Invariants of Lie algebroids

Rui Loja Fernandes

July, 2002

Contents

Contents
1 Lie Algebroids: Basic Concepts 2
2 The Weinstein Groupoid and Integrability 11
3 Other Invariants: Holonomy, Characteristic Classes and K-Theory 22222

44

Page 1 of 39

Go Back

Full Screen

PART 1

Lie Algebroids: Basic Concepts

Title Page
Contents

Page 2 of 39
Go Back

Full Screen

Basic Definitions

Lie algebroids are geometric vector bundles.

Home Page

Title Page

Contents

Page 3 of 39

Go Back

Full Screen

Basic Definitions

Lie algebroids are geometric vector bundles.

A Lie algebroid over a smooth manifold M is a vector bundle $\pi: A \rightarrow M$ with:

4

Page 3 of 39

Basic Definitions

Lie algebroids are geometric vector bundles.

A Lie algebroid over a smooth manifold M is a vector bundle $\pi: A \rightarrow M$ with:

- a Lie bracket [,]: $\Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$;

Page 3 of 39

Basic Definitions

Lie algebroids are geometric vector bundles.

A Lie algebroid over a smooth manifold M is a vector bundle $\pi: A \rightarrow M$ with:

- a Lie bracket [,]: $\Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$;
- a bundle map \# : A \rightarrow TM, called the anchor;

Basic Definitions

Lie algebroids are geometric vector bundles.

A Lie algebroid over a smooth manifold M is a vector bundle $\pi: A \rightarrow M$ with:

- a Lie bracket [,]: $\Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$;
- a bundle map \# : A \rightarrow TM, called the anchor;
and they are compatible:

Contents

Page 3 of 39

```
Go Back
```


Basic Definitions

Lie algebroids are geometric vector bundles.

A Lie algebroid over a smooth manifold M is a vector bundle $\pi: A \rightarrow M$ with:

- a Lie bracket $[]:, \Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$;
- a bundle map \# : A \rightarrow TM, called the anchor;
and they are compatible:
(i) the map \# : $\Gamma(A) \rightarrow \mathfrak{X}^{1}(M)$ is a Lie algebra homomorphism;

Page 3 of 39

```
Go Back
```


Basic Definitions

Lie algebroids are geometric vector bundles.

A Lie algebroid over a smooth manifold M is a vector bundle $\pi: A \rightarrow M$ with:

- a Lie bracket $[]:, \Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$;
- a bundle map \# : A \rightarrow TM, called the anchor;
and they are compatible:
(i) the map \# : $\Gamma(A) \rightarrow \mathfrak{X}^{1}(M)$ is a Lie algebra homomorphism;
(ii) the Leibniz identity holds.

Page 3 of 39

Basic Definitions

Lie algebroids are geometric vector bundles.

A Lie algebroid over a smooth manifold M is a vector bundle $\pi: A \rightarrow M$ with:

- a Lie bracket $[]:, \Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)$;
- a bundle map \# : A \rightarrow TM, called the anchor;
and they are compatible:
(i) the map \# : $\Gamma(A) \rightarrow \mathfrak{X}^{1}(M)$ is a Lie algebra homomorphism;
(ii) the Leibniz identity holds.

A morphism of Lie algebroids is a bundle map $\phi: A_{1} \rightarrow A_{2}$ which preserves anchors and Lie brackets.

Basic Properties

The kernel and the image of the anchor give basic objects associated with any Lie algebroid:

Page 4 of 39

Basic Properties

The kernel and the image of the anchor give basic objects associated with any Lie algebroid:

The isotropy Lie algebra at $x \in M$ is:

$$
\mathfrak{g}_{x} \equiv \operatorname{Ker} \#_{x} .
$$

Page 4 of 39

Basic Properties

The kernel and the image of the anchor give basic objects associated with any Lie algebroid:

The isotropy Lie algebra at $x \in M$ is:

$$
\mathfrak{g}_{x} \equiv \operatorname{Ker} \#_{x} .
$$

The characteristic foliation \mathcal{F} is the singular foliation of M determined by the distribution:

$$
x \mapsto \mathcal{D}_{x} \equiv \operatorname{Im} \#_{x} .
$$

Basic Properties

The kernel and the image of the anchor give basic objects associated with any Lie algebroid:

The isotropy Lie algebra at $x \in M$ is:

$$
\mathfrak{g}_{x} \equiv \operatorname{Ker} \#_{x} .
$$

The characteristic foliation \mathcal{F} is the singular foliation of M determined by the distribution:

$$
x \mapsto \mathcal{D}_{x} \equiv \operatorname{Im} \#_{x} .
$$

If x and y belong to a leaf $L \in \mathcal{F}$, then $\mathfrak{g}_{x} \simeq \mathfrak{g}_{y}$. Hence, we get a bundle of Lie algebras

$$
\mathfrak{g}_{L}=\bigcup_{x \in L} \mathfrak{g}_{x} \rightarrow L
$$

Basic Properties

The kernel and the image of the anchor give basic objects associated with any Lie algebroid:

The isotropy Lie algebra at $x \in M$ is:

$$
\mathfrak{g}_{x} \equiv \operatorname{Ker} \#_{x}
$$

The characteristic foliation \mathcal{F} is the singular foliation of M determined by the distribution:

$$
x \mapsto \mathcal{D}_{x} \equiv \operatorname{Im} \#_{x} .
$$

If x and y belong to a leaf $L \in \mathcal{F}$, then $\mathfrak{g}_{x} \simeq \mathfrak{g}_{y}$. Hence, we get a bundle of Lie algebras

$$
\mathfrak{g}_{L}=\bigcup_{x \in L} \mathfrak{g}_{x} \rightarrow L
$$

The short exact sequence of a leaf is the short exact sequence of Lie algebroids:

$$
0 \longrightarrow \mathfrak{g}_{L} \longrightarrow A_{L} \xrightarrow{\#} T L \longrightarrow 0
$$

EXAMPLES	A
Ordinary Geometry (M a manifold)	$\begin{gathered} T M \\ \downarrow \\ M \end{gathered}$
$\begin{aligned} & \hline \text { Lie Theory } \\ & \text { (g a Lie algebra) } \end{aligned}$	$\downarrow_{\{*\}}^{\mathfrak{g}}$
Foliation Theory (\mathcal{F} a regular foliation)	$\stackrel{T \mathcal{F}}{\substack{\text { in }}}$
Equivariant Geometry ($\rho: \mathfrak{g} \rightarrow \mathfrak{X}(M)$ an action)	$\stackrel{M}{M \times \mathfrak{g}} \underset{\substack{M \\ M}}{ }$
Presymplectic Geometry (M presymplectic)	
Poisson Geometry (M Poisson)	$\stackrel{T^{*} M}{\downarrow}$

Lie Algebroid Cohomology

A first example of a global invariant of a Lie algebroid:

Page 6 of 39

Lie Algebroid Cohomology

A first example of a global invariant of a Lie algebroid:
A-differential forms: $\Omega^{\bullet}(A)=\Gamma\left(\wedge^{\bullet} A^{*}\right)$

Page 6 of 39

Lie Algebroid Cohomology

A first example of a global invariant of a Lie algebroid:
A-differential forms: $\Omega^{\bullet}(A)=\Gamma\left(\wedge^{\bullet} A^{*}\right)$
A-differential: $d_{A}: \Omega^{\bullet}(A) \rightarrow \Omega^{\bullet+1}(A)$

$$
\begin{aligned}
d_{A} Q\left(\alpha_{0}, \ldots, \alpha_{r}\right) \equiv \frac{1}{r+1} \sum_{k=0}^{r+1} & (-1)^{k} \# \alpha_{k}\left(Q\left(\alpha_{0}, \ldots, \widehat{\alpha}_{k}, \ldots, \alpha_{r}\right)\right) \\
& \quad+\frac{1}{r+1} \sum_{k<l}(-1)^{k+l+1} Q\left(\left[\alpha_{k}, \alpha_{l}\right], \alpha_{0}, \ldots, \widehat{\alpha}_{k}, \ldots, \widehat{\alpha}_{l}, \ldots, \alpha_{r}\right) .
\end{aligned}
$$

Lie Algebroid Cohomology

A first example of a global invariant of a Lie algebroid:
A-differential forms: $\Omega^{\bullet}(A)=\Gamma\left(\wedge^{\bullet} A^{*}\right)$
A-differential: $d_{A}: \Omega^{\bullet}(A) \rightarrow \Omega^{\bullet+1}(A)$

$$
\begin{aligned}
d_{A} Q\left(\alpha_{0}, \ldots, \alpha_{r}\right) \equiv \frac{1}{r+1} \sum_{k=0}^{r+1} & (-1)^{k} \# \alpha_{k}\left(Q\left(\alpha_{0}, \ldots, \widehat{\alpha}_{k}, \ldots, \alpha_{r}\right)\right) \\
& \quad+\frac{1}{r+1} \sum_{k<l}(-1)^{k+l+1} Q\left(\left[\alpha_{k}, \alpha_{l}\right], \alpha_{0}, \ldots, \widehat{\alpha}_{k}, \ldots, \widehat{\alpha}_{l}, \ldots, \alpha_{r}\right) .
\end{aligned}
$$

A-cohomology:

$$
H^{\bullet}(A) \equiv \frac{\operatorname{Ker} d_{A}}{\operatorname{Im} d_{A}}
$$

In general, it is very hard to compute...

Examples

	A	$H^{\bullet}(A)$
$\begin{array}{l}\text { Ordinary Geometry } \\ \text { (} M \text { a manifold) }\end{array}$	$T M$	

cohomology\end{array}\right]\)

Groupoids

A groupoid is a small category where every morphism is an isomorphism.

Home Page

Title Page

Contents

Page 8 of 39

Go Back

Full Screen

Groupoids

A groupoid is a small category where every morphism is an isomorphism.

$$
\mathcal{G} \equiv \text { set of morphisms } \quad M \equiv \text { set of objects. }
$$

Page 8 of 39

Groupoids

A groupoid is a small category where every morphism is an isomorphism.

$$
\mathcal{G} \equiv \text { set of morphisms } \quad M \equiv \text { set of objects. }
$$

- source and target maps:

Home Page

Title Page

Contents

〈

Page 8 of 39

Groupoids

A groupoid is a small category where every morphism is an isomorphism.

$$
\mathcal{G} \equiv \text { set of morphisms } \quad M \equiv \text { set of objects. }
$$

- source and target maps:

- product:

$$
\begin{aligned}
& \mathcal{G}^{(2)}=\{(h, g) \in \mathcal{G} \times \mathcal{G}: \mathbf{s}(h)=\mathbf{t}(g)\} \\
& m: \mathcal{G}^{(2)} \rightarrow \mathcal{G} \\
& R_{g}: \mathbf{s}^{-1}(\mathbf{t}(g)) \rightarrow \mathbf{s}^{-1}(\mathbf{s}(g))
\end{aligned}
$$

Groupoids

A groupoid is a small category where every morphism is an isomorphism.

$$
\mathcal{G} \equiv \text { set of morphisms } \quad M \equiv \text { set of objects. }
$$

- source and target maps:

- product:

Title Page

- identity: $\quad \epsilon: M \hookrightarrow \mathcal{G}$

Groupoids

A groupoid is a small category where every morphism is an isomorphism.

$$
\mathcal{G} \equiv \text { set of morphisms } \quad M \equiv \text { set of objects. }
$$

- source and target maps:

- product:

Lie Groupoids

A Lie groupoid is a groupoid where everything is C^{∞}.

