Invariants of Lie algebroids

Rui Loja Fernandes

July, 2002

Contents

1	Lie Algebroids: Basic Concepts	2
2	The Weinstein Groupoid and Integrability	11
3	Other Invariants: Holonomy, Characteristic Classes and K-Theory	22

PART 1

Lie Algebroids: Basic Concepts

Lie algebroids are *geometric* vector bundles.

Home Page Title Page Contents 44 \blacktriangleright Page 3 of 39 Go Back Full Screen Close Quit

Lie algebroids are *geometric* vector bundles.

A **Lie algebroid** over a smooth manifold *M* is a vector bundle $\pi : A \to M$ with:

Lie algebroids are *geometric* vector bundles.

A **Lie algebroid** over a smooth manifold *M* is a vector bundle $\pi : A \to M$ with:

• a Lie bracket $[,] : \Gamma(A) \times \Gamma(A) \to \Gamma(A);$

Lie algebroids are *geometric* vector bundles.

A **Lie algebroid** over a smooth manifold *M* is a vector bundle $\pi : A \to M$ with:

- a Lie bracket $[,] : \Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A);$
- a bundle map $#: A \rightarrow TM$, called the *anchor*;

Lie algebroids are *geometric* vector bundles.

A **Lie algebroid** over a smooth manifold *M* is a vector bundle $\pi : A \to M$ with:

- a Lie bracket $[,] : \Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A);$
- a bundle map $#: A \rightarrow TM$, called the *anchor*;

and they are compatible:

Lie algebroids are *geometric* vector bundles.

A **Lie algebroid** over a smooth manifold *M* is a vector bundle $\pi : A \to M$ with:

- a Lie bracket $[,] : \Gamma(A) \times \Gamma(A) \to \Gamma(A);$
- a bundle map $#: A \rightarrow TM$, called the *anchor*;

and they are compatible:

(i) the map $#: \Gamma(A) \to \mathfrak{X}^1(M)$ is a Lie algebra homomorphism;

Lie algebroids are *geometric* vector bundles.

A **Lie algebroid** over a smooth manifold *M* is a vector bundle $\pi : A \to M$ with:

- a Lie bracket $[,] : \Gamma(A) \times \Gamma(A) \rightarrow \Gamma(A);$
- a bundle map $# : A \rightarrow TM$, called the *anchor*;

and they are compatible:

- (i) the map $#: \Gamma(A) \to \mathfrak{X}^1(M)$ is a Lie algebra homomorphism;
- (ii) the Leibniz identity holds.

Lie algebroids are *geometric* vector bundles.

A **Lie algebroid** over a smooth manifold *M* is a vector bundle $\pi : A \to M$ with:

- a Lie bracket $[,] : \Gamma(A) \times \Gamma(A) \to \Gamma(A);$
- a bundle map $#: A \rightarrow TM$, called the *anchor*;

and they are compatible:

- (i) the map $#: \Gamma(A) \to \mathfrak{X}^1(M)$ is a Lie algebra homomorphism;
- (ii) the Leibniz identity holds.

A **morphism of Lie algebroids** is a bundle map $\phi : A_1 \rightarrow A_2$ which preserves anchors and Lie brackets.

The kernel and the image of the anchor give basic objects associated with any Lie algebroid:

The kernel and the image of the anchor give basic objects associated with any Lie algebroid:

The **isotropy Lie algebra** at $x \in M$ is:

 $\mathfrak{g}_x \equiv \operatorname{Ker} \#_x.$

The kernel and the image of the anchor give basic objects associated with any Lie algebroid:

The **isotropy Lie algebra** at $x \in M$ is:

$$\mathfrak{g}_x \equiv \operatorname{Ker} \#_x$$

The **characteristic foliation** \mathcal{F} is the singular foliation of M determined by the distribution:

 $x \mapsto \mathcal{D}_x \equiv \operatorname{Im} \#_x.$

The kernel and the image of the anchor give basic objects associated with any Lie algebroid:

The **isotropy Lie algebra** at $x \in M$ is:

$$\mathfrak{g}_x \equiv \operatorname{Ker} \#_x$$

The **characteristic foliation** \mathcal{F} is the singular foliation of *M* determined by the distribution:

$$x \mapsto \mathcal{D}_x \equiv \operatorname{Im} \#_x$$

If *x* and *y* belong to a leaf $L \in \mathcal{F}$, then $\mathfrak{g}_x \simeq \mathfrak{g}_y$. Hence, we get a bundle of Lie algebras

$$\mathfrak{g}_L = \bigcup_{x \in L} \mathfrak{g}_x \to L$$

The kernel and the image of the anchor give basic objects associated with any Lie algebroid:

The **isotropy Lie algebra** at $x \in M$ is:

$$\mathfrak{g}_x \equiv \operatorname{Ker} \#_x$$

The **characteristic foliation** \mathcal{F} is the singular foliation of *M* determined by the distribution:

$$x \mapsto \mathcal{D}_x \equiv \operatorname{Im} \#_x$$

If *x* and *y* belong to a leaf $L \in \mathcal{F}$, then $\mathfrak{g}_x \simeq \mathfrak{g}_y$. Hence, we get a bundle of Lie algebras

$$\mathfrak{g}_L = \bigcup_{x \in L} \mathfrak{g}_x \to L.$$

The short exact sequence of a leaf is the short exact sequence of Lie algebroids:

$$0 \longrightarrow \mathfrak{g}_L \longrightarrow A_L \stackrel{\#}{\longrightarrow} TL \longrightarrow 0$$

EXAMPLES	Α
Ordinary Geometry	TM
(M a manifold)	
	$\stackrel{\scriptscriptstyle (Y)}{M}$
Lie Theory	a
(g a Lie algebra)	9 U
	¥
	{*}
Foliation Theory	$T\mathcal{F}$
(\mathcal{F} a regular foliation)	
	Υ M
Equivariant Geometry	111
$(\rho: \mathfrak{g} \to \mathfrak{X}(M) \text{ an action})$	$M imes \mathfrak{g}$
	↓
	<i>M</i>
Presymplectic Geometry	$TM imes \mathbb{R}$
(<i>M</i> presymplectic)	
	$\stackrel{\scriptscriptstyle \mathbb{V}}{M}$
Poisson Geometry	TT*) (
(M Poisson)	T^*M
	Ý
	IVI

A first example of a global invariant of a Lie algebroid:

A first example of a global invariant of a Lie algebroid:

A-differential forms: $\Omega^{\bullet}(A) = \Gamma(\wedge^{\bullet}A^*)$

A first example of a global invariant of a Lie algebroid:

A-differential forms: $\Omega^{\bullet}(A) = \Gamma(\wedge^{\bullet}A^*)$

A-differential: $d_A : \Omega^{\bullet}(A) \to \Omega^{\bullet+1}(A)$

$$d_A Q(\alpha_0, \dots, \alpha_r) \equiv \frac{1}{r+1} \sum_{k=0}^{r+1} (-1)^k \# \alpha_k (Q(\alpha_0, \dots, \widehat{\alpha}_k, \dots, \alpha_r)) \\ + \frac{1}{r+1} \sum_{k$$

A first example of a global invariant of a Lie algebroid:

A-differential forms: $\Omega^{\bullet}(A) = \Gamma(\wedge^{\bullet}A^*)$

A-differential: $d_A : \Omega^{\bullet}(A) \to \Omega^{\bullet+1}(A)$

$$d_A Q(\alpha_0, \dots, \alpha_r) \equiv \frac{1}{r+1} \sum_{k=0}^{r+1} (-1)^k \# \alpha_k (Q(\alpha_0, \dots, \widehat{\alpha}_k, \dots, \alpha_r)) + \frac{1}{r+1} \sum_{k$$

A-cohomology:

$$H^{\bullet}(A) \equiv \frac{\operatorname{Ker} d_A}{\operatorname{Im} d_A}$$

In general, it is very hard to compute...

Examples

	A	$H^{ullet}(A)$
Ordinary Geometry (<i>M</i> a manifold)	TM \downarrow M	de Rham cohomology
Lie Theory (g a Lie algebra)	₽ ↓ {*}	Lie algebra cohomology
Foliation Theory (\mathcal{F} a regular foliation)	$T\mathcal{F}$ \downarrow M	foliated cohomology
Equivariant Geometry ($\rho : \mathfrak{g} \to \mathfrak{X}(M)$ an action)	$M imes \mathfrak{g}$ \downarrow M	gener. foliated cohomology
Poisson Geometry (M Poisson)	T^*M \downarrow M	Poisson cohomology

A **groupoid** is a small category where every morphism is an isomorphism.

