AL
#−→ TL −→ 0

⇓

· · · π2(L, x) ∂−→ G(gL)x →G(A)x −→ π1(L, x) −→ 1

The monodromy group at x is

Nx(A) ≡ Im ∂ ⊂ Z(gL).

To measure the discreteness of Nx(A) we set:

r(x) ≡ d(Nx − {0} , {0}) (with d(∅, {0}) = +∞).
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Obstructions to Integrability
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Obstructions to Integrability

Theorem 2.4 (Crainic and RLF, 2001). A Lie algebroid is integrable iff both the following con-
ditions hold:
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Obstructions to Integrability

Theorem 2.4 (Crainic and RLF, 2001). A Lie algebroid is integrable iff both the following con-
ditions hold:

(i) Each monodromy group is discrete, i.e., r(x) > 0,
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Obstructions to Integrability

Theorem 2.4 (Crainic and RLF, 2001). A Lie algebroid is integrable iff both the following con-
ditions hold:

(i) Each monodromy group is discrete, i.e., r(x) > 0,

(ii) The monodromy groups are uniformly discrete, i.e., lim infy→x r(y) > 0,

for all x ∈ M.
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Obstructions to Integrability

Theorem 2.4 (Crainic and RLF, 2001). A Lie algebroid is integrable iff both the following con-
ditions hold:

(i) Each monodromy group is discrete, i.e., r(x) > 0,

(ii) The monodromy groups are uniformly discrete, i.e., lim infy→x r(y) > 0,

for all x ∈ M.

This gives previous known criteria:
Lie (1890’s), Chevaley (1930’s), Van Est (1940’s), Palais (1957), Douady & Lazard (1966),
Phillips (1980), Almeida & Molino (1985), Mackenzie (1987), Weinstein (1989),
Dazord & Hector (1991), Alcade Cuesta & Hector (1995), Debord (2000),
Mackenzie & Xu (2000), Nistor (2000).
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Obstructions to Integrability

Theorem 2.4 (Crainic and RLF, 2001). A Lie algebroid is integrable iff both the following con-
ditions hold:

(i) Each monodromy group is discrete, i.e., r(x) > 0,

(ii) The monodromy groups are uniformly discrete, i.e., lim infy→x r(y) > 0,

for all x ∈ M.

This gives previous known criteria:
Lie (1890’s), Chevaley (1930’s), Van Est (1940’s), Palais (1957), Douady & Lazard (1966),
Phillips (1980), Almeida & Molino (1985), Mackenzie (1987), Weinstein (1989),
Dazord & Hector (1991), Alcade Cuesta & Hector (1995), Debord (2000),
Mackenzie & Xu (2000), Nistor (2000).

Corollary 2.5. A Lie algebroid is integrable if, for all leaves L ∈ F , either of the following condi-
tions holds:
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Obstructions to Integrability

Theorem 2.4 (Crainic and RLF, 2001). A Lie algebroid is integrable iff both the following con-
ditions hold:

(i) Each monodromy group is discrete, i.e., r(x) > 0,

(ii) The monodromy groups are uniformly discrete, i.e., lim infy→x r(y) > 0,

for all x ∈ M.

This gives previous known criteria:
Lie (1890’s), Chevaley (1930’s), Van Est (1940’s), Palais (1957), Douady & Lazard (1966),
Phillips (1980), Almeida & Molino (1985), Mackenzie (1987), Weinstein (1989),
Dazord & Hector (1991), Alcade Cuesta & Hector (1995), Debord (2000),
Mackenzie & Xu (2000), Nistor (2000).

Corollary 2.5. A Lie algebroid is integrable if, for all leaves L ∈ F , either of the following condi-
tions holds:

(i) π2(L) is finite (e.g., L is 2-connected);
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Obstructions to Integrability

Theorem 2.4 (Crainic and RLF, 2001). A Lie algebroid is integrable iff both the following con-
ditions hold:

(i) Each monodromy group is discrete, i.e., r(x) > 0,

(ii) The monodromy groups are uniformly discrete, i.e., lim infy→x r(y) > 0,

for all x ∈ M.