Caution: \mathcal{G} may not be Hausdorff, but all other manifolds (M, \mathbf{s} and \mathbf{t}-fibers,...) are.

Home Page

Title Page

Contents

Page 9 of 39

Go Back

Lie Groupoids

A Lie groupoid is a groupoid where everything is C^{∞}.

Caution: \mathcal{G} may not be Hausdorff, but all other manifolds (M, \mathbf{s} and \mathbf{t}-fibers,...) are.

Home Page

Title Page

Contents

Lie Groupoids

A Lie groupoid is a groupoid where everything is C^{∞}.

Caution: \mathcal{G} may not be Hausdorff, but all other manifolds (M, \mathbf{s} and \mathbf{t}-fibers,... are.

Proposition 1.1. Every Lie groupoid $\mathcal{G} \underset{\mathbf{s}}{\mathbf{t}} M$ determines a Lie algebroid $\pi: A \rightarrow M$.
\square

Page 9 of 39

Lie Groupoids

A Lie groupoid is a groupoid where everything is C^{∞}.

Caution: \mathcal{G} may not be Hausdorff, but all other manifolds (M, \mathbf{s} and \mathbf{t}-fibers,... are.

Home Page

Title Page

Contents

Page 9 of 39
\square

Proposition 1.1. Every Lie groupoid $\mathcal{G} \underset{\mathbf{s}}{\mathbf{t}} M$ determines a Lie algebroid $\pi: A \rightarrow M$.
t-fibers

G

M

Lie Groupoids

A Lie groupoid is a groupoid where everything is C^{∞}.

Caution: \mathcal{G} may not be Hausdorff, but all other manifolds (M, \mathbf{s} and \mathbf{t}-fibers,... are.

Home Page

Title Page

Contents

Page 9 of 39
\square

Proposition 1.1. Every Lie groupoid $\mathcal{G} \underset{\mathbf{s}}{\mathbf{t}} M$ determines a Lie algebroid $\pi: A \rightarrow M$.
t-fibers

G

M
s-fibers

$$
\mathrm{A}=\left.\operatorname{Kerds}\right|_{\mathrm{M}}
$$

Lie Groupoids

A Lie groupoid is a groupoid where everything is C^{∞}.

Caution: \mathcal{G} may not be Hausdorff, but all other manifolds (M, \mathbf{s} and \mathbf{t}-fibers,... are.

Proposition 1.1. Every Lie groupoid $\mathcal{G} \underset{\mathbf{s}}{\mathbf{t}} M$ determines a Lie algebroid $\pi: A \rightarrow M$.

Contents

Page 9 of 39

Lie Groupoids

A Lie groupoid is a groupoid where everything is C^{∞}.

Caution: \mathcal{G} may not be Hausdorff, but all other manifolds (M, \mathbf{s} and \mathbf{t}-fibers,... are.