A **groupoid** is a small category where every morphism is an isomorphism.

 $\mathcal{G} \equiv \text{set of morphisms}$ $M \equiv \text{set of objects.}$

A **groupoid** is a small category where every morphism is an isomorphism.

 $\mathcal{G} \equiv \text{set of morphisms}$ $M \equiv \text{set of objects.}$

• **source** and **target** maps:

$$\underbrace{\overset{g}{\overset{\bullet}}}_{\mathbf{t}(g)} \underbrace{\overset{g}{\overset{\bullet}}}_{\mathbf{s}(g)} \qquad \qquad \mathcal{G} \underbrace{\overset{t}{\overset{\bullet}}}_{\mathbf{s}} M$$

A **groupoid** is a small category where every morphism is an isomorphism.

 $\mathcal{G} \equiv \text{set of morphisms}$ $M \equiv \text{set of objects.}$

• **source** and **target** maps:

$$\begin{array}{c} \overset{g}{\underbrace{}} & & \\ \overset{\bullet}{\mathbf{t}(g)} & & \overset{\bullet}{\mathbf{s}(g)} & & \\ & & \mathcal{G} \xrightarrow{\mathbf{t}} & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \xrightarrow{g} M$$

• product:

$$\mathcal{G}^{(2)} = \{(h,g) \in \mathcal{G} \times \mathcal{G} : \mathbf{s}(h) = \mathbf{t}(g)\}$$
$$m : \mathcal{G}^{(2)} \to \mathcal{G}$$
$$R_g : \mathbf{s}^{-1}(\mathbf{t}(g)) \to \mathbf{s}^{-1}(\mathbf{s}(g))$$

Home Page			
Title Page			
Contents			
••	••		
•	•		
Page 8 of 39			
Go Back			
Full Screen			
Close			
Quit			

A **groupoid** is a small category where every morphism is an isomorphism.

 $\mathcal{G} \equiv \text{set of morphisms}$ $M \equiv \text{set of objects.}$

• **source** and **target** maps:

• product:

$$\mathcal{G}^{(2)} = \{(h,g) \in \mathcal{G} \times \mathcal{G} : \mathbf{s}(h) = \mathbf{t}(g)\}$$
$$m : \mathcal{G}^{(2)} \to \mathcal{G}$$
$$R_g : \mathbf{s}^{-1}(\mathbf{t}(g)) \to \mathbf{s}^{-1}(\mathbf{s}(g))$$

• identity: $\epsilon: M \hookrightarrow \mathcal{G}$

A **groupoid** is a small category where every morphism is an isomorphism.

 $\mathcal{G} \equiv \text{set of morphisms}$ $M \equiv \text{set of objects.}$

• **source** and **target** maps:

• product:

 1_x

$$\mathcal{G}^{(2)} = \{(h,g) \in \mathcal{G} \times \mathcal{G} : \mathbf{s}(h) = \mathbf{t}(g)\}$$
$$m : \mathcal{G}^{(2)} \to \mathcal{G}$$
$$R_g : \mathbf{s}^{-1}(\mathbf{t}(g)) \to \mathbf{s}^{-1}(\mathbf{s}(g))$$

• identity: $\epsilon: M \hookrightarrow \mathcal{G}$

 $\iota:\mathcal{G}\longrightarrow \mathcal{G}$ • inverse:

- ())

A **Lie groupoid** is a groupoid where everything is C^{∞} .

Caution: G may not be Hausdorff, but all other manifolds (M, **s** and **t**-fibers,...) are.

A **Lie groupoid** is a groupoid where everything is C^{∞} .

Caution: G may not be Hausdorff, but all other manifolds (M, **s** and **t**-fibers,...) are.

A **Lie groupoid** is a groupoid where everything is C^{∞} .

Caution: \mathcal{G} may not be Hausdorff, but all other manifolds (M, **s** and **t**-fibers,...) are.

A **Lie groupoid** is a groupoid where everything is C^{∞} .

Caution: \mathcal{G} may not be Hausdorff, but all other manifolds (M, **s** and **t**-fibers,...) are.

A **Lie groupoid** is a groupoid where everything is C^{∞} .

Caution: \mathcal{G} may not be Hausdorff, but all other manifolds (M, **s** and **t**-fibers,...) are.

A **Lie groupoid** is a groupoid where everything is C^{∞} .

Caution: \mathcal{G} may not be Hausdorff, but all other manifolds (M, **s** and **t**-fibers,...) are.

A **Lie groupoid** is a groupoid where everything is C^{∞} .

Caution: \mathcal{G} may not be Hausdorff, but all other manifolds (M, **s** and **t**-fibers,...) are.

A **Lie groupoid** is a groupoid where everything is C^{∞} .

Caution: \mathcal{G} may not be Hausdorff, but all other manifolds (M, **s** and **t**-fibers,...) are.

Lie Groupoids

A **Lie groupoid** is a groupoid where everything is C^{∞} .

Caution: \mathcal{G} may not be Hausdorff, but all other manifolds (M, **s** and **t**-fibers,...) are.

Proposition 1.1. Every Lie groupoid $\mathcal{G} \xrightarrow[s]{t} M$ determines a Lie algebroid $\pi : A \to M$.

Examples

	A	$H^{ullet}(A)$	\mathcal{G}
Ordinary Geometry (<i>M</i> a manifold)	$TM \\ \downarrow \\ M$	de Rham cohomology	$\begin{array}{c} M \times M \\ \downarrow \downarrow \\ M \end{array}$
Lie Theory (g a Lie algebra)	₽ ↓ {*}	Lie algebra cohomology	$\begin{array}{c} G \\ \downarrow \downarrow \\ \{*\} \end{array}$
Foliation Theory $(\mathcal{F} \text{ a regular foliation})$	$ \begin{array}{c} T\mathcal{F} \\ \downarrow \\ M \end{array} $	foliated cohomology	$Hol \\ \downarrow \\ \downarrow \\ M$
Equivariant Geometry ($\rho : \mathfrak{g} \to \mathfrak{X}(M)$ an action)	$M \times \mathfrak{g}$ \downarrow M	gener. foliated cohomology	$\begin{array}{c} G \times M \\ \downarrow \downarrow \\ M \end{array}$
Poisson Geometry (M Poisson)	$\begin{bmatrix} T^*M \\ \downarrow \\ M \end{bmatrix}$	Poisson cohomology	???

PART 2

The Weinstein Groupoid and Integrability

Proposition 2.1. For every Lie groupoid \mathcal{G} there exists a unique source simply-connected Lie groupoid $\tilde{\mathcal{G}}$ with the same associated Lie algebroid.

Proposition 2.1. For every Lie groupoid G there exists a unique source simply-connected Lie groupoid \tilde{G} with the same associated Lie algebroid.

Construction is similar to Lie group case:

Proposition 2.1. For every Lie groupoid G there exists a unique source simply-connected Lie groupoid \tilde{G} with the same associated Lie algebroid.

Construction is similar to Lie group case:

• $P(\mathcal{G}) = \{g: I \rightarrow \mathcal{G} | \mathbf{s}(g(t)) = x, g(0) = 1_x\};$

Proposition 2.1. For every Lie groupoid G there exists a unique source simply-connected Lie groupoid \tilde{G} with the same associated Lie algebroid.

Construction is similar to Lie group case:

•
$$P(\mathcal{G}) = \{g: I \rightarrow \mathcal{G} | \mathbf{s}(g(t)) = x, g(0) = 1_x\};$$

• $g_0 \sim g_1$ iff there exists homotopy $g_{\varepsilon} \in P(\mathcal{G}), \varepsilon \in [0, 1]$;

Proposition 2.1. For every Lie groupoid G there exists a unique source simply-connected Lie groupoid \tilde{G} with the same associated Lie algebroid.

Construction is similar to Lie group case:

•
$$P(\mathcal{G}) = \{g: I \rightarrow \mathcal{G} | \mathbf{s}(g(t)) = x, g(0) = 1_x\};$$

- $g_0 \sim g_1$ iff there exists homotopy $g_{\varepsilon} \in P(\mathcal{G}), \varepsilon \in [0, 1]$;
- The product $g \cdot g'$ is defined if $\mathbf{t}(g'(1)) = \mathbf{s}(g(0))$. It is given by:

$$g \cdot g'(t) = \begin{cases} g'(2t), & 0 \le t \le \frac{1}{2} \\ \\ g(2t-1)g'(1), & \frac{1}{2} < t \le 1 \end{cases}$$

Proposition 2.1. For every Lie groupoid G there exists a unique source simply-connected Lie groupoid \tilde{G} with the same associated Lie algebroid.