This gives previous known criteria:
Lie (1890’s), Chevaley (1930’s), Van Est (1940’s), Palais (1957), Douady & Lazard (1966),
Phillips (1980), Almeida & Molino (1985), Mackenzie (1987), Weinstein (1989),
Dazord & Hector (1991), Alcade Cuesta & Hector (1995), Debord (2000),
Mackenzie & Xu (2000), Nistor (2000).

Corollary 2.5. A Lie algebroid is integrable if, for all leaves L ∈ F , either of the following condi-
tions holds:

(i) π2(L) is finite (e.g., L is 2-connected);

(ii) Z(gL) is trivial (e.g., gL is semi-simple);
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Computing the Obstructions

In many examples it is possible to compute the monodromy groups:
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Computing the Obstructions

In many examples it is possible to compute the monodromy groups:

Proposition 2.6. Assume there exists a splitting:

0 // gL // AL
# // TL //

σ
jj

0

with center-valued curvature 2-form

Ωσ (X, Y) = σ([X, Y])− [σ(X),σ(Y)] ∈ Z(gL), ∀X, Y ∈ X(L)
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Computing the Obstructions

In many examples it is possible to compute the monodromy groups:

Proposition 2.6. Assume there exists a splitting:

0 // gL // AL
# // TL //

σ
jj

0

with center-valued curvature 2-form

Ωσ (X, Y) = σ([X, Y])− [σ(X),σ(Y)] ∈ Z(gL), ∀X, Y ∈ X(L)

Then:

Nx(A) =
{∫

γ
Ω : [γ] ∈ π2(L, x)

}
.
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Computing the Obstructions

In many examples it is possible to compute the monodromy groups:

Proposition 2.6. Assume there exists a splitting:

0 // gL // AL
# // TL //

σ
jj

0

with center-valued curvature 2-form

Ωσ (X, Y) = σ([X, Y])− [σ(X),σ(Y)] ∈ Z(gL), ∀X, Y ∈ X(L)

Then:

Nx(A) =
{∫

γ
Ω : [γ] ∈ π2(L, x)

}
.

Example. Take A = TM×R the Lie algebroid of a presymplectic manifold (M,ω):

0 // M×R // TM×R # // TM //

σ
mm

0
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Computing the Obstructions

In many examples it is possible to compute the monodromy groups:

Proposition 2.6. Assume there exists a splitting:

0 // gL // AL
# // TL //

σ
jj

0

with center-valued curvature 2-form

Ωσ (X, Y) = σ([X, Y])− [σ(X),σ(Y)] ∈ Z(gL), ∀X, Y ∈ X(L)

Then:

Nx(A) =
{∫

γ
Ω : [γ] ∈ π2(L, x)

}
.

Example. Take A = TM×R the Lie algebroid of a presymplectic manifold (M,ω):

0 // M×R // TM×R # // TM //

σ
mm

0

For the obvious splitting, the curvature is Ωσ = ω.
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Computing the Obstructions

In many examples it is possible to compute the monodromy groups:

Proposition 2.6. Assume there exists a splitting:

0 // gL // AL
# // TL //

σ
jj

0

with center-valued curvature 2-form

Ωσ (X, Y) = σ([X, Y])− [σ(X),σ(Y)] ∈ Z(gL), ∀X, Y ∈ X(L)

Then:

Nx(A) =
{∫

γ
Ω : [γ] ∈ π2(L, x)

}
.

Example. Take A = TM×R the Lie algebroid of a presymplectic manifold (M,ω):

0 // M×R // TM×R # // TM //

σ
mm

0

For the obvious splitting, the curvature is Ωσ = ω. We obtain:

Nx =
{∫

γ
ω : [γ] ∈ π2(L, x)

}
.
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Computing the Obstructions

In many examples it is possible to compute the monodromy groups:

Proposition 2.6. Assume there exists a splitting:

0 // gL // AL
# // TL //

σ
jj

0

with center-valued curvature 2-form

Ωσ (X, Y) = σ([X, Y])− [σ(X),σ(Y)] ∈ Z(gL), ∀X, Y ∈ X(L)

Then:

Nx(A) =
{∫

γ
Ω : [γ] ∈ π2(L, x)

}
.

Example. Take A = TM×R the Lie algebroid of a presymplectic manifold (M,ω):

0 // M×R // TM×R # // TM //

σ
mm

0

For the obvious splitting, the curvature is Ωσ = ω. We obtain:

Nx =
{∫

γ
ω : [γ] ∈ π2(L, x)

}
.