Home Page

Title Page

Contents

Page 9 of 39

```
Go Back

Proposition 1.1. Every Lie groupoid \(\mathcal{G} \underset{\mathbf{s}}{\mathbf{t}} M\) determines a Lie algebroid \(\pi: A \rightarrow M\).

\[
\mathrm{A}=\left.\operatorname{Kerds}\right|_{\mathrm{M}} \quad \#=\left.\mathrm{dt}\right|_{\mathrm{A}}
\]

\section*{Lie Groupoids}

A Lie groupoid is a groupoid where everything is \(C^{\infty}\).

Caution: \(\mathcal{G}\) may not be Hausdorff, but all other manifolds ( \(M, \mathbf{s}\) and \(\mathbf{t}\)-fibers,... are.

Home Page

Title Page


Page 9 of 39

Contents

Proposition 1.1. Every Lie groupoid \(\mathcal{G} \underset{\mathbf{s}}{\mathbf{t}} M\) determines a Lie algebroid \(\pi: A \rightarrow M\).

\[
\mathrm{A}=\left.\operatorname{Kerds}\right|_{\mathrm{M}} \quad \#=\left.\mathrm{dt}\right|_{\mathrm{A}}
\]

\section*{Lie Groupoids}

A Lie groupoid is a groupoid where everything is \(C^{\infty}\).

Caution: \(\mathcal{G}\) may not be Hausdorff, but all other manifolds ( \(M, \mathbf{s}\) and \(\mathbf{t}\)-fibers,... are.

Home Page

Title Page

Contents


Page 9 of 39

\section*{Examples}
\begin{tabular}{|c|c|c|c|}
\hline & A & \(H^{\bullet}(A)\) & \(\mathcal{G}\) \\
\hline Ordinary Geometry ( \(M\) a manifold) & \[
\begin{gathered}
T M \\
\stackrel{\rightharpoonup}{v} \\
M
\end{gathered}
\] & de Rham cohomology &  \\
\hline \[
\begin{aligned}
& \hline \text { Lie Theory } \\
& \text { ( } \mathfrak{g} \text { a Lie algebra) }
\end{aligned}
\] & \[
\underset{\{*\}}{\mathfrak{g}}
\] & Lie algebra cohomology & \[
\underset{\{*\}}{G}
\] \\
\hline Foliation Theory ( \(\mathcal{F}\) a regular foliation) & \[
\stackrel{T \mathcal{F}}{\substack{ \\\underset{M}{2} \\ \hline \\ \hline}}
\] & foliated cohomology &  \\
\hline Equivariant Geometry \((\rho: \mathfrak{g} \rightarrow \mathfrak{X}(M)\) an action) & \[
\begin{gathered}
M \times \mathfrak{g} \\
\stackrel{y}{M} \\
M
\end{gathered}
\] & gener. foliated cohomology & \[
\begin{gathered}
G \times M \\
\downarrow \\
M
\end{gathered}
\] \\
\hline Poisson Geometry ( \(M\) Poisson) & \[
\begin{gathered}
T^{*} M \\
\downarrow \\
M
\end{gathered}
\] & Poisson cohomology & ??? \\
\hline
\end{tabular}

Home Page

Title Page

Contents


Page 10 of 39

Go Back

Full Screen

\section*{PART 2}

The Weinstein Groupoid and Integrability

\section*{A-Homotopy}

Contents


Page 12 of 39
Go Back

Full Screen

\section*{A-Homotopy}

Proposition 2.1. For every Lie groupoid \(\mathcal{G}\) there exists a unique source simply-connected Lie groupoid \(\tilde{\mathcal{G}}\) with the same associated Lie algebroid.


Page 12 of 39

\section*{A-Homotopy}

Proposition 2.1. For every Lie groupoid \(\mathcal{G}\) there exists a unique source simply-connected Lie groupoid \(\tilde{\mathcal{G}}\) with the same associated Lie algebroid.

Construction is similar to Lie group case:


Page 12 of 39

\section*{A-Homotopy}

Proposition 2.1. For every Lie groupoid \(\mathcal{G}\) there exists a unique source simply-connected Lie groupoid \(\tilde{\mathcal{G}}\) with the same associated Lie algebroid.

Construction is similar to Lie group case:
- \(P(\mathcal{G})=\left\{g: I \rightarrow \mathcal{G} \mid \mathbf{s}(g(t))=x, g(0)=1_{x}\right\} ;\)

Contents


Page 12 of 39
Go Back

\section*{A-Homotopy}

Proposition 2.1. For every Lie groupoid \(\mathcal{G}\) there exists a unique source simply-connected Lie groupoid \(\tilde{\mathcal{G}}\) with the same associated Lie algebroid.

Construction is similar to Lie group case:
- \(P(\mathcal{G})=\left\{g: I \rightarrow \mathcal{G} \mid \mathbf{s}(g(t))=x, g(0)=1_{x}\right\} ;\)
- \(g_{0} \sim g_{1}\) iff there exists homotopy \(g_{\varepsilon} \in P(\mathcal{G}), \varepsilon \in[0,1]\);


Page 12 of 39

\section*{A-Homotopy}

Proposition 2.1. For every Lie groupoid \(\mathcal{G}\) there exists a unique source simply-connected Lie groupoid \(\tilde{\mathcal{G}}\) with the same associated Lie algebroid.

Construction is similar to Lie group case:
- \(P(\mathcal{G})=\left\{g: I \rightarrow \mathcal{G} \mid \mathbf{s}(g(t))=x, g(0)=1_{x}\right\} ;\)

- \(g_{0} \sim g_{1}\) iff there exists homotopy \(g_{\varepsilon} \in P(\mathcal{G}), \varepsilon \in[0,1]\);


Page 12 of 39
- The product \(g \cdot g^{\prime}\) is defined if \(\mathbf{t}\left(g^{\prime}(1)\right)=\mathbf{s}(g(0))\). It is given by:
\[
g \cdot g^{\prime}(t)=\left\{\begin{array}{l}
g^{\prime}(2 t), \quad 0 \leq t \leq \frac{1}{2} \\
g(2 t-1) g^{\prime}(1), \quad \frac{1}{2}<t \leq 1
\end{array}\right.
\]

\section*{A-Homotopy}

Proposition 2.1. For every Lie groupoid \(\mathcal{G}\) there exists a unique source simply-connected Lie groupoid \(\tilde{\mathcal{G}}\) with the same associated Lie algebroid.

Construction is similar to Lie group case:
- \(P(\mathcal{G})=\left\{g: I \rightarrow \mathcal{G} \mid \mathbf{s}(g(t))=x, g(0)=1_{x}\right\} ;\)

- \(g_{0} \sim g_{1}\) iff there exists homotopy \(g_{\varepsilon} \in P(\mathcal{G}), \varepsilon \in[0,1]\);


Page 12 of 39
- The product \(g \cdot g^{\prime}\) is defined if \(\mathbf{t}\left(g^{\prime}(1)\right)=\mathbf{s}(g(0))\). It is given by:
\[
g \cdot g^{\prime}(t)=\left\{\begin{array}{l}
g^{\prime}(2 t), \quad 0 \leq t \leq \frac{1}{2} \\
g(2 t-1) g^{\prime}(1), \quad \frac{1}{2}<t \leq 1
\end{array}\right.
\]

The quotient gives the monodromy groupoid:
\[
\tilde{\mathcal{G}} \equiv P(\mathcal{G}) / \sim \Longrightarrow M
\]

\section*{\(A\)-Homotopy (cont.)}

Lemma 2.2. The map \(D^{R}: P(\mathcal{G}) \rightarrow P(A)\) defined by
\[
\left.\left(D^{R} g\right)(t) \equiv \frac{d}{d s} g(s) g^{-1}(t)\right|_{s=t}
\]
is a homeomorphism onto
\[
P(A) \equiv\left\{a: I \rightarrow A \left\lvert\, \frac{d}{d t} \pi(a(t))=\# a(t)\right.\right\} \quad(\text { A-paths })
\]

Contents


Page 13 of 39
Go Back

\section*{A-Homotopy (cont.)}

Lemma 2.2. The map \(D^{R}: P(\mathcal{G}) \rightarrow P(A)\) defined by
\[
\left.\left(D^{R} g\right)(t) \equiv \frac{d}{d s} g(s) g^{-1}(t)\right|_{s=t}
\]
is a homeomorphism onto
\[
P(A) \equiv\left\{a: I \rightarrow A \left\lvert\, \frac{d}{d t} \pi(a(t))=\# a(t)\right.\right\} \quad(\text { A-paths }) .
\]
\(\square\)


Page 13 of 39
Go Back
G
Full Screen

\section*{A-Homotopy (cont.)}

Lemma 2.2. The map \(D^{R}: P(\mathcal{G}) \rightarrow P(A)\) defined by
\[
\left.\left(D^{R} g\right)(t) \equiv \frac{d}{d s} g(s) g^{-1}(t)\right|_{s=t}
\]
is a homeomorphism onto
\[
P(A) \equiv\left\{a: I \rightarrow A \left\lvert\, \frac{d}{d t} \pi(a(t))=\# a(t)\right.\right\} \quad(\text { A-paths }) .
\]


Page 13 of 39
Go Back
G

\section*{A-Homotopy (cont.)}

Lemma 2.2. The map \(D^{R}: P(\mathcal{G}) \rightarrow P(A)\) defined by
\[
\left.\left(D^{R} g\right)(t) \equiv \frac{d}{d s} g(s) g^{-1}(t)\right|_{s=t}
\]
is a homeomorphism onto
\[
P(A) \equiv\left\{a: I \rightarrow A \left\lvert\, \frac{d}{d t} \pi(a(t))=\# a(t)\right.\right\} \quad(\text { A-paths }) .
\]


Page 13 of 39
Go Back
G
Full Screen

\section*{A-Homotopy (cont.)}

Lemma 2.2. The map \(D^{R}: P(\mathcal{G}) \rightarrow P(A)\) defined by
\[
\left.\left(D^{R} g\right)(t) \equiv \frac{d}{d s} g(s) g^{-1}(t)\right|_{s=t}
\]
is a homeomorphism onto
\[
P(A) \equiv\left\{a: I \rightarrow A \left\lvert\, \frac{d}{d t} \pi(a(t))=\# a(t)\right.\right\} \quad(\text { A-paths }) .
\]
\(\square\)


Page 13 of 39
Go Back
G
Full Screen

\section*{A-Homotopy (cont.)}

Lemma 2.2. The map \(D^{R}: P(\mathcal{G}) \rightarrow P(A)\) defined by
\[
\left.\left(D^{R} g\right)(t) \equiv \frac{d}{d s} g(s) g^{-1}(t)\right|_{s=t}
\]
is a homeomorphism onto
\[
P(A) \equiv\left\{a: I \rightarrow A \left\lvert\, \frac{d}{d t} \pi(a(t))=\# a(t)\right.\right\} \quad(\text { A-paths }) .
\]


Page 13 of 39
Go Back
G

\section*{A-Homotopy (cont.)}

Lemma 2.2. The map \(D^{R}: P(\mathcal{G}) \rightarrow P(A)\) defined by
\[
\left(\left.D^{R_{g}} g(t) \equiv \frac{d}{d s} g(s) g^{-1}(t)\right|_{s=t}\right.
\]
is a homeomorphism onto
\[
P(A) \equiv\left\{a: I \rightarrow A \left\lvert\, \frac{d}{d t} \pi(a(t))=\# a(t)\right.\right\} \quad(\text { A-paths }) .
\]
\(\square\)


Page 13 of 39
Go Back

\section*{A-Homotopy (cont.)}

Lemma 2.2. The map \(D^{R}: P(\mathcal{G}) \rightarrow P(A)\) defined by
\[
\left.\left(D^{R} g\right)(t) \equiv \frac{d}{d s} g(s) g^{-1}(t)\right|_{s=t}
\]
is a homeomorphism onto
\[
P(A) \equiv\left\{a: I \rightarrow A \left\lvert\, \frac{d}{d t} \pi(a(t))=\# a(t)\right.\right\} \quad(\text { A-paths }) .
\]
\(\square\)


Page 13 of 39
Go Back
G
Full Screen

\section*{A-Homotopy (cont.)}

Can transport " \(\sim\) " and "." to \(P(A)\) :


Page 14 of 39
Go Back

\section*{A-Homotopy (cont.)}

Can transport " \(\sim\) " and "." to \(P(A)\) :
- The product of \(A\)-paths:
\[
a \cdot a^{\prime}(t)=\left\{\begin{array}{lr}
2 a^{\prime}(2 t), & 0 \leq t \leq \frac{1}{2} \\
2 a(2 t-1), & \frac{1}{2}<t \leq 1
\end{array}\right.
\]

Home Page

Title Page

Contents

44


Page 14 of 39
Go Back

Full Screen

\section*{A-Homotopy (cont.)}

Can transport " \(\sim\) " and "." to \(P(A)\) :
- The product of \(A\)-paths:
\[
a \cdot a^{\prime}(t)=\left\{\begin{array}{lr}
2 a^{\prime}(2 t), & 0 \leq t \leq \frac{1}{2} \\
2 a(2 t-1), & \frac{1}{2}<t \leq 1 .
\end{array}\right.
\]

Home Page

Title Page
- A-homotopy of \(A\)-paths:
\[
a_{0} \sim a_{1} \text { iff } \left\lvert\, \begin{gathered}
\text { there exists homotopy } a_{\varepsilon} \in P(A), \varepsilon \in[0,1] \text {, s.t. } \\
\int_{0}^{t} \phi_{\xi_{\epsilon}}^{t, s} d \xi_{\epsilon}\left(s, \gamma_{\epsilon}(s)\right) d s=0 \\
\text { where } \xi_{\epsilon}(t, \cdot) \text { is a time-depending section of } A \\
\text { extending } a_{\varepsilon} \text { and } \gamma_{\varepsilon}(S)=\pi\left(a_{\varepsilon}(s)\right) .
\end{gathered}\right.
\]


Page 14 of 39

\section*{A-Homotopy (cont.)}

Can transport " \(\sim\) " and "." to \(P(A)\) :
- The product of \(A\)-paths:
\[
a \cdot a^{\prime}(t)=\left\{\begin{array}{lr}
2 a^{\prime}(2 t), & 0 \leq t \leq \frac{1}{2} \\
2 a(2 t-1), & \frac{1}{2}<t \leq 1 .
\end{array}\right.
\]

Home Page

Title Page
- \(A\)-homotopy of \(A\)-paths:
\(a_{0} \sim a_{1}\) iff \(|\)\begin{tabular}{l} 
there exists homotopy \(a_{\varepsilon} \in P(A), \varepsilon \in[0,1]\), s.t. \\
\(\left.\begin{array}{r}\int_{0}^{t} \phi_{\varepsilon_{\epsilon}}^{t, s} d \xi_{\epsilon} \\
d \epsilon \\
\text { where } \xi_{\epsilon}(t, \cdot) \text { is a time-depending section of } A \\
\left.\text { extending } a_{\varepsilon} \text { and } \gamma_{\varepsilon}(S)\right) d s=0\end{array}\right]\left(a_{\varepsilon}(s)\right)\).
\end{tabular}


Page 14 of 39

\section*{A-Homotopy (cont.)}

Can transport " \(\sim\) " and "." to \(P(A)\) :
- The product of \(A\)-paths:
\[
a \cdot a^{\prime}(t)=\left\{\begin{array}{lr}
2 a^{\prime}(2 t), & 0 \leq t \leq \frac{1}{2} \\
2 a(2 t-1), & \frac{1}{2}<t \leq 1 .
\end{array}\right.
\]

Home Page

Title Page
- A-homotopy of \(A\)-paths:
\(a_{0} \sim a_{1}\) iff \(|\)\begin{tabular}{l} 
there exists homotopy \(a_{\varepsilon} \in P(A), \varepsilon \in[0,1]\), s.t. \\
\(\left.\quad \begin{array}{r}\int_{0}^{t} \phi_{\varepsilon_{\epsilon}}^{t, s} d \xi_{\epsilon} \\
d \epsilon \\
\text { where } \xi_{\epsilon}(t, \cdot) \text { is a time-depending section of } A \\
\left.\text { extending } a_{\varepsilon} \text { and } \gamma_{\varepsilon}(S)\right) d s=0\end{array}\right]\left(a_{\varepsilon}(s)\right)\).
\end{tabular}


Page 14 of 39

\section*{A-Homotopy (cont.)}

Can transport " \(\sim\) " and "." to \(P(A)\) :
- The product of \(A\)-paths:
\[
a \cdot a^{\prime}(t)=\left\{\begin{array}{lr}
2 a^{\prime}(2 t), & 0 \leq t \leq \frac{1}{2} \\
2 a(2 t-1), & \frac{1}{2}<t \leq 1 .
\end{array}\right.
\]
- A-homotopy of \(A\)-paths:
\(a_{0} \sim a_{1}\) iff \(|\)\begin{tabular}{l} 
there exists homotopy \(a_{\varepsilon} \in P(A), \varepsilon \in[0,1]\), s.t. \\
\(\left.\quad \begin{array}{r}\int_{0}^{t} \phi_{\varepsilon_{\epsilon}}^{t, s} d \xi_{\epsilon} \\
d \epsilon \\
\text { where } \xi_{\epsilon}(t, \cdot) \text { is a time-depending section of } A \\
\left.\text { extending } a_{\varepsilon} \text { and } \gamma_{\varepsilon}(S)\right) d s=0\end{array}\right]\left(a_{\varepsilon}(s)\right)\).
\end{tabular}


Page 14 of 39

\section*{A-Homotopy (cont.)}

Can transport " \(\sim\) " and "." to \(P(A)\) :
- The product of \(A\)-paths:
\[
a \cdot a^{\prime}(t)=\left\{\begin{array}{lr}
2 a^{\prime}(2 t), & 0 \leq t \leq \frac{1}{2} \\
2 a(2 t-1), & \frac{1}{2}<t \leq 1 .
\end{array}\right.
\]
- A-homotopy of \(A\)-paths:
\(a_{0} \sim a_{1}\) iff \(|\)\begin{tabular}{c} 
there exists homotopy \(a_{\varepsilon} \in P(A), \varepsilon \in[0,1]\), s.t. \\
\begin{tabular}{c}
\(\int_{0}^{t} \phi_{\xi_{\varepsilon}}^{t, s} \frac{d \xi_{\epsilon}}{d \epsilon}\left(s, \gamma_{\epsilon}(s)\right) d s=0\) \\
where \(\xi_{\epsilon}(t, \cdot)\) is a time-depending section of \(A\) \\
extending \(a_{\varepsilon}\) and \(\gamma_{\varepsilon}(S)=\pi\left(a_{\varepsilon}(s)\right)\).
\end{tabular}
\end{tabular}


Page 14 of 39

\section*{A-Homotopy (cont.)}

Can transport " \(\sim\) " and "." to \(P(A)\) :
- The product of \(A\)-paths:
\[
a \cdot a^{\prime}(t)=\left\{\begin{array}{lr}
2 a^{\prime}(2 t), & 0 \leq t \leq \frac{1}{2} \\
2 a(2 t-1), & \frac{1}{2}<t \leq 1 .
\end{array}\right.
\]
- A-homotopy of \(A\)-paths:
\(a_{0} \sim a_{1}\) iff \(|\)\begin{tabular}{l} 
there exists homotopy \(a_{\varepsilon} \in P(A), \varepsilon \in[0,1]\), s.t. \\
\(\left.\quad \begin{array}{r}\int_{0}^{t} \phi_{\varepsilon_{\epsilon}}^{t, s} d \xi_{\epsilon} \\
d \epsilon \\
\text { where } \xi_{\epsilon}(t, \cdot) \text { is a time-depending section of } A \\
\left.\text { extending } a_{\varepsilon} \text { and } \gamma_{\varepsilon}(S)\right) d s=0\end{array}\right]\left(a_{\varepsilon}(s)\right)\).
\end{tabular}


Page 14 of 39

\section*{A-Homotopy (cont.)}

Can transport " \(\sim\) " and "." to \(P(A)\) :
- The product of \(A\)-paths:
\[
a \cdot a^{\prime}(t)=\left\{\begin{array}{lr}
2 a^{\prime}(2 t), & 0 \leq t \leq \frac{1}{2} \\
2 a(2 t-1), & \frac{1}{2}<t \leq 1 .
\end{array}\right.
\]
- A-homotopy of \(A\)-paths:
\(a_{0} \sim a_{1}\) iff \(|\)\begin{tabular}{l} 
there exists homotopy \(a_{\varepsilon} \in P(A), \varepsilon \in[0,1]\), s.t. \\
\(\left.\quad \begin{array}{r}\int_{0}^{t} \phi_{\varepsilon_{\epsilon}}^{t, s} d \xi_{\epsilon} \\
d \epsilon \\
\text { where } \xi_{\epsilon}(t, \cdot) \text { is a time-depending section of } A \\
\left.\text { extending } a_{\varepsilon} \text { and } \gamma_{\varepsilon}(S)\right) d s=0\end{array}\right]\left(a_{\varepsilon}(s)\right)\).
\end{tabular}


Page 14 of 39

\section*{The Weinstein Groupoid}

Observe that:


Page 15 of 39

Go Back

\section*{The Weinstein Groupoid}

Observe that:
- An \(A\)-path is a Lie algebroid map \(T I \rightarrow A\);


Page 15 of 39

\section*{The Weinstein Groupoid}

Observe that:
- An \(A\)-path is a Lie algebroid map \(T I \rightarrow A\);
- An \(A\)-homotopy is a Lie algebroid map \(T(I \times I) \rightarrow A\);


Page 15 of 39

\section*{The Weinstein Groupoid}

Observe that:
- An \(A\)-path is a Lie algebroid map \(T I \rightarrow A\);
- An \(A\)-homotopy is a Lie algebroid map \(T(I \times I) \rightarrow A\);

Both notions do not depend on the existence of \(\mathcal{G}\). They can be expressed solely in terms of data in \(A\) !

\section*{The Weinstein Groupoid}

Observe that:
- An \(A\)-path is a Lie algebroid map \(T I \rightarrow A\);
- An \(A\)-homotopy is a Lie algebroid map \(T(I \times I) \rightarrow A\);

Both notions do not depend on the existence of \(\mathcal{G}\). They can be expressed solely in terms of data in \(A\) !


For any Lie algebroid \(A\), the Weinstein Groupoid of \(A\) is:
\[
\mathcal{G}(A)=P(A) / \sim \text { where } \left\lvert\, \begin{array}{ll}
\mathbf{s}: \mathcal{G}(A) \rightarrow M, & {[a] \mapsto \pi(a(0))} \\
\mathbf{t}: \mathcal{G}(A) \rightarrow M, & {[a] \mapsto \pi(a(1))} \\
M \hookrightarrow \mathcal{G}(A), & x \mapsto\left[0_{x}\right]
\end{array}\right.
\]
```