Construction is similar to Lie group case:

•
$$P(\mathcal{G}) = \{g: I \rightarrow \mathcal{G} | \mathbf{s}(g(t)) = x, g(0) = 1_x\};$$

- $g_0 \sim g_1$ iff there exists homotopy $g_{\varepsilon} \in P(\mathcal{G}), \varepsilon \in [0, 1]$;
- The product $g \cdot g'$ is defined if $\mathbf{t}(g'(1)) = \mathbf{s}(g(0))$. It is given by:

$$g \cdot g'(t) = \begin{cases} g'(2t), & 0 \le t \le \frac{1}{2} \\ \\ g(2t-1)g'(1), & \frac{1}{2} < t \le 1 \end{cases}$$

The quotient gives the monodromy groupoid:

$$\tilde{\mathcal{G}} \equiv P(\mathcal{G}) / \sim \Longrightarrow M$$

Lemma 2.2. The map $D^R : P(\mathcal{G}) \to P(A)$ defined by

$$(D^{R}g)(t) \equiv \left. \frac{d}{ds}g(s)g^{-1}(t) \right|_{s=t}$$

$$P(A) \equiv \left\{ a: I \to A \mid \frac{d}{dt} \pi(a(t)) = \#a(t) \right\} \qquad (A-paths).$$

Lemma 2.2. The map $D^R : P(\mathcal{G}) \to P(A)$ defined by

$$(D^{R}g)(t) \equiv \left. \frac{d}{ds}g(s)g^{-1}(t) \right|_{s=t}$$

$$P(A) \equiv \left\{ a: I \to A \mid \frac{d}{dt} \pi(a(t)) = \#a(t) \right\} \qquad (A-paths).$$

Lemma 2.2. The map $D^R : P(\mathcal{G}) \to P(A)$ defined by

$$(D^{R}g)(t) \equiv \left. \frac{d}{ds}g(s)g^{-1}(t) \right|_{s=t}$$

$$P(A) \equiv \left\{ a: I \to A \mid \frac{d}{dt} \pi(a(t)) = \#a(t) \right\} \qquad (A-paths).$$

Lemma 2.2. The map $D^R : P(\mathcal{G}) \to P(A)$ defined by

$$(D^{R}g)(t) \equiv \left. \frac{d}{ds}g(s)g^{-1}(t) \right|_{s=t}$$

$$P(A) \equiv \left\{ a: I \to A \mid \frac{d}{dt} \pi(a(t)) = \#a(t) \right\} \qquad (A-paths).$$

Lemma 2.2. The map $D^R : P(\mathcal{G}) \to P(A)$ defined by

$$(D^{R}g)(t) \equiv \left. \frac{d}{ds}g(s)g^{-1}(t) \right|_{s=t}$$

$$P(A) \equiv \left\{ a: I \to A \mid \frac{d}{dt} \pi(a(t)) = \#a(t) \right\} \qquad (A-paths).$$

Lemma 2.2. The map $D^R : P(\mathcal{G}) \to P(A)$ defined by

$$(D^R g)(t) \equiv \left. \frac{d}{ds} g(s) g^{-1}(t) \right|_{s=t}$$

$$P(A) \equiv \left\{ a: I \to A \mid \frac{d}{dt} \pi(a(t)) = \#a(t) \right\} \qquad (A-paths).$$

Lemma 2.2. The map $D^R : P(\mathcal{G}) \to P(A)$ defined by

$$(D^{R}g)(t) \equiv \left. \frac{d}{ds}g(s)g^{-1}(t) \right|_{s=t}$$

$$P(A) \equiv \left\{ a: I \to A \mid \frac{d}{dt} \pi(a(t)) = \#a(t) \right\} \qquad (A-paths).$$

Lemma 2.2. The map $D^R : P(\mathcal{G}) \to P(A)$ defined by

$$(D^{R}g)(t) \equiv \left. \frac{d}{ds}g(s)g^{-1}(t) \right|_{s=t}$$

$$P(A) \equiv \left\{ a: I \to A \mid \frac{d}{dt} \pi(a(t)) = \#a(t) \right\} \qquad (A-paths).$$

Can transport " \sim " and " \cdot " to P(A):

Home Page Title Page Contents 44 Page **14** of **39** Go Back Full Screen Close Quit

Can transport " \sim " and " \cdot " to P(A):

• The **product** of *A*-paths:

$$a \cdot a'(t) = \begin{cases} 2a'(2t), & 0 \le t \le \frac{1}{2} \\ \\ 2a(2t-1), & \frac{1}{2} < t \le 1. \end{cases}$$

Home Page					
Title Page					
Contents					
••	••				
•					
Page 14 of 39					
Go Back					
Full Screen					
Close					
Quit					

Can transport " \sim " and " \cdot " to *P*(*A*):

• The **product** of *A*-paths:

$$a \cdot a'(t) = \begin{cases} 2a'(2t), & 0 \le t \le \frac{1}{2} \\ \\ 2a(2t-1), & \frac{1}{2} < t \le 1 \end{cases}$$

• *A***-homotopy** of *A*-paths:

 $a_0 \sim a_1 \text{ iff} \quad \begin{cases} \text{there exists homotopy } a_{\varepsilon} \in P(A), \ \varepsilon \in [0,1], \text{ s.t.} \\\\ \int_0^t \phi_{\xi_{\varepsilon}}^{t,s} \frac{d\xi_{\varepsilon}}{d\varepsilon}(s, \gamma_{\varepsilon}(s)) ds = 0 \\\\ \text{where } \xi_{\varepsilon}(t, \cdot) \text{ is a time-depending section of } A \\\\ \text{extending } a_{\varepsilon} \text{ and } \gamma_{\varepsilon}(S) = \pi(a_{\varepsilon}(s)). \end{cases}$

Home Page					
Title Page					
Contents					
••	••				
•					
Page 1	4 of 39				
Go Back					
Full Screen					
Close					
Quit					

Can transport " \sim " and " \cdot " to *P*(*A*):

• The **product** of *A*-paths:

$$a \cdot a'(t) = \begin{cases} 2a'(2t), & 0 \le t \le \frac{1}{2} \\ \\ 2a(2t-1), & \frac{1}{2} < t \le 1 \end{cases}$$

• *A*-homotopy of *A*-paths:

 $a_0 \sim a_1 \text{ iff} \qquad \begin{array}{l} \text{there exists homotopy } a_{\varepsilon} \in P(A), \ \varepsilon \in [0,1], \ \text{s.t.} \\ \int_0^t \phi_{\xi_{\varepsilon}}^{t,s} \frac{d\xi_{\varepsilon}}{d\varepsilon}(s, \gamma_{\varepsilon}(s)) ds = 0 \\ \text{where } \xi_{\varepsilon}(t, \cdot) \text{ is a time-depending section of } A \\ \text{extending } a_{\varepsilon} \text{ and } \gamma_{\varepsilon}(S) = \pi(a_{\varepsilon}(s)). \end{array}$

s-fiber

Can transport " \sim " and " \cdot " to *P*(*A*):

• The **product** of *A*-paths:

$$a \cdot a'(t) = \begin{cases} 2a'(2t), & 0 \le t \le \frac{1}{2} \\ \\ 2a(2t-1), & \frac{1}{2} < t \le 1 \end{cases}$$

• *A*-homotopy of *A*-paths:

 $a_0 \sim a_1 \text{ iff} \qquad \text{there exists homotopy } a_{\varepsilon} \in P(A), \ \varepsilon \in [0, 1], \text{ s.t.}$ $\int_0^t \phi_{\xi_{\varepsilon}}^{t,s} \frac{d\xi_{\varepsilon}}{d\varepsilon}(s, \gamma_{\varepsilon}(s)) ds = 0$ where $\xi_{\varepsilon}(t, \cdot)$ is a time-depending section of Aextending a_{ε} and $\gamma_{\varepsilon}(S) = \pi(a_{\varepsilon}(s)).$ G

Can transport " \sim " and " \cdot " to *P*(*A*):