Conclusion: A = TM×R is integrable iff the group of spherical periods of ω is discrete.
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Example: Regular Poisson Manifolds.

Let (M, { , }) be a regular Poisson manifold. Fix a symplectic leaf L ⊂ M and x ∈ L.
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Example: Regular Poisson Manifolds.

Let (M, { , }) be a regular Poisson manifold. Fix a symplectic leaf L ⊂ M and x ∈ L.

x

M

L
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Example: Regular Poisson Manifolds.

Let (M, { , }) be a regular Poisson manifold. Fix a symplectic leaf L ⊂ M and x ∈ L.
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Example: Regular Poisson Manifolds.

Let (M, { , }) be a regular Poisson manifold. Fix a symplectic leaf L ⊂ M and x ∈ L.
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Example: Regular Poisson Manifolds.

Let (M, { , }) be a regular Poisson manifold. Fix a symplectic leaf L ⊂ M and x ∈ L.
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Example: Regular Poisson Manifolds.

Let (M, { , }) be a regular Poisson manifold. Fix a symplectic leaf L ⊂ M and x ∈ L.
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Example: Regular Poisson Manifolds.

Let (M, { , }) be a regular Poisson manifold. Fix a symplectic leaf L ⊂ M and x ∈ L.
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Example: Regular Poisson Manifolds.

Let (M, { , }) be a regular Poisson manifold. Fix a symplectic leaf L ⊂ M and x ∈ L.

x

M

L

0
γ

γ
t

t
γνvar ( )

Proposition 2.7. For a foliated family γt : S2 → M, the derivative of the symplectic areas

d
dt

A(γt)
∣∣∣∣
x=0

,

depends only on the class [γ0] ∈ π2(L, x) and varν(γt) = [dγt/dt|t=0] ∈ ν(L)x.
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Example: Regular Poisson Manifolds.

Define the variation of symplectic variations A′(γ0) ∈ ν∗x(L) by

〈A′(γ0), varν(γt)〉 =
d
dt

A(γt)
∣∣∣∣
t=0
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Example: Regular Poisson Manifolds.

Define the variation of symplectic variations A′(γ0) ∈ ν∗x(L) by

〈A′(γ0), varν(γt)〉 =
d
dt

A(γt)
∣∣∣∣
t=0

we have:
Nx =

{
A′(γ) : [γ] ∈ π2(L, x)

}
⊂ ν∗x(L).
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Example: Regular Poisson Manifolds.

Define the variation of symplectic variations A′(γ0) ∈ ν∗x(L) by

〈A′(γ0), varν(γt)〉 =
d
dt

A(γt)
∣∣∣∣
t=0

we have:
Nx =

{
A′(γ) : [γ] ∈ π2(L, x)

}
⊂ ν∗x(L).

Some consequences:
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Example: Regular Poisson Manifolds.

Define the variation of symplectic variations A′(γ0) ∈ ν∗x(L) by

〈A′(γ0), varν(γt)〉 =
d
dt

A(γt)
∣∣∣∣
t=0

we have:
Nx =

{
A′(γ) : [γ] ∈ π2(L, x)

}
⊂ ν∗x(L).

Some consequences:

• Every two dimensional Poisson manifold is integrable;
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Example: Regular Poisson Manifolds.

Define the variation of symplectic variations A′(γ0) ∈ ν∗x(L) by

〈A′(γ0), varν(γt)〉 =
d
dt

A(γt)
∣∣∣∣
t=0

we have:
Nx =

{
A′(γ) : [γ] ∈ π2(L, x)

}
⊂ ν∗x(L).

Some consequences:

• Every two dimensional Poisson manifold is integrable;

• A Poisson structure in M = R3 −{0} with leaves the spheres x2 + y2 + z2 =const. is
integrable iff the symplectic areas of the spheres have no critical points.
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Example: Regular Poisson Manifolds.

Define the variation of symplectic variations A′(γ0) ∈ ν∗x(L) by

〈A′(γ0), varν(γt)〉 =
d
dt

A(γt)
∣∣∣∣
t=0

we have:
Nx =

{
A′(γ) : [γ] ∈ π2(L, x)

}
⊂ ν∗x(L).