Page 15 of 39

```

\section*{The Weinstein Groupoid}

Observe that:
- An \(A\)-path is a Lie algebroid map \(T I \rightarrow A\);
- An \(A\)-homotopy is a Lie algebroid map \(T(I \times I) \rightarrow A\);

Both notions do not depend on the existence of \(\mathcal{G}\). They can be expressed solely in terms of data in \(A\) !


For any Lie algebroid \(A\), the Weinstein Groupoid of \(A\) is:
\[
\mathcal{G}(A)=P(A) / \sim \text { where } \left\lvert\, \begin{array}{ll}
\mathbf{s}: \mathcal{G}(A) \rightarrow M, & {[a] \mapsto \pi(a(0))} \\
\mathbf{t}: \mathcal{G}(A) \rightarrow M, & {[a] \mapsto \pi(a(1))} \\
M \hookrightarrow \mathcal{G}(A), & x \mapsto\left[0_{x}\right]
\end{array}\right.
\]
```

Page 15 of 39

```
- \(\mathcal{G}(A)\) is a topological groupoid with source simply-connected fibers;

\section*{Examples}
\begin{tabular}{|c|c|c|c|c|}
\hline & A & \(H^{\bullet}(A)\) & \(\mathcal{G}\) & \(\mathcal{G}(A)\) \\
\hline Ordinary Geometry ( \(M\) a manifold) & \[
\begin{gathered}
T M \\
\downarrow \\
M
\end{gathered}
\] & de Rham cohomology & \[
\begin{gathered}
M \times M \\
\downarrow \downarrow \\
M
\end{gathered}
\] & \[
\begin{gathered}
\pi_{1}(M) \\
\downarrow \downarrow \\
M
\end{gathered}
\] \\
\hline Lie Theory ( \(\mathfrak{g}\) a Lie algebra) & \[
\underset{\substack{\mathfrak{g} \\\{*\} \\ \downarrow \\ \hline \\ \hline \\ \hline}}{ }
\] & Lie algebra cohomology & \[
\begin{gathered}
G \\
\downarrow \downarrow \\
\{*\}
\end{gathered}
\] & Duistermaat-Kolk construction of \(G\) \\
\hline Foliation Theory ( \(\mathcal{F}\) a regular foliation) & \[
\begin{gathered}
T \mathcal{F} \\
\downarrow \\
M
\end{gathered}
\] & foliated cohomology &  & \[
\begin{gathered}
\pi_{1}(\mathcal{F}) \\
\downarrow_{\downarrow} \\
M
\end{gathered}
\] \\
\hline Equivariant Geometry \((\rho: \mathfrak{g} \rightarrow \mathfrak{X}(M)\) an action \()\) & \[
\begin{gathered}
M \times \mathfrak{g} \\
\downarrow \\
M
\end{gathered}
\] & gener. foliated cohomology &  &  \\
\hline Poisson Geometry ( \(M\) Poisson) & \[
\begin{gathered}
T^{*} M \\
\downarrow \\
M
\end{gathered}
\] & Poisson cohomology & ??? & Poisson \(\sigma\)-model (Cattaneo \& Felder) \\
\hline
\end{tabular}

\section*{Integrability of Lie Algebroids}

A Lie algebroid \(A\) is integrable if there exists a Lie groupoid \(\mathcal{G}\) with \(A\) as associated Lie algebroid.


Page 17 of 39

\section*{Integrability of Lie Algebroids}

A Lie algebroid \(A\) is integrable if there exists a Lie groupoid \(\mathcal{G}\) with \(A\) as associated Lie algebroid.

Lemma 2.3. \(A\) is integrable iff \(\mathcal{G}(A)\) is a Lie groupoid.


Page 17 of 39

\section*{Integrability of Lie Algebroids}

A Lie algebroid \(A\) is integrable if there exists a Lie groupoid \(\mathcal{G}\) with \(A\) as associated Lie algebroid.

Lemma 2.3. \(A\) is integrable iff \(\mathcal{G}(A)\) is a Lie groupoid.

In general, \(\mathcal{G}(A)\) is not smooth: there are obstructions to integrate \(A\).

Contents


Page 17 of 39
```

Go Back

```

\section*{Integrability of Lie Algebroids}

A Lie algebroid \(A\) is integrable if there exists a Lie groupoid \(\mathcal{G}\) with \(A\) as associated Lie algebroid.

Lemma 2.3. \(A\) is integrable iff \(\mathcal{G}(A)\) is a Lie groupoid.

In general, \(\mathcal{G}(A)\) is not smooth: there are obstructions to integrate \(A\).


Fix leaf \(L \subset M\) and \(x \in L\) :
\[
0 \longrightarrow \mathfrak{g}_{L} \longrightarrow A_{L} \xrightarrow{\#} T L \longrightarrow 0
\]
```