• The **product** of *A*-paths:

$$a \cdot a'(t) = \begin{cases} 2a'(2t), & 0 \le t \le \frac{1}{2} \\ \\ 2a(2t-1), & \frac{1}{2} < t \le 1 \end{cases}$$

• *A***-homotopy** of *A*-paths:

there exists homotopy $a_{\varepsilon} \in P(A)$, $\varepsilon \in [0, 1]$, s.t. $\int_{0}^{t} \phi_{\xi_{\varepsilon}}^{t,s} \frac{d\xi_{\varepsilon}}{d\varepsilon}(s, \gamma_{\varepsilon}(s)) ds = 0$ where $\xi_{\varepsilon}(t, \cdot)$ is a time-depending section of Aextending a_{ε} and $\gamma_{\varepsilon}(S) = \pi(a_{\varepsilon}(s))$.

s-fiber

 $a_0 \sim a_1$ iff

Can transport " \sim " and " \cdot " to *P*(*A*):

• The **product** of *A*-paths:

$$a \cdot a'(t) = \begin{cases} 2a'(2t), & 0 \le t \le \frac{1}{2} \\ \\ 2a(2t-1), & \frac{1}{2} < t \le 1 \end{cases}$$

• *A*-homotopy of *A*-paths:

there exists homotopy $a_{\varepsilon} \in P(A)$, $\varepsilon \in [0, 1]$, s.t. $\int_{0}^{t} \phi_{\xi_{\varepsilon}}^{t,s} \frac{d\xi_{\varepsilon}}{d\varepsilon}(s, \gamma_{\varepsilon}(s)) ds = 0$ where $\xi_{\varepsilon}(t, \cdot)$ is a time-depending section of Aextending a_{ε} and $\gamma_{\varepsilon}(S) = \pi(a_{\varepsilon}(s))$.

 $a_0 \sim a_1$ iff

Home Page

Can transport " \sim " and " \cdot " to *P*(*A*):

• The **product** of *A*-paths:

$$a \cdot a'(t) = \begin{cases} 2a'(2t), & 0 \le t \le \frac{1}{2} \\ \\ 2a(2t-1), & \frac{1}{2} < t \le 1 \end{cases}$$

• *A*-homotopy of *A*-paths:

there exists homotopy $a_{\varepsilon} \in P(A)$, $\varepsilon \in [0, 1]$, s.t. $\int_{0}^{t} \phi_{\xi_{\varepsilon}}^{t,s} \frac{d\xi_{\varepsilon}}{d\varepsilon}(s, \gamma_{\varepsilon}(s)) ds = 0$ where $\xi_{\varepsilon}(t, \cdot)$ is a time-depending section of Aextending a_{ε} and $\gamma_{\varepsilon}(S) = \pi(a_{\varepsilon}(s))$.

Can transport " \sim " and " \cdot " to *P*(*A*):

• The **product** of *A*-paths:

$$a \cdot a'(t) = \begin{cases} 2a'(2t), & 0 \le t \le \frac{1}{2} \\ \\ 2a(2t-1), & \frac{1}{2} < t \le 1 \end{cases}$$

• *A*-homotopy of *A*-paths:

there exists homotopy $a_{\varepsilon} \in P(A)$, $\varepsilon \in [0, 1]$, s.t. $\int_{0}^{t} \phi_{\xi_{\varepsilon}}^{t,s} \frac{d\xi_{\varepsilon}}{d\varepsilon}(s, \gamma_{\varepsilon}(s)) ds = 0$ where $\xi_{\varepsilon}(t, \cdot)$ is a time-depending section of A

 $a_0 \sim a_1$ iff

where $\xi_{\varepsilon}(t, \cdot)$ is a time-depending section of *A* extending a_{ε} and $\gamma_{\varepsilon}(S) = \pi(a_{\varepsilon}(s))$.

Observe that:

Home Page Title Page Contents 44 •• Page 15 of 39 Go Back Full Screen Close Quit

Observe that:

• An *A*-path is a Lie algebroid map $TI \rightarrow A$;

Observe that:

- An *A*-path is a Lie algebroid map $TI \rightarrow A$;
- An *A*-homotopy is a Lie algebroid map $T(I \times I) \rightarrow A$;

Observe that:

- An *A*-path is a Lie algebroid map $TI \rightarrow A$;
- An *A*-homotopy is a Lie algebroid map $T(I \times I) \rightarrow A$;

Both notions do not depend on the existence of \mathcal{G} . They can be expressed solely in terms of data in A!

Observe that:

- An *A*-path is a Lie algebroid map $TI \rightarrow A$;
- An *A*-homotopy is a Lie algebroid map $T(I \times I) \rightarrow A$;

Both notions do not depend on the existence of \mathcal{G} . They can be expressed solely in terms of data in A!

For *any* Lie algebroid *A*, the **Weinstein Groupoid** of *A* is:

$$\mathcal{G}(A) = P(A)/\sim \text{ where } \begin{vmatrix} \mathbf{s} : \mathcal{G}(A) \to M, & [a] \mapsto \pi(a(0)) \\ \mathbf{t} : \mathcal{G}(A) \to M, & [a] \mapsto \pi(a(1)) \\ M \hookrightarrow \mathcal{G}(A), & x \mapsto [0_x] \end{vmatrix}$$

Home Page					
Title Page					
Contents					
••	••				
•					
Page 15 of 39					
Go Back					
Full Screen					
Close					
Quit					

Observe that:

- An *A*-path is a Lie algebroid map $TI \rightarrow A$;
- An *A*-homotopy is a Lie algebroid map $T(I \times I) \rightarrow A$;

Both notions do not depend on the existence of \mathcal{G} . They can be expressed solely in terms of data in A!

For *any* Lie algebroid *A*, the **Weinstein Groupoid** of *A* is:

$$\mathcal{G}(A) = P(A)/\sim \text{ where } \begin{vmatrix} \mathbf{s} : \mathcal{G}(A) \to M, & [a] \mapsto \pi(a(0)) \\ \mathbf{t} : \mathcal{G}(A) \to M, & [a] \mapsto \pi(a(1)) \\ M \hookrightarrow \mathcal{G}(A), & x \mapsto [0_x] \end{vmatrix}$$

• $\mathcal{G}(A)$ is a *topological* groupoid with source simply-connected fibers;

Examples

	A	$H^{\bullet}(A)$	G	$\mathcal{G}(A)$	
Ordinary Geometry (<i>M</i> a manifold)		de Rham cohomology	$M \times M$	$\pi_1(M)$	
	$\stackrel{\downarrow}{M}$		$\downarrow \downarrow \downarrow M$	$\stackrel{\downarrow}{}_{lat}{M}$	
Lie Theory (g a Lie algebra)	₿ ↓ {*}	Lie algebra cohomology	$\begin{array}{c} G \\ \downarrow \\ \downarrow \\ \{*\} \end{array}$	Duistermaat-Kolk construction of G	
Foliation Theory ($\mathcal F$ a regular foliation)	$ \begin{array}{c} T\mathcal{F} \\ \downarrow \\ M \end{array} $	foliated cohomology	$\begin{array}{c} \text{Hol} \\ \downarrow \\ \downarrow \\ M \end{array}$	$\begin{array}{c} \pi_1(\mathcal{F}) \\ \qquad $	
Equivariant Geometry ($\rho : \mathfrak{g} \to \mathfrak{X}(M)$ an action)	$M \times \mathfrak{g}$ \downarrow M	gener. foliated cohomology	$\begin{array}{c} G \times M \\ & & \\ & & \\ & & \\ & & \\ & & \\ M \end{array}$	$\mathcal{G}(\mathfrak{g}) imes M$ $ert ec{\mathcal{G}}$ $ec{\mathcal{G}}$ e	
Poisson Geometry (M Poisson)	$\begin{array}{c c} T^*M \\ \downarrow \\ M \end{array}$	Poisson cohomology	???	Poisson σ -model (Cattaneo & Felder)	

Integrability of Lie Algebroids

A Lie algebroid *A* is **integrable** if there exists a Lie groupoid \mathcal{G} with *A* as associated Lie algebroid.

Integrability of Lie Algebroids

A Lie algebroid *A* is **integrable** if there exists a Lie groupoid \mathcal{G} with *A* as associated Lie algebroid.

Lemma 2.3. A is integrable iff $\mathcal{G}(A)$ is a Lie groupoid.

A Lie algebroid *A* is **integrable** if there exists a Lie groupoid \mathcal{G} with *A* as associated Lie algebroid.