Some consequences:

• Every two dimensional Poisson manifold is integrable;

• A Poisson structure in M = R3 −{0} with leaves the spheres x2 + y2 + z2 =const. is
integrable iff the symplectic areas of the spheres have no critical points.

• . . .
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PART 3

Other Invariants: Holonomy, Characteristic Classes
and K-Theory
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Lie Algebroid Connections
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Lie Algebroid Connections

P

p
��

G
yy

A
π // M

An A-connection is a bundle map h : p∗A → TP s.t.:
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Lie Algebroid Connections

P

p
��

G
yy

A
π // M

An A-connection is a bundle map h : p∗A → TP s.t.:

(i) h is horizontal: p∗h(u, a) = #a;
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Lie Algebroid Connections

P

p
��

G
yy

A
π // M

An A-connection is a bundle map h : p∗A → TP s.t.:

(i) h is horizontal: p∗h(u, a) = #a;

(ii) h is G-invariant: h(ug, a) = (Rg)∗h(u, a);

where u ∈ P, a ∈ Ax with x = p(u), and g ∈ G.



Home Page

Title Page

Contents

JJ II

J I

Page 23 of 39

Go Back

Full Screen

Close

Quit

Lie Algebroid Connections

P

p
��

G
yy

A
π // M

An A-connection is a bundle map h : p∗A → TP s.t.:

(i) h is horizontal: p∗h(u, a) = #a;

(ii) h is G-invariant: h(ug, a) = (Rg)∗h(u, a);

where u ∈ P, a ∈ Ax with x = p(u), and g ∈ G.

P(M,G)

M
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Lie Algebroid Connections

P

p
��

G
yy

A
π // M

An A-connection is a bundle map h : p∗A → TP s.t.:

(i) h is horizontal: p∗h(u, a) = #a;

(ii) h is G-invariant: h(ug, a) = (Rg)∗h(u, a);

where u ∈ P, a ∈ Ax with x = p(u), and g ∈ G.

P(M,G)

M

a

x
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Lie Algebroid Connections

P

p
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G
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A
π // M

An A-connection is a bundle map h : p∗A → TP s.t.:

(i) h is horizontal: p∗h(u, a) = #a;

(ii) h is G-invariant: h(ug, a) = (Rg)∗h(u, a);

where u ∈ P, a ∈ Ax with x = p(u), and g ∈ G.

P(M,G)

M

a

x

u
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Lie Algebroid Connections

P

p
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A
π // M

An A-connection is a bundle map h : p∗A → TP s.t.:

(i) h is horizontal: p∗h(u, a) = #a;

(ii) h is G-invariant: h(ug, a) = (Rg)∗h(u, a);

where u ∈ P, a ∈ Ax with x = p(u), and g ∈ G.

P(M,G)

M

a

x

u
h(u,a)
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Lie Algebroid Connections

P
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G
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A
π // M

An A-connection is a bundle map h : p∗A → TP s.t.:

(i) h is horizontal: p∗h(u, a) = #a;

(ii) h is G-invariant: h(ug, a) = (Rg)∗h(u, a);

where u ∈ P, a ∈ Ax with x = p(u), and g ∈ G.

P(M,G)

M

a

x

u
h(u,a)

#a

p
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Lie Algebroid Connections

P

p
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A
π // M

An A-connection is a bundle map h : p∗A → TP s.t.:

(i) h is horizontal: p∗h(u, a) = #a;

(ii) h is G-invariant: h(ug, a) = (Rg)∗h(u, a);

where u ∈ P, a ∈ Ax with x = p(u), and g ∈ G.

P(M,G)

M

a

x

u
h(u,a)

#a

p

Similar to usual connections (case A = TM) but:
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Lie Algebroid Connections

P
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A
π // M

An A-connection is a bundle map h : p∗A → TP s.t.:

(i) h is horizontal: p∗h(u, a) = #a;

(ii) h is G-invariant: h(ug, a) = (Rg)∗h(u, a);

where u ∈ P, a ∈ Ax with x = p(u), and g ∈ G.

P(M,G)

M

a

x

u
h(u,a)

#a

p

Similar to usual connections (case A = TM) but:

• A-connections are not determined by distribution Im h;
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Lie Algebroid Connections

P

p
��

G
yy

A
π // M

An A-connection is a bundle map h : p∗A → TP s.t.:

(i) h is horizontal: p∗h(u, a) = #a;

(ii) h is G-invariant: h(ug, a) = (Rg)∗h(u, a);

where u ∈ P, a ∈ Ax with x = p(u), and g ∈ G.