Page 17 of 39

```
```

Go Back

```

\section*{Integrability of Lie Algebroids}

A Lie algebroid \(A\) is integrable if there exists a Lie groupoid \(\mathcal{G}\) with \(A\) as associated Lie algebroid.

Lemma 2.3. \(A\) is integrable iff \(\mathcal{G}(A)\) is a Lie groupoid.

In general, \(\mathcal{G}(A)\) is not smooth: there are obstructions to integrate \(A\).

Contents


Page 17 of 39

\section*{Integrability of Lie Algebroids}

A Lie algebroid \(A\) is integrable if there exists a Lie groupoid \(\mathcal{G}\) with \(A\) as associated Lie algebroid.

Lemma 2.3. \(A\) is integrable iff \(\mathcal{G}(A)\) is a Lie groupoid.

In general, \(\mathcal{G}(A)\) is not smooth: there are obstructions to integrate \(A\).


Fix leaf \(L \subset M\) and \(x \in L\) :
\[
\begin{gathered}
0 \longrightarrow \mathfrak{g}_{L} \longrightarrow A_{L} \xrightarrow{\#} T L \longrightarrow 0 \\
\Downarrow \\
\cdots \pi_{2}(L, x) \xrightarrow{\partial} \mathcal{G}\left(\mathfrak{g}_{L}\right)_{x} \rightarrow \mathcal{G}(A)_{x} \longrightarrow \pi_{1}(L, x) \longrightarrow 1
\end{gathered}
\]

The monodromy group at \(x\) is
\[
N_{x}(A) \equiv \operatorname{Im} \partial \subset Z\left(\mathfrak{g}_{L}\right)
\]

\section*{Integrability of Lie Algebroids}

A Lie algebroid \(A\) is integrable if there exists a Lie groupoid \(\mathcal{G}\) with \(A\) as associated Lie algebroid.

Lemma 2.3. \(A\) is integrable iff \(\mathcal{G}(A)\) is a Lie groupoid.

In general, \(\mathcal{G}(A)\) is not smooth: there are obstructions to integrate \(A\).


Fix leaf \(L \subset M\) and \(x \in L\) :
\[
\begin{gathered}
0 \longrightarrow \mathfrak{g}_{L} \longrightarrow A_{L} \xrightarrow{\#} T L \longrightarrow 0 \\
\Downarrow \\
\cdots \pi_{2}(L, x) \xrightarrow{\partial} \mathcal{G}\left(\mathfrak{g}_{L}\right)_{x} \rightarrow \mathcal{G}(A)_{x} \longrightarrow \pi_{1}(L, x) \longrightarrow 1
\end{gathered}
\]

The monodromy group at \(x\) is
\[
N_{x}(A) \equiv \operatorname{Im} \partial \subset Z\left(\mathfrak{g}_{L}\right)
\]

To measure the discreteness of \(N_{x}(A)\) we set:
\[
r(x) \equiv d\left(N_{x}-\{0\},\{0\}\right) \quad(\text { with } d(\emptyset,\{0\})=+\infty)
\]

\section*{Obstructions to Integrability}

Home Page

Title Page

Contents


Page 18 of 39

Go Back

Full Screen

\section*{Obstructions to Integrability}

Theorem 2.4 (Crainic and RLF, 2001). A Lie algebroid is integrable iff both the following conditions hold:


Page 18 of 39

\section*{Obstructions to Integrability}

Theorem 2.4 (Crainic and RLF, 2001). A Lie algebroid is integrable iff both the following conditions hold:
(i) Each monodromy group is discrete, i.e., \(r(x)>0\),


Page 18 of 39

\section*{Obstructions to Integrability}

Theorem 2.4 (Crainic and RLF, 2001). A Lie algebroid is integrable iff both the following conditions hold:
(i) Each monodromy group is discrete, i.e., \(r(x)>0\),
(ii) The monodromy groups are uniformly discrete, i.e., \(\lim _{\inf }^{y \rightarrow x}{ }_{y} r(y)>0\),


Page 18 of 39

\section*{Obstructions to Integrability}

Theorem 2.4 (Crainic and RLF, 2001). A Lie algebroid is integrable iff both the following conditions hold:
(i) Each monodromy group is discrete, i.e., \(r(x)>0\),
(ii) The monodromy groups are uniformly discrete, i.e., \(\lim _{\inf }^{y \rightarrow x} \boldsymbol{x}(y)>0\),
for all \(x \in M\).

This gives previous known criteria:

Lie (1890's), Chevaley (1930's), Van Est (1940's), Palais (1957), Douady \& Lazard (1966),
Page 18 of 39
Dazord \& Hector (1991), Alcade Cuesta \& Hector (1995), Debord (2000),

\section*{Obstructions to Integrability}

Theorem 2.4 (Crainic and RLF, 2001). A Lie algebroid is integrable iff both the following conditions hold:
(i) Each monodromy group is discrete, i.e., \(r(x)>0\),
(ii) The monodromy groups are uniformly discrete, i.e., \(\lim _{\inf }^{y \rightarrow x}{ }_{y} r(y)>0\),
for all \(x \in M\).

This gives previous known criteria:

Lie (1890's), Chevaley (1930's), Van Est (1940's), Palais (1957), Douady \& Lazard (1966),
Page 18 of 39

Go Back
Dazord \& Hector (1991), Alcade Cuesta \& Hector (1995), Debord (2000),
Mackenzie \& Xu (2000), Nistor (2000).

Corollary 2.5. A Lie algebroid is integrable if, for all leaves \(L \in \mathcal{F}\), either of the following condi-
tions holds:

\section*{Obstructions to Integrability}

Theorem 2.4 (Crainic and RLF, 2001). A Lie algebroid is integrable iff both the following conditions hold:
(i) Each monodromy group is discrete, i.e., \(r(x)>0\),
(ii) The monodromy groups are uniformly discrete, i.e., \(\lim _{\inf }^{y \rightarrow x}{ }_{y} r(y)>0\),
for all \(x \in M\).

This gives previous known criteria:

Lie (1890's), Chevaley (1930's), Van Est (1940's), Palais (1957), Douady \& Lazard (1966),
Page 18 of 39
Go Back
Dazord \& Hector (1991), Alcade Cuesta \& Hector (1995), Debord (2000),
Mackenzie \& Xu (2000), Nistor (2000).

Corollary 2.5. A Lie algebroid is integrable if, for all leaves \(L \in \mathcal{F}\), either of the following conditions holds:
(i) \(\pi_{2}(L)\) is finite (e.g., \(L\) is 2-connected);

\section*{Obstructions to Integrability}

Theorem 2.4 (Crainic and RLF, 2001). A Lie algebroid is integrable iff both the following conditions hold:
(i) Each monodromy group is discrete, i.e., \(r(x)>0\),
(ii) The monodromy groups are uniformly discrete, i.e., \(\lim _{\inf }^{y \rightarrow x}{ }_{y} r(y)>0\),
for all \(x \in M\).

This gives previous known criteria:

Lie (1890's), Chevaley (1930's), Van Est (1940's), Palais (1957), Douady \& Lazard (1966),
Page 18 of 39

Go Back
Dazord \& Hector (1991), Alcade Cuesta \& Hector (1995), Debord (2000),
Mackenzie \& Xu (2000), Nistor (2000).

Corollary 2.5. A Lie algebroid is integrable if, for all leaves \(L \in \mathcal{F}\), either of the following conditions holds:
(i) \(\pi_{2}(L)\) is finite (e.g., \(L\) is 2-connected);
(ii) \(Z\left(\mathfrak{g}_{L}\right)\) is trivial (e.g., \(\mathfrak{g}_{L}\) is semi-simple);

\section*{Computing the Obstructions}

In many examples it is possible to compute the monodromy groups:


Page 19 of 39

\section*{Computing the Obstructions}

In many examples it is possible to compute the monodromy groups:
Proposition 2.6. Assume there exists a splitting:
\[
0 \longrightarrow \mathfrak{g}_{L} \longrightarrow A_{L} \underset{\sigma}{\stackrel{\#}{\rightleftarrows}} T L \longrightarrow 0
\]
with center-valued curvature 2-form
\[
\Omega_{\sigma}(X, Y)=\sigma([X, Y])-[\sigma(X), \sigma(Y)] \in Z\left(\mathfrak{g}_{L}\right), \quad \forall X, Y \in \mathfrak{X}(L)
\]

\section*{Computing the Obstructions}

In many examples it is possible to compute the monodromy groups:
Proposition 2.6. Assume there exists a splitting:
\[
0 \longrightarrow \mathfrak{g}_{L} \longrightarrow A_{L} \underset{\sigma}{\stackrel{\#}{\rightleftarrows}} T L \longrightarrow 0
\]
with center-valued curvature 2-form
\[
\Omega_{\sigma}(X, Y)=\sigma([X, Y])-[\sigma(X), \sigma(Y)] \in Z\left(\mathfrak{g}_{L}\right), \quad \forall X, Y \in \mathfrak{X}(L)
\]

Then:
\[
N_{x}(A)=\left\{\int_{\gamma} \Omega:[\gamma] \in \pi_{2}(L, x)\right\} .
\]


Page 19 of 39

\section*{Computing the Obstructions}

In many examples it is possible to compute the monodromy groups:
Proposition 2.6. Assume there exists a splitting:
\[
0 \longrightarrow \mathfrak{g}_{L} \longrightarrow A_{L} \underset{\sigma}{\stackrel{\#}{\rightleftarrows}} T L \longrightarrow 0
\]
with center-valued curvature 2-form
\[
\Omega_{\sigma}(X, Y)=\sigma([X, Y])-[\sigma(X), \sigma(Y)] \in Z\left(\mathfrak{g}_{L}\right), \quad \forall X, Y \in \mathfrak{X}(L)
\]

Then:
\[
N_{x}(A)=\left\{\int_{\gamma} \Omega:[\gamma] \in \pi_{2}(L, x)\right\}
\]


Page 19 of 39

Example. Take \(A=T M \times \mathbb{R}\) the Lie algebroid of a presymplectic manifold \((M, \omega)\) :
\[
0 \longrightarrow M \times \mathbb{R} \longrightarrow T M \times \mathbb{R} \underset{{\underset{\sigma}{\sigma}}^{\#}}{\underset{{\underset{\sigma}{C}}^{\longrightarrow}}{\longrightarrow}} T M \longrightarrow 0
\]

\section*{Computing the Obstructions}

In many examples it is possible to compute the monodromy groups:
Proposition 2.6. Assume there exists a splitting:
\[
0 \longrightarrow \mathfrak{g}_{L} \longrightarrow A_{L} \underset{\sigma}{\stackrel{\#}{\rightleftarrows}} T L \longrightarrow 0
\]
with center-valued curvature 2-form
\[
\Omega_{\sigma}(X, Y)=\sigma([X, Y])-[\sigma(X), \sigma(Y)] \in Z\left(\mathfrak{g}_{L}\right), \quad \forall X, Y \in \mathfrak{X}(L)
\]

Then:
\[
N_{x}(A)=\left\{\int_{\gamma} \Omega:[\gamma] \in \pi_{2}(L, x)\right\}
\]

Example. Take \(A=T M \times \mathbb{R}\) the Lie algebroid of a presymplectic manifold \((M, \omega)\) :
\[
0 \longrightarrow M \times \mathbb{R} \longrightarrow T M \times \mathbb{R} \underset{{\underset{\sigma}{\sigma}}^{\#}}{\underset{\sim}{\#}} T M \longrightarrow 0
\]

For the obvious splitting, the curvature is \(\Omega_{\sigma}=\omega\).

\section*{Computing the Obstructions}

In many examples it is possible to compute the monodromy groups:
Proposition 2.6. Assume there exists a splitting:
\[
0 \longrightarrow \mathfrak{g}_{L} \longrightarrow A_{L} \underset{\sigma}{\stackrel{\#}{\rightleftarrows}} T L \longrightarrow 0
\]
with center-valued curvature 2-form
\[
\Omega_{\sigma}(X, Y)=\sigma([X, Y])-[\sigma(X), \sigma(Y)] \in Z\left(\mathfrak{g}_{L}\right), \quad \forall X, Y \in \mathfrak{X}(L)
\]

Then:
\[
N_{x}(A)=\left\{\int_{\gamma} \Omega:[\gamma] \in \pi_{2}(L, x)\right\}
\]