Lemma 2.3. A is integrable iff $\mathcal{G}(A)$ is a Lie groupoid.

In general, $\mathcal{G}(A)$ is not smooth: there are obstructions to integrate *A*.

A Lie algebroid A is **integrable** if there exists a Lie groupoid \mathcal{G} with A as associated Lie algebroid.

Lemma 2.3. *A is integrable iff* $\mathcal{G}(A)$ *is a Lie groupoid.*

In general, $\mathcal{G}(A)$ is not smooth: there are obstructions to integrate A.

Fix leaf $L \subset M$ and $x \in L$:

$$0 \longrightarrow \mathfrak{g}_L \longrightarrow A_L \stackrel{\#}{\longrightarrow} TL \longrightarrow 0$$

Home Page	
Title Page	
Contents	
•• ••	
•	
Page 17 of 39	
Go Back	
Full Screen	
Close	
Quit	

A Lie algebroid A is **integrable** if there exists a Lie groupoid \mathcal{G} with A as associated Lie algebroid.

Lemma 2.3. *A is integrable iff* $\mathcal{G}(A)$ *is a Lie groupoid.*

In general, $\mathcal{G}(A)$ is not smooth: there are obstructions to integrate *A*.

Fix leaf $L \subset M$ and $x \in L$:

Home Page	
Title Page	
Contents	
•• ••	
Page 17 of 39	
Go Back	
Full Screen	
Close	
Quit	

A Lie algebroid A is **integrable** if there exists a Lie groupoid \mathcal{G} with A as associated Lie algebroid.

Lemma 2.3. A is integrable iff $\mathcal{G}(A)$ is a Lie groupoid.

In general, $\mathcal{G}(A)$ is not smooth: there are obstructions to integrate *A*.

Fix leaf $L \subset M$ and $x \in L$:

The **monodromy group** at *x* is

$$N_x(A) \equiv \operatorname{Im} \partial \subset Z(\mathfrak{g}_L).$$

A Lie algebroid *A* is **integrable** if there exists a Lie groupoid \mathcal{G} with *A* as associated Lie algebroid.

Lemma 2.3. *A is integrable iff* $\mathcal{G}(A)$ *is a Lie groupoid.*

In general, $\mathcal{G}(A)$ is not smooth: there are obstructions to integrate *A*.

Fix leaf $L \subset M$ and $x \in L$:

$$0 \longrightarrow \mathfrak{g}_L \longrightarrow A_L \xrightarrow{\#} TL \longrightarrow 0$$

$$\downarrow$$

$$\cdots \pi_2(L, x) \xrightarrow{\partial} \mathcal{G}(\mathfrak{g}_L)_x \longrightarrow \mathcal{G}(A)_x \longrightarrow \pi_1(L, x) \longrightarrow 1$$

The **monodromy group** at *x* is

$$N_{\mathfrak{X}}(A) \equiv \operatorname{Im} \partial \subset Z(\mathfrak{g}_L).$$

To measure the discreteness of $N_x(A)$ we set:

 $r(x) \equiv d(N_x - \{0\}, \{0\})$ (with $d(\emptyset, \{0\}) = +\infty$).

Home Page	
Title Page	
Contents	
••	••
•	
Page 18 of 39	
Go Back	
Full Screen	
Close	
Quit	

Theorem 2.4 (Crainic and RLF, 2001). *A Lie algebroid is integrable iff both the following con-ditions hold:*

Theorem 2.4 (Crainic and RLF, 2001). *A Lie algebroid is integrable iff both the following con-ditions hold:*

(*i*) Each monodromy group is discrete, i.e., r(x) > 0,

Theorem 2.4 (Crainic and RLF, 2001). *A Lie algebroid is integrable iff both the following con-ditions hold:*

- (*i*) Each monodromy group is discrete, i.e., r(x) > 0,
- (*ii*) The monodromy groups are uniformly discrete, *i.e.*, $\liminf_{y\to x} r(y) > 0$,

for all $x \in M$.

Theorem 2.4 (Crainic and RLF, 2001). *A Lie algebroid is integrable iff both the following con-ditions hold:*

- (*i*) Each monodromy group is discrete, i.e., r(x) > 0,
- (*ii*) The monodromy groups are uniformly discrete, *i.e.*, $\liminf_{y\to x} r(y) > 0$,

for all $x \in M$.

This gives previous known criteria: Lie (1890's), Chevaley (1930's), Van Est (1940's), Palais (1957), Douady & Lazard (1966), Phillips (1980), Almeida & Molino (1985), Mackenzie (1987), Weinstein (1989), Dazord & Hector (1991), Alcade Cuesta & Hector (1995), Debord (2000), Mackenzie & Xu (2000), Nistor (2000).

Theorem 2.4 (Crainic and RLF, 2001). *A Lie algebroid is integrable iff both the following con-ditions hold:*

- (*i*) Each monodromy group is discrete, i.e., r(x) > 0,
- (*ii*) The monodromy groups are uniformly discrete, *i.e.*, $\liminf_{y\to x} r(y) > 0$,

for all $x \in M$.

This gives previous known criteria: Lie (1890's), Chevaley (1930's), Van Est (1940's), Palais (1957), Douady & Lazard (1966), Phillips (1980), Almeida & Molino (1985), Mackenzie (1987), Weinstein (1989), Dazord & Hector (1991), Alcade Cuesta & Hector (1995), Debord (2000), Mackenzie & Xu (2000), Nistor (2000).

Corollary 2.5. *A Lie algebroid is integrable if, for all leaves* $L \in \mathcal{F}$ *, either of the following conditions holds:*

Theorem 2.4 (Crainic and RLF, 2001). *A Lie algebroid is integrable iff both the following con-ditions hold:*

- (*i*) Each monodromy group is discrete, i.e., r(x) > 0,
- (*ii*) The monodromy groups are uniformly discrete, *i.e.*, $\liminf_{y\to x} r(y) > 0$,

for all $x \in M$.

This gives previous known criteria: Lie (1890's), Chevaley (1930's), Van Est (1940's), Palais (1957), Douady & Lazard (1966), Phillips (1980), Almeida & Molino (1985), Mackenzie (1987), Weinstein (1989), Dazord & Hector (1991), Alcade Cuesta & Hector (1995), Debord (2000), Mackenzie & Xu (2000), Nistor (2000).

Corollary 2.5. *A Lie algebroid is integrable if, for all leaves* $L \in \mathcal{F}$ *, either of the following conditions holds:*

(i) $\pi_2(L)$ is finite (e.g., L is 2-connected);

Theorem 2.4 (Crainic and RLF, 2001). *A Lie algebroid is integrable iff both the following con-ditions hold:*

- (*i*) Each monodromy group is discrete, i.e., r(x) > 0,
- (*ii*) The monodromy groups are uniformly discrete, i.e., $\liminf_{y\to x} r(y) > 0$,

for all $x \in M$.

This gives previous known criteria: Lie (1890's), Chevaley (1930's), Van Est (1940's), Palais (1957), Douady & Lazard (1966), Phillips (1980), Almeida & Molino (1985), Mackenzie (1987), Weinstein (1989), Dazord & Hector (1991), Alcade Cuesta & Hector (1995), Debord (2000), Mackenzie & Xu (2000), Nistor (2000).