P(M,G)

M

a

x

u
h(u,a)

#a

p

Similar to usual connections (case A = TM) but:

• A-connections are not determined by distribution Im h;

• ‖-transport can be defined only along A-paths;
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Lie Algebroid Connections

P

p
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A
π // M

An A-connection is a bundle map h : p∗A → TP s.t.:

(i) h is horizontal: p∗h(u, a) = #a;

(ii) h is G-invariant: h(ug, a) = (Rg)∗h(u, a);

where u ∈ P, a ∈ Ax with x = p(u), and g ∈ G.

P(M,G)

M

a

x

u
h(u,a)

#a

p

Similar to usual connections (case A = TM) but:

• A-connections are not determined by distribution Im h;

• ‖-transport can be defined only along A-paths;

• Flat connections may have non-discrete holonomy;
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A-Holonomy
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A-Holonomy

Using non-linear connections one obtains the A-holonomy homomorphism:

Hol : G(A)x → Out (A⊥
L ),

where:
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A-Holonomy

Using non-linear connections one obtains the A-holonomy homomorphism:

Hol : G(A)x → Out (A⊥
L ),

where:

• A⊥
L is the transverse Lie algebroid;
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A-Holonomy

Using non-linear connections one obtains the A-holonomy homomorphism:

Hol : G(A)x → Out (A⊥
L ),

where:

• A⊥
L is the transverse Lie algebroid;

• Out (A) = Aut (A)/Inn (A) is the group of outer automorphisms of A;
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A-Holonomy

Using non-linear connections one obtains the A-holonomy homomorphism:

Hol : G(A)x → Out (A⊥
L ),

where:

• A⊥
L is the transverse Lie algebroid;

• Out (A) = Aut (A)/Inn (A) is the group of outer automorphisms of A;

The following result generalizes the Reeb stability theorem for foliations:
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A-Holonomy

Using non-linear connections one obtains the A-holonomy homomorphism:

Hol : G(A)x → Out (A⊥
L ),

where:

• A⊥
L is the transverse Lie algebroid;

• Out (A) = Aut (A)/Inn (A) is the group of outer automorphisms of A;

The following result generalizes the Reeb stability theorem for foliations:

Theorem 3.1 (RLF, 2001). Let L be a compact, transversely stable leaf of A, with finite holonomy.
Then:
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A-Holonomy

Using non-linear connections one obtains the A-holonomy homomorphism:

Hol : G(A)x → Out (A⊥
L ),

where:

• A⊥
L is the transverse Lie algebroid;

• Out (A) = Aut (A)/Inn (A) is the group of outer automorphisms of A;

The following result generalizes the Reeb stability theorem for foliations:

Theorem 3.1 (RLF, 2001). Let L be a compact, transversely stable leaf of A, with finite holonomy.
Then:

(i) L is stable, i. e., L has arbitrarily small neighborhoods which are invariant under all inner
automorphisms;
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A-Holonomy

Using non-linear connections one obtains the A-holonomy homomorphism:

Hol : G(A)x → Out (A⊥
L ),

where:

• A⊥
L is the transverse Lie algebroid;

• Out (A) = Aut (A)/Inn (A) is the group of outer automorphisms of A;

The following result generalizes the Reeb stability theorem for foliations:

Theorem 3.1 (RLF, 2001). Let L be a compact, transversely stable leaf of A, with finite holonomy.
Then:

(i) L is stable, i. e., L has arbitrarily small neighborhoods which are invariant under all inner
automorphisms;

(ii) each leaf near L is a bundle over L whose fiber is a finite union of leaves of the transverse Lie
algebroid structure.
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A-derivatives
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A-derivatives

An A-connection on P = P(M, G) induces on any associated vector bundle E → M an
A-derivative operator:

∇ : Γ(A)× Γ(E) → Γ(E).
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A-derivatives

An A-connection on P = P(M, G) induces on any associated vector bundle E → M an
A-derivative operator:

∇ : Γ(A)× Γ(E) → Γ(E).

Axioms for an A-derivative:
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A-derivatives

An A-connection on P = P(M, G) induces on any associated vector bundle E → M an
A-derivative operator:

∇ : Γ(A)× Γ(E) → Γ(E).