Example. Take \(A=T M \times \mathbb{R}\) the Lie algebroid of a presymplectic manifold \((M, \omega)\) :
\[
0 \longrightarrow M \times \mathbb{R} \longrightarrow T M \times \mathbb{R} \underset{{\underset{\sigma}{c}}^{\#}}{\underset{\longleftrightarrow}{\longrightarrow}} T M \longrightarrow 0
\]

For the obvious splitting, the curvature is \(\Omega_{\sigma}=\omega\). We obtain:
\[
N_{x}=\left\{\int_{\gamma} \omega:[\gamma] \in \pi_{2}(L, x)\right\}
\]

\section*{Computing the Obstructions}

In many examples it is possible to compute the monodromy groups:
Proposition 2.6. Assume there exists a splitting:
\[
0 \longrightarrow \mathfrak{g}_{L} \longrightarrow A_{L} \underset{\sigma}{\stackrel{\#}{\rightleftarrows}} T L \longrightarrow 0
\]
with center-valued curvature 2-form
\[
\Omega_{\sigma}(X, Y)=\sigma([X, Y])-[\sigma(X), \sigma(Y)] \in Z\left(\mathfrak{g}_{L}\right), \quad \forall X, Y \in \mathfrak{X}(L)
\]

Then:
\[
N_{x}(A)=\left\{\int_{\gamma} \Omega:[\gamma] \in \pi_{2}(L, x)\right\}
\]

Example. Take \(A=T M \times \mathbb{R}\) the Lie algebroid of a presymplectic manifold \((M, \omega)\) :
\[
0 \longrightarrow M \times \mathbb{R} \longrightarrow T M \times \mathbb{R} \underset{{\underset{\sigma}{\sigma}}^{\#}}{\underset{\sim}{\#}} T M \longrightarrow 0
\]

For the obvious splitting, the curvature is \(\Omega_{\sigma}=\omega\). We obtain:
\[
N_{x}=\left\{\int_{\gamma} \omega:[\gamma] \in \pi_{2}(L, x)\right\} .
\]

Conclusion: \(A=T M \times \mathbb{R}\) is integrable iff the group of spherical periods of \(w\) is discrete.

\section*{Example: Regular Poisson Manifolds.}

Let \((M,\{\}\),\() be a regular Poisson manifold. Fix a symplectic leaf L \subset M\) and \(x \in L\).

Home Page

Title Page

Contents


Page 20 of 39

\section*{Example: Regular Poisson Manifolds.}

Let \((M,\{\}\),\() be a regular Poisson manifold. Fix a symplectic leaf L \subset M\) and \(x \in L\).


\section*{Example: Regular Poisson Manifolds.}

Let \((M,\{\}\),\() be a regular Poisson manifold. Fix a symplectic leaf L \subset M\) and \(x \in L\).


\section*{Example: Regular Poisson Manifolds.}

Let \((M,\{\}\),\() be a regular Poisson manifold. Fix a symplectic leaf L \subset M\) and \(x \in L\).


\section*{Example: Regular Poisson Manifolds.}

Let \((M,\{\}\),\() be a regular Poisson manifold. Fix a symplectic leaf L \subset M\) and \(x \in L\).


\section*{Example: Regular Poisson Manifolds.}

Let \((M,\{\}\),\() be a regular Poisson manifold. Fix a symplectic leaf L \subset M\) and \(x \in L\).


\section*{Example: Regular Poisson Manifolds.}

Let \((M,\{\}\),\() be a regular Poisson manifold. Fix a symplectic leaf L \subset M\) and \(x \in L\).


\section*{Example: Regular Poisson Manifolds.}

Let \((M,\{\}\),\() be a regular Poisson manifold. Fix a symplectic leaf L \subset M\) and \(x \in L\).


Proposition 2.7. For a foliated family \(\gamma_{t}: \mathbb{S}^{2} \rightarrow M\), the derivative of the symplectic areas
\[
\left.\frac{d}{d t} A\left(\gamma_{t}\right)\right|_{x=0},
\]
depends only on the class \(\left[\gamma_{0}\right] \in \pi_{2}(L, x)\) and \(\operatorname{var}_{v}\left(\gamma_{t}\right)=\left[d \gamma_{t} /\left.d t\right|_{t=0}\right] \in v(L)_{x}\).

\section*{Example: Regular Poisson Manifolds.}

Define the variation of symplectic variations \(A^{\prime}\left(\gamma_{0}\right) \in v_{x}^{*}(L)\) by
\[
\left\langle A^{\prime}\left(\gamma_{0}\right), \operatorname{var}_{v}\left(\gamma_{t}\right)\right\rangle=\left.\frac{d}{d t} A\left(\gamma_{t}\right)\right|_{t=0}
\]


Page 21 of 39

\section*{Example: Regular Poisson Manifolds.}

Define the variation of symplectic variations \(A^{\prime}\left(\gamma_{0}\right) \in v_{x}^{*}(L)\) by
\[
\left\langle A^{\prime}\left(\gamma_{0}\right), \operatorname{var}_{v}\left(\gamma_{t}\right)\right\rangle=\left.\frac{d}{d t} A\left(\gamma_{t}\right)\right|_{t=0}
\]
we have:
\[
N_{x}=\left\{A^{\prime}(\gamma):[\gamma] \in \pi_{2}(L, x)\right\} \subset v_{x}^{*}(L) .
\]

Title Page

Contents


Page 21 of 39

\section*{Example: Regular Poisson Manifolds.}

Define the variation of symplectic variations \(A^{\prime}\left(\gamma_{0}\right) \in v_{x}^{*}(L)\) by
\[
\left\langle A^{\prime}\left(\gamma_{0}\right), \operatorname{var}_{v}\left(\gamma_{t}\right)\right\rangle=\left.\frac{d}{d t} A\left(\gamma_{t}\right)\right|_{t=0}
\]
we have:
\[
N_{x}=\left\{A^{\prime}(\gamma):[\gamma] \in \pi_{2}(L, x)\right\} \subset v_{x}^{*}(L) .
\]


Some consequences:

\section*{Example: Regular Poisson Manifolds.}

Define the variation of symplectic variations \(A^{\prime}\left(\gamma_{0}\right) \in v_{x}^{*}(L)\) by
\[
\left\langle A^{\prime}\left(\gamma_{0}\right), \operatorname{var}_{v}\left(\gamma_{t}\right)\right\rangle=\left.\frac{d}{d t} A\left(\gamma_{t}\right)\right|_{t=0}
\]
we have:
\[
N_{x}=\left\{A^{\prime}(\gamma):[\gamma] \in \pi_{2}(L, x)\right\} \subset v_{x}^{*}(L) .
\]


Some consequences:
- Every two dimensional Poisson manifold is integrable;

Page 21 of 39

\section*{Example: Regular Poisson Manifolds.}

Define the variation of symplectic variations \(A^{\prime}\left(\gamma_{0}\right) \in v_{x}^{*}(L)\) by
\[
\left\langle A^{\prime}\left(\gamma_{0}\right), \operatorname{var}_{v}\left(\gamma_{t}\right)\right\rangle=\left.\frac{d}{d t} A\left(\gamma_{t}\right)\right|_{t=0}
\]
we have:
\[
N_{x}=\left\{A^{\prime}(\gamma):[\gamma] \in \pi_{2}(L, x)\right\} \subset v_{x}^{*}(L) .
\]


\section*{Some consequences:}
- Every two dimensional Poisson manifold is integrable;
- A Poisson structure in \(M=\mathbb{R}^{3}-\{0\}\) with leaves the spheres \(x^{2}+y^{2}+z^{2}=\) const. is integrable iff the symplectic areas of the spheres have no critical points.

\section*{Example: Regular Poisson Manifolds.}

Define the variation of symplectic variations \(A^{\prime}\left(\gamma_{0}\right) \in v_{x}^{*}(L)\) by
\[
\left\langle A^{\prime}\left(\gamma_{0}\right), \operatorname{var}_{v}\left(\gamma_{t}\right)\right\rangle=\left.\frac{d}{d t} A\left(\gamma_{t}\right)\right|_{t=0}
\]
we have:
\[
N_{x}=\left\{A^{\prime}(\gamma):[\gamma] \in \pi_{2}(L, x)\right\} \subset v_{x}^{*}(L) .
\]


\section*{Some consequences:}
- Every two dimensional Poisson manifold is integrable;
- A Poisson structure in \(M=\mathbb{R}^{3}-\{0\}\) with leaves the spheres \(x^{2}+y^{2}+z^{2}=\) const. is integrable iff the symplectic areas of the spheres have no critical points.

\section*{PART 3}

\section*{Other Invariants: Holonomy, Characteristic Classes and K-Theory}

\section*{Lie Algebroid Connections}


Page 23 of 39

Go Back

Full Screen

\section*{Lie Algebroid Connections}

An \(A\)-connection is a bundle map \(h: p^{*} A \rightarrow T P\) s.t.:



Page 23 of 39

\section*{Lie Algebroid Connections}

An \(A\)-connection is a bundle map \(h: p^{*} A \rightarrow T P\) s.t.:
(i) \(h\) is horizontal: \(p_{*} h(u, a)=\# a\);



Page 23 of 39

\section*{Lie Algebroid Connections}

An \(A\)-connection is a bundle map \(h: p^{*} A \rightarrow T P\) s.t.:

(i) \(h\) is horizontal: \(p_{*} h(u, a)=\# a\);
(ii) \(h\) is \(G\)-invariant: \(h(u g, a)=\left(R_{g}\right)_{*} h(u, a)\);
where \(u \in P, a \in A_{x}\) with \(x=p(u)\), and \(g \in G\).


Page 23 of 39

\section*{Lie Algebroid Connections}

An \(A\)-connection is a bundle map \(h: p^{*} A \rightarrow T P\) s.t.:
(i) \(h\) is horizontal: \(p_{*} h(u, a)=\# a\);
(ii) \(h\) is \(G\)-invariant: \(h(u g, a)=\left(R_{g}\right)_{*} h(u, a)\);
where \(u \in P, a \in A_{x}\) with \(x=p(u)\), and \(g \in G\).


Page 23 of 39


\section*{Lie Algebroid Connections}

An \(A\)-connection is a bundle map \(h: p^{*} A \rightarrow T P\) s.t.:
(i) \(h\) is horizontal: \(p_{*} h(u, a)=\# a\);
(ii) \(h\) is G-invariant: \(h(u g, a)=\left(R_{g}\right)_{*} h(u, a)\);

where \(u \in P, a \in A_{x}\) with \(x=p(u)\), and \(g \in G\).


Page 23 of 39

Go Back

\section*{Lie Algebroid Connections}

An \(A\)-connection is a bundle map \(h: p^{*} A \rightarrow T P\) s.t.:
(i) \(h\) is horizontal: \(p_{*} h(u, a)=\# a\);
(ii) \(h\) is \(G\)-invariant: \(h(u g, a)=\left(R_{g}\right)_{*} h(u, a)\);

where \(u \in P, a \in A_{x}\) with \(x=p(u)\), and \(g \in G\).


Contents


Page 23 of 39
Go Back

\section*{Lie Algebroid Connections}

An \(A\)-connection is a bundle map \(h: p^{*} A \rightarrow T P\) s.t.:
(i) \(h\) is horizontal: \(p_{*} h(u, a)=\# a\);
(ii) \(h\) is \(G\)-invariant: \(h(u g, a)=\left(R_{g}\right)_{*} h(u, a)\);


Title Page
where \(u \in P, a \in A_{x}\) with \(x=p(u)\), and \(g \in G\).


Contents


Page 23 of 39
Go Back

\section*{Lie Algebroid Connections}

An \(A\)-connection is a bundle map \(h: p^{*} A \rightarrow T P\) s.t.:
(i) \(h\) is horizontal: \(p_{*} h(u, a)=\# a\);
(ii) \(h\) is \(G\)-invariant: \(h(u g, a)=\left(R_{g}\right)_{*} h(u, a)\);
where \(u \in P, a \in A_{x}\) with \(x=p(u)\), and \(g \in G\).



Page 23 of 39

Go Back

\section*{Lie Algebroid Connections}

An \(A\)-connection is a bundle map \(h: p^{*} A \rightarrow T P\) s.t.:
(i) \(h\) is horizontal: \(p_{*} h(u, a)=\# a\);
(ii) \(h\) is \(G\)-invariant: \(h(u g, a)=\left(R_{g}\right)_{*} h(u, a)\);
where \(u \in P, a \in A_{x}\) with \(x=p(u)\), and \(g \in G\).



Page 23 of 39

Similar to usual connections (case \(A=T M\) ) but:

\section*{Lie Algebroid Connections}

An \(A\)-connection is a bundle map \(h: p^{*} A \rightarrow T P\) s.t.:
(i) \(h\) is horizontal: \(p_{*} h(u, a)=\# a\);
(ii) \(h\) is \(G\)-invariant: \(h(u g, a)=\left(R_{g}\right)_{*} h(u, a)\);

where \(u \in P, a \in A_{x}\) with \(x=p(u)\), and \(g \in G\).