Corollary 2.5. *A Lie algebroid is integrable if, for all leaves* $L \in \mathcal{F}$ *, either of the following conditions holds:*

- (i) $\pi_2(L)$ is finite (e.g., L is 2-connected);
- (*ii*) $Z(\mathfrak{g}_L)$ *is trivial (e.g.,* \mathfrak{g}_L *is semi-simple);*

In many examples it is possible to compute the monodromy groups:

In many examples it is possible to compute the monodromy groups: **Proposition 2.6.** *Assume there exists a splitting:*

$$0 \longrightarrow \mathfrak{g}_L \longrightarrow A_L \xrightarrow{\#} TL \longrightarrow 0$$

with center-valued curvature 2-form

$$\Omega_{\sigma}(X,Y) = \sigma([X,Y]) - [\sigma(X),\sigma(Y)] \in Z(\mathfrak{g}_L), \qquad \forall X,Y \in \mathfrak{X}(L)$$

In many examples it is possible to compute the monodromy groups: **Proposition 2.6.** *Assume there exists a splitting:*

 $0 \longrightarrow \mathfrak{g}_L \longrightarrow A_L \xrightarrow{\#} TL \longrightarrow 0$

with center-valued curvature 2-form

$$\Omega_{\sigma}(X,Y) = \sigma([X,Y]) - [\sigma(X),\sigma(Y)] \in Z(\mathfrak{g}_L), \qquad \forall X,Y \in \mathfrak{X}(L)$$

Then:

$$N_x(A) = \left\{ \int_{\gamma} \Omega : \ [\gamma] \in \pi_2(L, x)
ight\}.$$

Ноте	e Page	
Title	Page	
Con	tents	
••	••	
•		
Page 1	Page 19 of 39	
Go	Go Back	
Full Screen		
Close		
Quit		

In many examples it is possible to compute the monodromy groups: **Proposition 2.6.** *Assume there exists a splitting:*

 $0 \longrightarrow \mathfrak{g}_L \longrightarrow A_L \xrightarrow{\#} TL \longrightarrow 0$

with center-valued curvature 2-form

 $\Omega_{\sigma}(X,Y) = \sigma([X,Y]) - [\sigma(X),\sigma(Y)] \in Z(\mathfrak{g}_L), \qquad \forall X,Y \in \mathfrak{X}(L)$

Then:

$$N_x(A) = \left\{ \int_{\gamma} \Omega : [\gamma] \in \pi_2(L, x)
ight\}.$$

Example. Take $A = TM \times \mathbb{R}$ the Lie algebroid of a presymplectic manifold (M, ω) :

$$0 \longrightarrow M \times \mathbb{R} \longrightarrow TM \times \mathbb{R} \xrightarrow{\#} TM \longrightarrow 0$$

In many examples it is possible to compute the monodromy groups: **Proposition 2.6.** *Assume there exists a splitting:*

 $0 \longrightarrow \mathfrak{g}_L \longrightarrow A_L \xrightarrow{\#} TL \longrightarrow 0$

with center-valued curvature 2-form

 $\Omega_{\sigma}(X,Y) = \sigma([X,Y]) - [\sigma(X),\sigma(Y)] \in Z(\mathfrak{g}_L), \qquad \forall X,Y \in \mathfrak{X}(L)$

Then:

$$N_x(A) = \left\{ \int_{\gamma} \Omega : [\gamma] \in \pi_2(L, x)
ight\}.$$

Example. Take $A = TM \times \mathbb{R}$ the Lie algebroid of a presymplectic manifold (M, ω) :

$$0 \longrightarrow M \times \mathbb{R} \longrightarrow TM \times \mathbb{R} \xrightarrow{\#} TM \longrightarrow 0$$

For the obvious splitting, the curvature is $\Omega_{\sigma} = \omega$.

In many examples it is possible to compute the monodromy groups: **Proposition 2.6.** *Assume there exists a splitting:*

 $0 \longrightarrow \mathfrak{g}_L \longrightarrow A_L \xrightarrow{\#} TL \longrightarrow 0$

with center-valued curvature 2-form

 $\Omega_{\sigma}(X,Y) = \sigma([X,Y]) - [\sigma(X),\sigma(Y)] \in Z(\mathfrak{g}_L), \qquad \forall X,Y \in \mathfrak{X}(L)$

Then:

$$N_x(A) = \left\{ \int_{\gamma} \Omega : [\gamma] \in \pi_2(L, x)
ight\}.$$

Example. Take $A = TM \times \mathbb{R}$ the Lie algebroid of a presymplectic manifold (M, ω) :

$$0 \longrightarrow M \times \mathbb{R} \longrightarrow TM \times \mathbb{R} \xrightarrow{\#} TM \longrightarrow 0$$

For the obvious splitting, the curvature is $\Omega_{\sigma} = \omega$. We obtain:

$$N_x = \left\{ \int_{\gamma} \omega : [\gamma] \in \pi_2(L, x) \right\}.$$

In many examples it is possible to compute the monodromy groups: **Proposition 2.6.** *Assume there exists a splitting:*

 $0 \longrightarrow \mathfrak{g}_L \longrightarrow A_L \xrightarrow{\#} TL \longrightarrow 0$

with center-valued curvature 2-form

 $\Omega_{\sigma}(X,Y) = \sigma([X,Y]) - [\sigma(X),\sigma(Y)] \in Z(\mathfrak{g}_L), \qquad \forall X,Y \in \mathfrak{X}(L)$

Then:

$$N_x(A) = \left\{ \int_{\gamma} \Omega : [\gamma] \in \pi_2(L, x)
ight\}.$$

Example. Take $A = TM \times \mathbb{R}$ the Lie algebroid of a presymplectic manifold (M, ω) :

$$0 \longrightarrow M \times \mathbb{R} \longrightarrow TM \times \mathbb{R} \xrightarrow{\#} TM \longrightarrow 0$$

For the obvious splitting, the curvature is $\Omega_{\sigma} = \omega$. We obtain:

$$N_x = \left\{\int_{\gamma} \omega: [\gamma] \in \pi_2(L, x)\right\}.$$

Conclusion: $A = TM \times \mathbb{R}$ is integrable iff the group of spherical periods of ω is discrete.

Let $(M, \{,\})$ be a regular Poisson manifold. Fix a symplectic leaf $L \subset M$ and $x \in L$.

Let $(M, \{,\})$ be a regular Poisson manifold. Fix a symplectic leaf $L \subset M$ and $x \in L$.

Home Page

Title Page

Contents

Page 20 of 39

Go Back

Full Screen

Close

Quit

••

Let $(M, \{,\})$ be a regular Poisson manifold. Fix a symplectic leaf $L \subset M$ and $x \in L$.

Let $(M, \{,\})$ be a regular Poisson manifold. Fix a symplectic leaf $L \subset M$ and $x \in L$.

Let $(M, \{,\})$ be a regular Poisson manifold. Fix a symplectic leaf $L \subset M$ and $x \in L$.

Title Page

Contents

Go Back

Close

Quit

••

Let $(M, \{,\})$ be a regular Poisson manifold. Fix a symplectic leaf $L \subset M$ and $x \in L$.

Let $(M, \{,\})$ be a regular Poisson manifold. Fix a symplectic leaf $L \subset M$ and $x \in L$.

Let $(M, \{,\})$ be a regular Poisson manifold. Fix a symplectic leaf $L \subset M$ and $x \in L$.

Proposition 2.7. For a foliated family $\gamma_t : \mathbb{S}^2 \to M$, the derivative of the symplectic areas

$$\left. \frac{d}{dt} A(\gamma_t) \right|_{x=0}$$

depends only on the class $[\gamma_0] \in \pi_2(L, x)$ *and* $var_{\nu}(\gamma_t) = [d\gamma_t/dt|_{t=0}] \in \nu(L)_x$.

Define the **variation of symplectic variations** $A'(\gamma_0) \in \nu_x^*(L)$ by

$$\langle A'(\gamma_0), \operatorname{var}_{\nu}(\gamma_t) \rangle = \left. \frac{d}{dt} A(\gamma_t) \right|_{t=0}$$

Ноте	e Page
Title	Page
Con	tents
••	••
•	
Page 21 of 39	
Go Back	
Full Screen	
Close	
Quit	

Define the variation of symplectic variations $A'(\gamma_0) \in \nu_x^*(L)$ by

$$\langle A'(\gamma_0), \operatorname{var}_{\nu}(\gamma_t) \rangle = \left. \frac{d}{dt} A(\gamma_t) \right|_{t=0}$$

we have:

$$N_x = \left\{ A'(\gamma) : [\gamma] \in \pi_2(L, x) \right\} \subset \nu_x^*(L)$$

Home Page	
Title Page	
Contents	
•• ••	
• •	
Page 21 of 39	
Go Back	
Full Screen	
Close	
Quit	

Define the variation of symplectic variations $A'(\gamma_0) \in \gamma^*_x(L)$ by

$$\langle A'(\gamma_0), \operatorname{var}_{\nu}(\gamma_t) \rangle = \left. \frac{d}{dt} A(\gamma_t) \right|_{t=0}$$

we have:

$$N_x = \left\{ A'(\gamma) : [\gamma] \in \pi_2(L, x) \right\} \subset \nu_x^*(L).$$

Some consequences:

Ноте	Page
Title Page	
Contents	
••	••
•	
Page 21 of 39	
Go Back	
Full Screen	
Close	
Quit	