Axioms for an A-derivative:

For any α ∈ Γ(A), s ∈ Γ(E), f ∈ C∞(M):

(i) ∇ fαs = f∇αs;
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A-derivatives

An A-connection on P = P(M, G) induces on any associated vector bundle E → M an
A-derivative operator:

∇ : Γ(A)× Γ(E) → Γ(E).

Axioms for an A-derivative:

For any α ∈ Γ(A), s ∈ Γ(E), f ∈ C∞(M):

(i) ∇ fαs = f∇αs;

(ii) ∇α( f s) = f∇αs + #α( f )s;
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A-derivatives

An A-connection on P = P(M, G) induces on any associated vector bundle E → M an
A-derivative operator:

∇ : Γ(A)× Γ(E) → Γ(E).

Axioms for an A-derivative:

For any α ∈ Γ(A), s ∈ Γ(E), f ∈ C∞(M):

(i) ∇ fαs = f∇αs;

(ii) ∇α( f s) = f∇αs + #α( f )s;

A-derivatives work like the usual covariant derivatives (case A = TM):
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A-derivatives

An A-connection on P = P(M, G) induces on any associated vector bundle E → M an
A-derivative operator:

∇ : Γ(A)× Γ(E) → Γ(E).

Axioms for an A-derivative:

For any α ∈ Γ(A), s ∈ Γ(E), f ∈ C∞(M):

(i) ∇ fαs = f∇αs;

(ii) ∇α( f s) = f∇αs + #α( f )s;

A-derivatives work like the usual covariant derivatives (case A = TM):

• The curvature of ∇ : Γ(A)× Γ(E) → Γ(E) is

R∇(α, β) = ∇α∇β −∇β∇α −∇[α,β].
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A-derivatives

An A-connection on P = P(M, G) induces on any associated vector bundle E → M an
A-derivative operator:

∇ : Γ(A)× Γ(E) → Γ(E).

Axioms for an A-derivative:

For any α ∈ Γ(A), s ∈ Γ(E), f ∈ C∞(M):

(i) ∇ fαs = f∇αs;

(ii) ∇α( f s) = f∇αs + #α( f )s;

A-derivatives work like the usual covariant derivatives (case A = TM):

• The curvature of ∇ : Γ(A)× Γ(E) → Γ(E) is

R∇(α, β) = ∇α∇β −∇β∇α −∇[α,β].

• The torsion of ∇ : Γ(A)× Γ(A) → Γ(A) is

T∇(α, β) = ∇αβ−∇βα − [α, β].
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Characteristic Classes

A-connections lead to:
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Characteristic Classes

A-connections lead to:

• A Chern-Weil theory for Lie algebroids [Vaisman, 1991; Kubarski, 1996; RLF, 2000];
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Characteristic Classes

A-connections lead to:

• A Chern-Weil theory for Lie algebroids [Vaisman, 1991; Kubarski, 1996; RLF, 2000];

Not very interesting. . .
I•(G) //

&&MMMMMMMMMM
H•

de Rham(M)

#∗

��
H•(A)

;
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Characteristic Classes

A-connections lead to:

• A Chern-Weil theory for Lie algebroids [Vaisman, 1991; Kubarski, 1996; RLF, 2000];

Not very interesting. . .
I•(G) //

&&MMMMMMMMMM
H•

de Rham(M)

#∗

��
H•(A)

;

• A Bott type connection for a Lie algebroid, leading to a theory of linear holonomy
[Ginzburg, 1999; RLF, 2000];
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Characteristic Classes

A-connections lead to:

• A Chern-Weil theory for Lie algebroids [Vaisman, 1991; Kubarski, 1996; RLF, 2000];

Not very interesting. . .
I•(G) //

&&MMMMMMMMMM
H•

de Rham(M)

#∗

��
H•(A)

;

• A Bott type connection for a Lie algebroid, leading to a theory of linear holonomy
[Ginzburg, 1999; RLF, 2000];

• Secondary characteristic classes (a la Chern-Simons) for Lie algebroids [RLF, 2000],
which generalize the modular class [Weinstein, 1997; Evens, Lu & Weinstein, 1999;
Huebschmann, 1999];
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Characteristic Classes

A-connections lead to:

• A Chern-Weil theory for Lie algebroids [Vaisman, 1991; Kubarski, 1996; RLF, 2000];

Not very interesting. . .
I•(G) //

&&MMMMMMMMMM
H•

de Rham(M)

#∗

��
H•(A)

;

• A Bott type connection for a Lie algebroid, leading to a theory of linear holonomy
[Ginzburg, 1999; RLF, 2000];

• Secondary characteristic classes (a la Chern-Simons) for Lie algebroids [RLF, 2000],
which generalize the modular class [Weinstein, 1997; Evens, Lu & Weinstein, 1999;
Huebschmann, 1999];

• Characteristic classes of representations of a Lie algebroid [Crainic, 2001].
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K-theory
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K-theory

Flat A-connections ⇔ Representations of A



Home Page

Title Page

Contents

JJ II

J I

Page 27 of 39

Go Back

Full Screen

Close

Quit

K-theory

Flat A-connections ⇔ Representations of A

Axioms for a representation of A:
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K-theory

Flat A-connections ⇔ Representations of A

Axioms for a representation of A:

E → M is a vector bundle and there exists a product Γ(A)× Γ(E) → Γ(E) such that:

(i) ( fα) · s = f (α · s);
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K-theory

Flat A-connections ⇔ Representations of A

Axioms for a representation of A:

E → M is a vector bundle and there exists a product Γ(A)× Γ(E) → Γ(E) such that:

(i) ( fα) · s = f (α · s);

(ii) α · ( f s) = (α · f )s + f (α · s);



Home Page

Title Page

Contents

JJ II

J I

Page 27 of 39

Go Back

Full Screen

Close

Quit

K-theory

Flat A-connections ⇔ Representations of A

Axioms for a representation of A:

E → M is a vector bundle and there exists a product Γ(A)× Γ(E) → Γ(E) such that:

(i) ( fα) · s = f (α · s);

(ii) α · ( f s) = (α · f )s + f (α · s);

(iii) [α, β] · s = α(β · s)−β · (α · s);

for any α, β ∈ Γ(A), s ∈ Γ(E), f ∈ C∞(M).
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K-theory

Flat A-connections ⇔ Representations of A

Axioms for a representation of A:

E → M is a vector bundle and there exists a product Γ(A)× Γ(E) → Γ(E) such that:

(i) ( fα) · s = f (α · s);

(ii) α · ( f s) = (α · f )s + f (α · s);

(iii) [α, β] · s = α(β · s)−β · (α · s);

for any α, β ∈ Γ(A), s ∈ Γ(E), f ∈ C∞(M).

Proposition 3.2. Every representation of A determines a representation of G(A). The converse
also holds, provided A is integrable.
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K-theory

Flat A-connections ⇔ Representations of A

Axioms for a representation of A:

E → M is a vector bundle and there exists a product Γ(A)× Γ(E) → Γ(E) such that:

(i) ( fα) · s = f (α · s);

(ii) α · ( f s) = (α · f )s + f (α · s);

(iii) [α, β] · s = α(β · s)−β · (α · s);

for any α, β ∈ Γ(A), s ∈ Γ(E), f ∈ C∞(M).

Proposition 3.2. Every representation of A determines a representation of G(A). The converse
also holds, provided A is integrable.

K(A) ≡ Grothendieck ring of the semi-ring of equivalence classes of representations
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K-theory

Flat A-connections ⇔ Representations of A

Axioms for a representation of A:

E → M is a vector bundle and there exists a product Γ(A)× Γ(E) → Γ(E) such that:

(i) ( fα) · s = f (α · s);

(ii) α · ( f s) = (α · f )s + f (α · s);

(iii) [α, β] · s = α(β · s)−β · (α · s);

for any α, β ∈ Γ(A), s ∈ Γ(E), f ∈ C∞(M).

Proposition 3.2. Every representation of A determines a representation of G(A). The converse
also holds, provided A is integrable.

K(A) ≡ Grothendieck ring of the semi-ring of equivalence classes of representations

• The apropriate equivalence relation(s) were introduced by [Ginzburg, 2001];
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K-theory

Flat A-connections ⇔ Representations of A

Axioms for a representation of A:

E → M is a vector bundle and there exists a product Γ(A)× Γ(E) → Γ(E) such that:

(i) ( fα) · s = f (α · s);

(ii) α · ( f s) = (α · f )s + f (α · s);

(iii) [α, β] · s = α(β · s)−β · (α · s);

for any α, β ∈ Γ(A), s ∈ Γ(E), f ∈ C∞(M).