```

Page 23 of 39

```

Similar to usual connections (case \(A=T M\) ) but:
- \(A\)-connections are not determined by distribution \(\operatorname{Im} h\);

\section*{Lie Algebroid Connections}

An \(A\)-connection is a bundle map \(h: p^{*} A \rightarrow T P\) s.t.:
(i) \(h\) is horizontal: \(p_{*} h(u, a)=\# a\);
(ii) \(h\) is G-invariant: \(h(u g, a)=\left(R_{g}\right)_{*} h(u, a)\);

where \(u \in P, a \in A_{x}\) with \(x=p(u)\), and \(g \in G\).


Page 23 of 39
Go Back

Similar to usual connections (case \(A=T M\) ) but:
- \(A\)-connections are not determined by distribution \(\operatorname{Im} h\);
- ||-transport can be defined only along \(A\)-paths;

\section*{Lie Algebroid Connections}

An \(A\)-connection is a bundle map \(h: p^{*} A \rightarrow T P\) s.t.:
(i) \(h\) is horizontal: \(p_{*} h(u, a)=\# a\);
(ii) \(h\) is G-invariant: \(h(u g, a)=\left(R_{g}\right)_{*} h(u, a)\);

where \(u \in P, a \in A_{x}\) with \(x=p(u)\), and \(g \in G\).
Contents


Go Back

Similar to usual connections (case \(A=T M\) ) but:
- \(A\)-connections are not determined by distribution \(\operatorname{Im} h\);
- ||-transport can be defined only along \(A\)-paths;
- Flat connections may have non-discrete holonomy;

\section*{A-Holonomy}

Contents


Page 24 of 39
Go Back

Full Screen

\section*{A-Holonomy}

Using non-linear connections one obtains the \(A\)-holonomy homomorphism:
\[
\text { Hol : } \mathcal{G}(A)_{x} \rightarrow \operatorname{Out}\left(A_{L}^{\perp}\right)
\]
where:

Contents


Page 24 of 39
Go Back

Full Screen

\section*{A-Holonomy}

Using non-linear connections one obtains the \(A\)-holonomy homomorphism:
\[
\text { Hol : } \mathcal{G}(A)_{x} \rightarrow \operatorname{Out}\left(A_{L}^{\perp}\right)
\]
where:
- \(A_{L}^{\perp}\) is the transverse Lie algebroid;


Page 24 of 39

\section*{A-Holonomy}

Using non-linear connections one obtains the \(A\)-holonomy homomorphism:
\[
\text { Hol : } \mathcal{G}(A)_{x} \rightarrow \operatorname{Out}\left(A_{L}^{\perp}\right)
\]
where:
- \(A_{L}^{\perp}\) is the transverse Lie algebroid;
- Out \((A)=\operatorname{Aut}(A) / \operatorname{Inn}(A)\) is the group of outer automorphisms of \(A\);

Title Page

Contents


Page 24 of 39

\section*{A-Holonomy}

Using non-linear connections one obtains the \(A\)-holonomy homomorphism:
\[
\text { Hol : } \mathcal{G}(A)_{x} \rightarrow \operatorname{Out}\left(A_{L}^{\perp}\right)
\]
where:
- \(A_{L}^{\perp}\) is the transverse Lie algebroid;
- Out \((A)=\operatorname{Aut}(A) / \operatorname{Inn}(A)\) is the group of outer automorphisms of \(A\);


The following result generalizes the Reeb stability theorem for foliations:
```

Page 24 of }3

```

\section*{A-Holonomy}

Using non-linear connections one obtains the \(A\)-holonomy homomorphism:
\[
\text { Hol : } \mathcal{G}(A)_{x} \rightarrow \operatorname{Out}\left(A_{L}^{\perp}\right),
\]
where:
- \(A_{L}^{\perp}\) is the transverse Lie algebroid;
- Out \((A)=\operatorname{Aut}(A) / \operatorname{Inn}(A)\) is the group of outer automorphisms of \(A\);

The following result generalizes the Reeb stability theorem for foliations:
```

Page 24 of }3

```

Theorem 3.1 (RLF, 2001). Let L be a compact, transversely stable leaf of \(A\), with finite holonomy. Then:

\section*{A-Holonomy}

Using non-linear connections one obtains the \(A\)-holonomy homomorphism:
\[
\text { Hol : } \mathcal{G}(A)_{x} \rightarrow \operatorname{Out}\left(A_{L}^{\perp}\right),
\]
where:
- \(A_{L}^{\perp}\) is the transverse Lie algebroid;
- Out \((A)=\operatorname{Aut}(A) / \operatorname{Inn}(A)\) is the group of outer automorphisms of \(A\);

The following result generalizes the Reeb stability theorem for foliations:

```

Page 24 of 39

```

Theorem 3.1 (RLF, 2001). Let L be a compact, transversely stable leaf of \(A\), with finite holonomy.
(i) L is stable, i.e., L has arbitrarily small neighborhoods which are invariant under all inner automorphisms;

\section*{A-Holonomy}

Using non-linear connections one obtains the \(A\)-holonomy homomorphism:
\[
\text { Hol : } \mathcal{G}(A)_{x} \rightarrow \operatorname{Out}\left(A_{L}^{\perp}\right),
\]
where:
- \(A_{L}^{\perp}\) is the transverse Lie algebroid;
- Out \((A)=\operatorname{Aut}(A) / \operatorname{Inn}(A)\) is the group of outer automorphisms of \(A\);

Contents

```

Page 24 of 39

```
Go Back
(i) \(L\) is stable, i.e., \(L\) has arbitrarily small neighborhoods which are invariant under all inner automorphisms;
(ii) each leaf near \(L\) is a bundle over \(L\) whose fiber is a finite union of leaves of the transverse Lie

\section*{\(A\)-derivatives}


Page 25 of 39
Go Back

\section*{\(A\)-derivatives}

An \(A\)-connection on \(P=P(M, G)\) induces on any associated vector bundle \(E \rightarrow M\) an \(A\)-derivative operator:
\[
\nabla: \Gamma(A) \times \Gamma(E) \rightarrow \Gamma(E) .
\]

Home Page

Title Page

Contents

44


Page 25 of 39

Go Back

\section*{\(A\)-derivatives}

An \(A\)-connection on \(P=P(M, G)\) induces on any associated vector bundle \(E \rightarrow M\) an \(A\)-derivative operator:
\[
\nabla: \Gamma(A) \times \Gamma(E) \rightarrow \Gamma(E)
\]

Axioms for an \(A\)-derivative:

Contents

44


Page 25 of 39

Go Back

\section*{\(A\)-derivatives}

An \(A\)-connection on \(P=P(M, G)\) induces on any associated vector bundle \(E \rightarrow M\) an \(A\)-derivative operator:
\[
\nabla: \Gamma(A) \times \Gamma(E) \rightarrow \Gamma(E) .
\]

Axioms for an \(A\)-derivative:

For any \(\alpha \in \Gamma(A), s \in \Gamma(E), f \in C^{\infty}(M)\) :
(i) \(\nabla_{f \alpha} s=f \nabla_{\alpha} s\);

\section*{\(A\)-derivatives}

An \(A\)-connection on \(P=P(M, G)\) induces on any associated vector bundle \(E \rightarrow M\) an \(A\)-derivative operator:
\[
\nabla: \Gamma(A) \times \Gamma(E) \rightarrow \Gamma(E) .
\]

Axioms for an \(A\)-derivative:

For any \(\alpha \in \Gamma(A), s \in \Gamma(E), f \in C^{\infty}(M)\) :
(i) \(\nabla_{f \alpha} s=f \nabla_{\alpha} s\);
(ii) \(\nabla_{\alpha}(f s)=f \nabla_{\alpha} s+\# \alpha(f) s\);

\section*{\(A\)-derivatives}

An \(A\)-connection on \(P=P(M, G)\) induces on any associated vector bundle \(E \rightarrow M\) an \(A\)-derivative operator:
\[
\nabla: \Gamma(A) \times \Gamma(E) \rightarrow \Gamma(E) .
\]

Axioms for an \(A\)-derivative:

For any \(\alpha \in \Gamma(A), s \in \Gamma(E), f \in C^{\infty}(M)\) :
(i) \(\nabla_{f \alpha} s=f \nabla_{\alpha} s\);
(ii) \(\nabla_{\alpha}(f s)=f \nabla_{\alpha} s+\# \alpha(f) s\);
\(A\)-derivatives work like the usual covariant derivatives (case \(A=T M\) ):

\section*{\(A\)-derivatives}

An \(A\)-connection on \(P=P(M, G)\) induces on any associated vector bundle \(E \rightarrow M\) an \(A\)-derivative operator:
\[
\nabla: \Gamma(A) \times \Gamma(E) \rightarrow \Gamma(E) .
\]

Axioms for an \(A\)-derivative:

For any \(\alpha \in \Gamma(A), s \in \Gamma(E), f \in C^{\infty}(M)\) :
(i) \(\nabla_{f \alpha} s=f \nabla_{\alpha} s\);


Page 25 of 39
\(A\)-derivatives work like the usual covariant derivatives (case \(A=T M\) ):
- The curvature of \(\nabla: \Gamma(A) \times \Gamma(E) \rightarrow \Gamma(E)\) is
\[
R_{\nabla}(\alpha, \beta)=\nabla_{\alpha} \nabla_{\beta}-\nabla_{\beta} \nabla_{\alpha}-\nabla_{[\alpha, \beta]} .
\]

\section*{\(A\)-derivatives}

An \(A\)-connection on \(P=P(M, G)\) induces on any associated vector bundle \(E \rightarrow M\) an \(A\)-derivative operator:
\[
\nabla: \Gamma(A) \times \Gamma(E) \rightarrow \Gamma(E) .
\]

Axioms for an \(A\)-derivative:

For any \(\alpha \in \Gamma(A), s \in \Gamma(E), f \in C^{\infty}(M)\) :
(i) \(\nabla_{f \alpha} s=f \nabla_{\alpha} s\);


Page 25 of 39
\(A\)-derivatives work like the usual covariant derivatives (case \(A=T M\) ):
- The curvature of \(\nabla: \Gamma(A) \times \Gamma(E) \rightarrow \Gamma(E)\) is
\[
R_{\nabla}(\alpha, \beta)=\nabla_{\alpha} \nabla_{\beta}-\nabla_{\beta} \nabla_{\alpha}-\nabla_{[\alpha, \beta]} .
\]
- The torsion of \(\nabla: \Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A)\) is
\[
T_{\nabla}(\alpha, \beta)=\nabla_{\alpha} \beta-\nabla_{\beta} \alpha-[\alpha, \beta] .
\]

\section*{Characteristic Classes}
\(A\)-connections lead to:

Home Page

Title Page

Contents


Page 26 of 39

Go Back

Full Screen

\section*{Characteristic Classes}
\(A\)-connections lead to:
- A Chern-Weil theory for Lie algebroids [Vaisman, 1991; Kubarski, 1996; RLF, 2000];


Page 26 of 39

\section*{Characteristic Classes}
\(A\)-connections lead to:
- A Chern-Weil theory for Lie algebroids [Vaisman, 1991; Kubarski, 1996; RLF, 2000];

Not very interesting. . .


Title Page

Contents


Page 26 of 39

Go Back

\section*{Characteristic Classes}
\(A\)-connections lead to:
- A Chern-Weil theory for Lie algebroids [Vaisman, 1991; Kubarski, 1996; RLF, 2000];

Not very interesting...


- A Bott type connection for a Lie algebroid, leading to a theory of linear holonomy [Ginzburg, 1999; RLF, 2000];
```

Page 26 of }3

```

\section*{Characteristic Classes}
\(A\)-connections lead to:
- A Chern-Weil theory for Lie algebroids [Vaisman, 1991; Kubarski, 1996; RLF, 2000];

Not very interesting...


Title Page

Contents

- A Bott type connection for a Lie algebroid, leading to a theory of linear holonomy [Ginzburg, 1999; RLF, 2000];
```

Page 26 of 39

```
- Secondary characteristic classes (a la Chern-Simons) for Lie algebroids [RLF, 2000], which generalize the modular class [Weinstein, 1997; Evens, Lu \& Weinstein, 1999; Huebschmann, 1999];

\section*{Characteristic Classes}
\(A\)-connections lead to:
- A Chern-Weil theory for Lie algebroids [Vaisman, 1991; Kubarski, 1996; RLF, 2000];

Not very interesting...


Title Page

Contents

- A Bott type connection for a Lie algebroid, leading to a theory of linear holonomy [Ginzburg, 1999; RLF, 2000];
```

Page 26 of 39

```
Go Back
- Secondary characteristic classes (a la Chern-Simons) for Lie algebroids [RLF, 2000], which generalize the modular class [Weinstein, 1997; Evens, Lu \& Weinstein, 1999; Huebschmann, 1999];
- Characteristic classes of representations of a Lie algebroid [Crainic, 2001].

\section*{K-theory}


Page 27 of 39

\section*{Go Back}

Full Screen

\section*{K-theory}

Flat \(A\)-connections \(\Leftrightarrow\) Representations of \(A\)

Home Page

Title Page

Contents


Page 27 of 39

Go Back

Full Screen

\section*{K-theory}

\section*{Flat \(A\)-connections \(\Leftrightarrow\) Representations of \(A\)}

Axioms for a representation of \(A\) :

Title Page

Contents


Page 27 of 39

Go Back

Full Screen

\section*{K-theory}

\section*{Flat \(A\)-connections \(\Leftrightarrow\) Representations of \(A\)}

Axioms for a representation of \(A\) :
\(E \rightarrow M\) is a vector bundle and there exists a product \(\Gamma(A) \times \Gamma(E) \rightarrow \Gamma(E)\) such that:
(i) \((f \alpha) \cdot s=f(\alpha \cdot s)\);


Page 27 of 39

\section*{K-theory}

\section*{Flat \(A\)-connections \(\Leftrightarrow\) Representations of \(A\)}

Axioms for a representation of \(A\) :
\(E \rightarrow M\) is a vector bundle and there exists a product \(\Gamma(A) \times \Gamma(E) \rightarrow \Gamma(E)\) such that:
(i) \((f \alpha) \cdot s=f(\alpha \cdot s)\);

Title Page

Contents

(ii) \(\alpha \cdot(f s)=(\alpha \cdot f) s+f(\alpha \cdot s)\);


Page 27 of 39

\section*{K-theory}

\section*{Flat \(A\)-connections \(\Leftrightarrow\) Representations of \(A\)}

Axioms for a representation of \(A\) :
\(E \rightarrow M\) is a vector bundle and there exists a product \(\Gamma(A) \times \Gamma(E) \rightarrow \Gamma(E)\) such that:
(i) \((f \alpha) \cdot s=f(\alpha \cdot s)\);
(ii) \(\alpha \cdot(f s)=(\alpha \cdot f) s+f(\alpha \cdot s)\);

(ii) \(\alpha \cdot(f s)=(\alpha \cdot f) s+f(\alpha \cdot s)\);

(iii) \([\alpha, \beta] \cdot s=\alpha(\beta \cdot s)-\beta \cdot(\alpha \cdot s)\);

Page 27 of 39

Go Back

\section*{K-theory}

\section*{Flat \(A\)-connections \(\Leftrightarrow\) Representations of \(A\)}

Axioms for a representation of \(A\) :
\(E \rightarrow M\) is a vector bundle and there exists a product \(\Gamma(A) \times \Gamma(E) \rightarrow \Gamma(E)\) such that:
(i) \((f \alpha) \cdot s=f(\alpha \cdot s)\);
(ii) \(\alpha \cdot(f s)=(\alpha \cdot f) s+f(\alpha \cdot s)\);
(iii) \([\alpha, \beta] \cdot s=\alpha(\beta \cdot s)-\beta \cdot(\alpha \cdot s)\);

Page 27 of 39

Proposition 3.2. Every representation of \(A\) determines a representation of \(\mathcal{G}(A)\). The converse

\section*{K-theory}

\section*{Flat \(A\)-connections \(\Leftrightarrow\) Representations of \(A\)}

Axioms for a representation of \(A\) :
\(E \rightarrow M\) is a vector bundle and there exists a product \(\Gamma(A) \times \Gamma(E) \rightarrow \Gamma(E)\) such that:
(i) \((f \alpha) \cdot s=f(\alpha \cdot s)\);
(ii) \(\alpha \cdot(f s)=(\alpha \cdot f) s+f(\alpha \cdot s)\);
(iii) \([\alpha, \beta] \cdot s=\alpha(\beta \cdot s)-\beta \cdot(\alpha \cdot s)\);

Page 27 of 39
```

Go Back

```

Full Screen

Proposition 3.2. Every representation of \(A\) determines a representation of \(\mathcal{G}(A)\). The converse
\(K(A) \equiv\) Grothendieck ring of the semi-ring of equivalence classes of representations

\section*{K-theory}

\section*{Flat \(A\)-connections \(\Leftrightarrow\) Representations of \(A\)}

Axioms for a representation of \(A\) :
\(E \rightarrow M\) is a vector bundle and there exists a product \(\Gamma(A) \times \Gamma(E) \rightarrow \Gamma(E)\) such that:
(i) \((f \alpha) \cdot s=f(\alpha \cdot s)\);
(ii) \(\alpha \cdot(f s)=(\alpha \cdot f) s+f(\alpha \cdot s)\);
(iii) \([\alpha, \beta] \cdot s=\alpha(\beta \cdot s)-\beta \cdot(\alpha \cdot s)\);

Page 27 of 39
Go Back

Full Screen

Proposition 3.2. Every representation of \(A\) determines a representation of \(\mathcal{G}(A)\). The converse
\(K(A) \equiv\) Grothendieck ring of the semi-ring of equivalence classes of representations
- The apropriate equivalence relation(s) were introduced by [Ginzburg, 2001];

\section*{K-theory}

\section*{Flat \(A\)-connections \(\Leftrightarrow\) Representations of \(A\)}

Axioms for a representation of \(A\) :
\(E \rightarrow M\) is a vector bundle and there exists a product \(\Gamma(A) \times \Gamma(E) \rightarrow \Gamma(E)\) such that:
(i) \((f \alpha) \cdot s=f(\alpha \cdot s)\);
(ii) \(\alpha \cdot(f s)=(\alpha \cdot f) s+f(\alpha \cdot s)\);
(iii) \([\alpha, \beta] \cdot s=\alpha(\beta \cdot s)-\beta \cdot(\alpha \cdot s)\);
```

Page 27 of }3

```
for any \(\alpha, \beta \in \Gamma(A), s \in \Gamma(E), f \in C^{\infty}(M)\).

Proposition 3.2. Every representation of \(A\) determines a representation of \(\mathcal{G}(A)\). The converse also holds, provided \(A\) is integrable.
\(K(A) \equiv\) Grothendieck ring of the semi-ring of equivalence classes of representations
- The apropriate equivalence relation(s) were introduced by [Ginzburg, 2001];
- Representations lead to Morita equivalence in the context of Lie algebroids [Ginzburg, 2001; Crainic \& RLF, 2002].

\section*{The Leibniz Identity.}

For any sections \(\alpha, \beta \in \Gamma(A)\) and function \(f \in C^{\infty}(M)\) :

\[
[\alpha, f \beta]=f[\alpha, \beta]+\# \alpha(f) \beta
\]

\section*{The Tangent Lie Algebroid.}

M-a manifold
- bundle: \(A=T M\);
- anchor: \# : TM \(\rightarrow\) TM, \# =id;
- Lie bracket: [, ]: \(\mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)\), usual Lie bracket of vector fields;
- characteristic foliation: \(\mathcal{F}=\{M\}\).

The Lie Algebroid of a Lie Algebra.
\(\mathfrak{g}\) - a Lie algebra
- bundle: \(A=\mathfrak{g} \rightarrow\{*\}\);
- anchor: \# = 0;

Page 31 of 39
- Lie bracket: [, ]: \(\mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}\), given Lie bracket;
- characteristic foliation: \(\mathcal{F}=\{*\}\).

The Lie Algebroid of a Foliation.
\(\mathcal{F}\) - a regular foliation
- bundle: \(A=T \mathcal{F} \rightarrow M\);
- anchor: \# : \(T \mathcal{F} \hookrightarrow T M\), inclusion;
- Lie bracket: [, ]: \(\mathfrak{X}(\mathcal{F}) \times \mathfrak{X}(\mathcal{F}) \rightarrow \mathfrak{X}(\mathcal{F})\),
usual Lie bracket restricted to vector fields tangent to \(\mathcal{F}\);
- characteristic foliation: \(\mathcal{F}\).

The Action Lie Algebroid.
\(\rho: \mathfrak{g} \rightarrow \mathfrak{X}(M)\) - an infinitesimal action of a Lie algebra
- bundle: \(A=M \times \mathfrak{g} \rightarrow M\);
- anchor: \# : \(A \rightarrow T M, \#(x, v)=\left.\rho(v)\right|_{x}\);
- Lie bracket: [,] : \(C^{\infty}(M, \mathfrak{g}) \times C^{\infty}(M, \mathfrak{g}) \rightarrow C^{\infty}(M, \mathfrak{g})\)
\[
[v, w](x)=[v(x), w(x)]+\left.(\rho(v(x)) \cdot w)\right|_{x}-\left.(\rho(w(x)) \cdot v)\right|_{x}
\]
- characteristic foliation: orbit foliation.

\section*{The Lie Algebroid of a Presymplectic manifold.}
\(M\) - an presymplectic manifold with closed 2-form \(\omega\)
- bundle: \(A=T M \times \mathbb{R} \rightarrow M\);
- anchor: \# : \(A \rightarrow T M, \#(v, \lambda)=v\);
- Lie bracket: \(\Gamma(A)=\mathfrak{X}(M) \times C^{\infty}(M)\)
\[
[(X, f),(Y, g)]=([X, Y], X(g)-Y(f)-\omega(X, Y)) ;
\]
- characteristic foliation: \(\mathcal{F}=\{M\}\).

The Cotangent Lie Algebroid.

M - a Poisson manifold with Poisson tensor \(\pi\)
- bundle: \(A=T^{*} M\);
- anchor: \#: \(T M^{*} \rightarrow T M, \# \alpha=i_{\pi} \alpha\);
- Lie bracket: [, ]: \(\Omega^{1}(M) \times \Omega^{1}(M) \rightarrow \Omega^{1}(M)\), Kozul Lie bracket:
\[
[\alpha, \beta]=\mathcal{L}_{\# \alpha} \beta-\mathcal{L}_{\# \beta} \alpha-d \pi(\alpha, \beta) ;
\]
- characteristic foliation: the symplectic foliation.

The Pair Groupoid.
\(M\) - a manifold
- arrows: \(\mathcal{G}=M \times M\);
- objects: M;
- target and source: \(\mathbf{s}(x, y)=x, \mathbf{t}(x, y)=y\);
- product: \((x, y) \cdot(y, z)=(x, z)\);

The Lie Groupoid of a Lie Group.

G - a Lie group
- arrows: \(\mathcal{G}=G\);
- objects: \(M=\{*\}\);
- target and source: \(\mathbf{s}(x)=\mathbf{t}(x)=*\);
- product: \(g \cdot h=g h\);

The Holonomy Groupoid.
\(\mathcal{F}\) - a regular foliation in \(M\)
- arrows: \(\mathcal{G}=\{[\gamma]\) : holonomy equivalence classes \(\}\);
- objects: M;
- target and source: \(\mathbf{s}([\gamma])=\gamma(0), \mathbf{t}([\gamma])=\gamma(1)\);
- product: \([\gamma] \cdot\left[\gamma^{\prime}\right]=\left[\gamma \cdot \gamma^{\prime}\right]\);

The Action Groupoid.
\(G \times M \rightarrow M-\) an action of a Lie group on \(M\)
- arrows: \(\mathcal{G}=G \times M\);
- objects: M;
- target and source: \(\mathbf{s}(g, x)=x, \mathbf{t}(g, x)=g x\);
- product: \((h, y) \cdot(g, x)=(h g, x)\);```