Proposition 3.2. Every representation of A determines a representation of G(A). The converse
also holds, provided A is integrable.

K(A) ≡ Grothendieck ring of the semi-ring of equivalence classes of representations

• The apropriate equivalence relation(s) were introduced by [Ginzburg, 2001];

• Representations lead to Morita equivalence in the context of Lie algebroids [Ginzburg,
2001; Crainic & RLF, 2002].
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TO BE CONTINUED. . .
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THE LEIBNIZ IDENTITY.

For any sections α, β ∈ Γ(A) and function f ∈ C∞(M):

[α, fβ] = f [α, β] + #α( f )β.
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THE TANGENT LIE ALGEBROID.

M - a manifold

• bundle: A = TM;

• anchor: # : TM → TM, # =id;

• Lie bracket: [ , ] : X(M)×X(M) → X(M),

usual Lie bracket of vector fields;

• characteristic foliation: F = {M}.
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THE LIE ALGEBROID OF A LIE ALGEBRA.

g - a Lie algebra

• bundle: A = g → {∗};

• anchor: # = 0;

• Lie bracket: [ , ] : g× g → g,

given Lie bracket;

• characteristic foliation: F = {∗}.
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THE LIE ALGEBROID OF A FOLIATION.

F - a regular foliation

• bundle: A = TF → M;

• anchor: # : TF ↪→ TM, inclusion;

• Lie bracket: [ , ] : X(F )×X(F ) → X(F ),

usual Lie bracket restricted to vector fields tangent
to F ;

• characteristic foliation: F .



Home Page

Title Page

Contents

JJ II

J I

Page 33 of 39

Go Back

Full Screen

Close

Quit

THE ACTION LIE ALGEBROID.

ρ : g → X(M) - an infinitesimal action of a Lie algebra

• bundle: A = M× g → M;

• anchor: # : A → TM, #(x, v) = ρ(v)|x;

• Lie bracket: [, ] : C∞(M, g)×C∞(M, g) → C∞(M, g)

[v, w](x) = [v(x), w(x)]+ (ρ(v(x)) ·w)|x− (ρ(w(x)) · v)|x;

• characteristic foliation: orbit foliation.
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THE LIE ALGEBROID OF A PRESYMPLECTIC MANIFOLD.

M - an presymplectic manifold with closed 2-form ω

• bundle: A = TM×R → M;

• anchor: # : A → TM, #(v, λ) = v;

• Lie bracket: Γ(A) = X(M)× C∞(M)

[(X, f ), (Y, g)] = ([X, Y], X(g)−Y( f )−ω(X, Y));

• characteristic foliation: F = {M}.
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THE COTANGENT LIE ALGEBROID.

M - a Poisson manifold with Poisson tensor π

• bundle: A = T∗M;

• anchor: # : TM∗ → TM, #α = iπα;

• Lie bracket: [ , ] : Ω1(M)×Ω1(M) → Ω1(M),

Kozul Lie bracket:

[α, β] = L#αβ−L#βα − dπ(α, β);

• characteristic foliation: the symplectic foliation.
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THE PAIR GROUPOID.

M - a manifold

• arrows: G = M× M;

• objects: M;

• target and source: s(x, y) = x, t(x, y) = y;

• product: (x, y) · (y, z) = (x, z);
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THE LIE GROUPOID OF A LIE GROUP.

G - a Lie group

• arrows: G = G;

• objects: M = {∗};

• target and source: s(x) = t(x) = ∗;

• product: g · h = gh;
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THE HOLONOMY GROUPOID.

F - a regular foliation in M

• arrows: G = {[γ] : holonomy equivalence classes};

• objects: M;

• target and source: s([γ]) = γ(0), t([γ]) = γ(1);

• product: [γ] · [γ′] = [γ ·γ′];
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THE ACTION GROUPOID.

G × M → M - an action of a Lie group on M

• arrows: G = G × M;

• objects: M;

• target and source: s(g, x) = x, t(g, x) = gx;

• product: (h, y) · (g, x) = (hg, x);
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