Define the **variation of symplectic variations** $A'(\gamma_0) \in v_x^*(L)$ by

$$\langle A'(\gamma_0), \operatorname{var}_{\nu}(\gamma_t) \rangle = \left. \frac{d}{dt} A(\gamma_t) \right|_{t=0}$$

we have:

$$N_x = \left\{ A'(\gamma) : [\gamma] \in \pi_2(L, x) \right\} \subset \nu_x^*(L)$$

Some consequences:

• Every two dimensional Poisson manifold is integrable;

Home Page Title Page Contents Contents A Page 21 of 39 Go Back Full Screen Close Ouit		
Title Page Contents Image: Contents Image: Contents Go Back Full Screen Close Out	Home	e Page
Contents Contents Contents Contents Close Cuit	Title Page	
↓ ↓ Page 21 of 39 Go Back Full Screen Close	Contents	
	••	••
Page 21 of 39 Go Back Full Screen Close	•	
Go Back Full Screen Close	Page 21 of 39	
Full Screen Close	Go Back	
Close	Full Screen	
Quit	Close	
guit		

Define the **variation of symplectic variations** $A'(\gamma_0) \in v_x^*(L)$ by

$$\langle A'(\gamma_0), \operatorname{var}_{\nu}(\gamma_t) \rangle = \left. \frac{d}{dt} A(\gamma_t) \right|_{t=0}$$

we have:

$$N_x = \left\{ A'(\gamma) : [\gamma] \in \pi_2(L, x) \right\} \subset \nu_x^*(L)$$

Some consequences:

- Every two dimensional Poisson manifold is integrable;
- A Poisson structure in $M = \mathbb{R}^3 \{0\}$ with leaves the spheres $x^2 + y^2 + z^2 = \text{const.}$ is integrable iff the symplectic areas of the spheres have no critical points.

Ноте	e Page
Title Page	
Con	tents
••	••
•	
Page 21 of 39	
Go Back	
Full Screen	
Close	
CI	ose
ି	ose

Define the **variation of symplectic variations** $A'(\gamma_0) \in v_x^*(L)$ by

$$\langle A'(\gamma_0), \operatorname{var}_{\nu}(\gamma_t) \rangle = \left. \frac{d}{dt} A(\gamma_t) \right|_{t=0}$$

we have:

$$N_x = \left\{ A'(\gamma) : [\gamma] \in \pi_2(L, x)
ight\} \subset \mathbf{v}_x^*(L)$$

Some consequences:

- Every two dimensional Poisson manifold is integrable;
- A Poisson structure in $M = \mathbb{R}^3 \{0\}$ with leaves the spheres $x^2 + y^2 + z^2 = \text{const.}$ is integrable iff the symplectic areas of the spheres have no critical points.

• . . .

Ноте	e Page
Title	Page
Con	tents
••	••
Page 21 of 39	
, age 2	21 of 39
Go	Back
Go Full S	Back Screen
Go Full S	21 of 39 Back Screen
Go Full : Cl	Back Screen

PART 3

Other Invariants: Holonomy, Characteristic Classes and K-Theory

Ноте	e Page
Title	Page
Con	tents
••	••
•	
Page 22 of 39	
Go Back	
Full Screen	
Close	
Quit	

Lie Algebroid Connections

Home Page Title Page Contents 44 •• Page 23 of 39 Go Back Full Screen Close Quit
An *A*-connection is a bundle map $h : p^*A \to TP$ s.t.:

An *A*-connection is a bundle map $h : p^*A \to TP$ s.t.:

(i) *h* is horizontal: $p_*h(u, a) = #a$;

 $A \xrightarrow{\pi} M$

An *A*-connection is a bundle map $h : p^*A \rightarrow TP$ s.t.:

(i) *h* is horizontal: $p_*h(u, a) = #a$;

(ii) *h* is *G*-invariant: $h(ug, a) = (R_g)_*h(u, a)$;

 $A \xrightarrow{\pi} M$

An *A*-connection is a bundle map $h : p^*A \to TP$ s.t.:

(i) *h* is horizontal: $p_*h(u, a) = #a$;

(ii) *h* is *G*-invariant: $h(ug, a) = (R_g)_*h(u, a)$;

 $A \xrightarrow{\pi}$

An *A*-connection is a bundle map $h : p^*A \to TP$ s.t.:

(i) *h* is horizontal: $p_*h(u, a) = #a$;

(ii) *h* is *G*-invariant: $h(ug, a) = (R_g)_*h(u, a)$;

 $A \xrightarrow{\pi} M$

An *A*-connection is a bundle map $h : p^*A \to TP$ s.t.:

(i) *h* is horizontal: $p_*h(u, a) = #a$;

(ii) *h* is *G*-invariant: $h(ug, a) = (R_g)_*h(u, a)$;

 $A \xrightarrow{\pi}$

An *A*-connection is a bundle map $h : p^*A \rightarrow TP$ s.t.:

(i) *h* is horizontal: $p_*h(u, a) = #a$;

(ii) *h* is *G*-invariant: $h(ug, a) = (R_g)_*h(u, a)$;

 $A \xrightarrow{\pi}$

An *A*-connection is a bundle map $h : p^*A \to TP$ s.t.:

(i) *h* is horizontal: $p_*h(u, a) = #a$;

(ii) *h* is *G*-invariant: $h(ug, a) = (R_g)_*h(u, a)$;

 $A \xrightarrow{\pi}$

An *A*-connection is a bundle map $h : p^*A \rightarrow TP$ s.t.:

(i) *h* is horizontal: $p_*h(u, a) = #a$;

(ii) *h* is *G*-invariant: $h(ug, a) = (R_g)_*h(u, a)$;

where $u \in P$, $a \in A_x$ with x = p(u), and $g \in G$.

Similar to usual connections (case A = TM) but:

 $A \xrightarrow{\pi}$

An *A*-connection is a bundle map $h : p^*A \rightarrow TP$ s.t.:

(i) *h* is horizontal: $p_*h(u, a) = #a$;

(ii) *h* is *G*-invariant: $h(ug, a) = (R_g)_*h(u, a)$;

where $u \in P$, $a \in A_x$ with x = p(u), and $g \in G$.

Similar to usual connections (case A = TM) but:

• *A*-connections are not determined by distribution Im *h*;

 $A - \pi$

An *A*-connection is a bundle map $h : p^*A \rightarrow TP$ s.t.:

(i) *h* is horizontal: $p_*h(u, a) = #a$;

(ii) *h* is *G*-invariant: $h(ug, a) = (R_g)_*h(u, a)$;

where $u \in P$, $a \in A_x$ with x = p(u), and $g \in G$.

Similar to usual connections (case A = TM) but:

- *A*-connections are not determined by distribution Im *h*;
- *Il-transport can be defined only along A-paths;*

 $A - \pi$

An *A*-connection is a bundle map $h : p^*A \rightarrow TP$ s.t.:

(i) *h* is horizontal: $p_*h(u, a) = #a$;

(ii) *h* is *G*-invariant: $h(ug, a) = (R_g)_*h(u, a)$;

where $u \in P$, $a \in A_x$ with x = p(u), and $g \in G$.

Similar to usual connections (case A = TM) but:

- *A*-connections are not determined by distribution Im *h*;
- *Il-transport can be defined only along A-paths;*
- Flat connections may have non-discrete holonomy;

Using non-linear connections one obtains the *A*-holonomy homomorphism:

 $\operatorname{Hol}: \mathcal{G}(A)_x \to \operatorname{Out}(A_L^{\perp}),$

where:

Using non-linear connections one obtains the *A*-holonomy homomorphism:

 $\operatorname{Hol}: \mathcal{G}(A)_x \to \operatorname{Out}(A_L^{\perp}),$

where:

• A_L^{\perp} is the *transverse Lie algebroid*;

Using non-linear connections one obtains the *A*-holonomy homomorphism:

 $\operatorname{Hol}: \mathcal{G}(A)_x \to \operatorname{Out}(A_L^{\perp}),$

where:

- A_L^{\perp} is the *transverse Lie algebroid*;
- Out (*A*) = Aut (*A*)/Inn (*A*) is the group of outer automorphisms of *A*;

Using non-linear connections one obtains the *A*-holonomy homomorphism:

 $\operatorname{Hol}: \mathcal{G}(A)_x \to \operatorname{Out}(A_L^{\perp}),$

where:

- A_L^{\perp} is the *transverse Lie algebroid*;
- Out (*A*) = Aut (*A*)/Inn (*A*) is the group of outer automorphisms of *A*;

The following result generalizes the Reeb stability theorem for foliations:

Using non-linear connections one obtains the A-holonomy homomorphism:

 $\operatorname{Hol}: \mathcal{G}(A)_x \to \operatorname{Out}(A_L^{\perp}),$

where:

- A_L^{\perp} is the *transverse Lie algebroid*;
- Out (*A*) = Aut (*A*)/Inn (*A*) is the group of outer automorphisms of *A*;

The following result generalizes the Reeb stability theorem for foliations:

Theorem 3.1 (RLF, 2001). *Let L be a compact, transversely stable leaf of A, with finite holonomy. Then:*

Using non-linear connections one obtains the A-holonomy homomorphism:

 $\operatorname{Hol}: \mathcal{G}(A)_x \to \operatorname{Out}(A_L^{\perp}),$

where:

- A_L^{\perp} is the *transverse Lie algebroid*;
- Out (*A*) = Aut (*A*)/Inn (*A*) is the group of outer automorphisms of *A*;

The following result generalizes the Reeb stability theorem for foliations:

Theorem 3.1 (RLF, 2001). *Let L be a compact, transversely stable leaf of A, with finite holonomy. Then:*

(i) L is stable, *i*. *e*., *L* has arbitrarily small neighborhoods which are invariant under all inner automorphisms;

Using non-linear connections one obtains the A-holonomy homomorphism:

 $\operatorname{Hol}: \mathcal{G}(A)_x \to \operatorname{Out}(A_L^{\perp}),$

where:

- A_L^{\perp} is the *transverse Lie algebroid*;
- Out (*A*) = Aut (*A*)/Inn (*A*) is the group of outer automorphisms of *A*;

The following result generalizes the Reeb stability theorem for foliations:

Theorem 3.1 (RLF, 2001). *Let L be a compact, transversely stable leaf of A, with finite holonomy. Then:*

- (i) L is stable, i. e., L has arbitrarily small neighborhoods which are invariant under all inner automorphisms;
- *(ii) each leaf near L is a bundle over L whose fiber is a finite union of leaves of the transverse Lie algebroid structure.*

Home Page Title Page Contents Contents Page 25 of 39 Go Back Full Screen Close Quit

An *A*-connection on P = P(M, G) induces on any associated vector bundle $E \rightarrow M$ an *A*-derivative operator:

 $\nabla: \Gamma(A) \times \Gamma(E) \to \Gamma(E).$

An *A*-connection on P = P(M, G) induces on any associated vector bundle $E \rightarrow M$ an *A*-derivative operator:

 $\nabla: \Gamma(A) \times \Gamma(E) \to \Gamma(E).$

Axioms for an *A*-derivative:

An *A*-connection on P = P(M, G) induces on any associated vector bundle $E \rightarrow M$ an *A*-derivative operator:

 $\nabla: \Gamma(A) \times \Gamma(E) \to \Gamma(E).$

Axioms for an *A*-derivative:

For any $\alpha \in \Gamma(A)$, $s \in \Gamma(E)$, $f \in C^{\infty}(M)$: (i) $\nabla_{f\alpha}s = f \nabla_{\alpha}s$;

Home Page		
Title Page		
Contents		
••	••	
•		
Page 25 of 39		
Go Back		
	Dack	
Full S	Screen	
Full S	Screen	
Full S CI	Screen Iose Duit	

An *A*-connection on P = P(M, G) induces on any associated vector bundle $E \rightarrow M$ an *A*-derivative operator:

 $\nabla: \Gamma(A) \times \Gamma(E) \to \Gamma(E).$

Axioms for an *A*-derivative:

- For any $\alpha \in \Gamma(A)$, $s \in \Gamma(E)$, $f \in C^{\infty}(M)$:
- (i) $\nabla_{f\alpha}s = f\nabla_{\alpha}s;$
- (ii) $\nabla_{\alpha}(fs) = f \nabla_{\alpha} s + \# \alpha(f) s;$

An *A*-connection on P = P(M, G) induces on any associated vector bundle $E \rightarrow M$ an *A*-derivative operator:

 $\nabla: \Gamma(A) \times \Gamma(E) \to \Gamma(E).$

Axioms for an *A*-derivative:

- For any $\alpha \in \Gamma(A)$, $s \in \Gamma(E)$, $f \in C^{\infty}(M)$:
- (i) $\nabla_{f\alpha}s = f\nabla_{\alpha}s;$

(ii)
$$\nabla_{\alpha}(fs) = f \nabla_{\alpha} s + \# \alpha(f) s;$$

A-derivatives work like the usual covariant derivatives (case A = TM):

An *A*-connection on P = P(M, G) induces on any associated vector bundle $E \rightarrow M$ an *A*-derivative operator:

 $\nabla: \Gamma(A) \times \Gamma(E) \to \Gamma(E).$

Axioms for an *A*-derivative:

- For any $\alpha \in \Gamma(A)$, $s \in \Gamma(E)$, $f \in C^{\infty}(M)$:
- (i) $\nabla_{f\alpha}s = f\nabla_{\alpha}s;$
- (ii) $\nabla_{\alpha}(fs) = f \nabla_{\alpha} s + \# \alpha(f) s;$

A-derivatives work like the usual covariant derivatives (case A = TM):

• The **curvature** of $\nabla : \Gamma(A) \times \Gamma(E) \to \Gamma(E)$ is

$$R_{\nabla}(\alpha,\beta) = \nabla_{\alpha}\nabla_{\beta} - \nabla_{\beta}\nabla_{\alpha} - \nabla_{[\alpha,\beta]}$$

An *A*-connection on P = P(M, G) induces on any associated vector bundle $E \rightarrow M$ an *A*-derivative operator:

 $\nabla: \Gamma(A) \times \Gamma(E) \to \Gamma(E).$

Axioms for an *A*-derivative:

- For any $\alpha \in \Gamma(A)$, $s \in \Gamma(E)$, $f \in C^{\infty}(M)$:
- (i) $\nabla_{f\alpha}s = f\nabla_{\alpha}s;$
- (ii) $\nabla_{\alpha}(fs) = f \nabla_{\alpha} s + \# \alpha(f) s;$

A-derivatives work like the usual covariant derivatives (case A = TM):

• The curvature of $\nabla : \Gamma(A) \times \Gamma(E) \to \Gamma(E)$ is

$$R_{\nabla}(\alpha,\beta) = \nabla_{\alpha}\nabla_{\beta} - \nabla_{\beta}\nabla_{\alpha} - \nabla_{[\alpha,\beta]}.$$

• The torsion of $\nabla : \Gamma(A) \times \Gamma(A) \to \Gamma(A)$ is

$$T_{\nabla}(\alpha,\beta) = \nabla_{\alpha}\beta - \nabla_{\beta}\alpha - [\alpha,\beta].$$

Home Page	
Title Page	
Contents	
•• >>	
• •	
Page 25 of 39	
Go Back	
Full Screen	
Close	
Quit	

A-connections lead to:

Home Page Title Page Contents 44 •• Page 26 of 39 Go Back Full Screen Close Quit

A-connections lead to:

• A Chern-Weil theory for Lie algebroids [Vaisman, 1991; Kubarski, 1996; RLF, 2000];

A-connections lead to:

• A Chern-Weil theory for Lie algebroids [Vaisman, 1991; Kubarski, 1996; RLF, 2000];

Not very interesting...

Home Page		
Title Page		
Contents		
••	••	
•		
Page 26 of 39		
Go Back		
Go	Back	
Go Full S	Back Screen	
Go Full S Cl	Back Screen 'ose	
Go Full S Cl	Back Screen ose uit	

A-connections lead to:

• A Chern-Weil theory for Lie algebroids [Vaisman, 1991; Kubarski, 1996; RLF, 2000];

Not very interesting...

• A **Bott type connection** for a Lie algebroid, leading to a theory of **linear holonomy** [Ginzburg, 1999; RLF, 2000];

A-connections lead to:

• A Chern-Weil theory for Lie algebroids [Vaisman, 1991; Kubarski, 1996; RLF, 2000];

Not very interesting...

- A **Bott type connection** for a Lie algebroid, leading to a theory of **linear holonomy** [Ginzburg, 1999; RLF, 2000];
- Secondary characteristic classes (a la Chern-Simons) for Lie algebroids [RLF, 2000], which generalize the modular class [Weinstein, 1997; Evens, Lu & Weinstein, 1999; Huebschmann, 1999];

A-connections lead to:

• A Chern-Weil theory for Lie algebroids [Vaisman, 1991; Kubarski, 1996; RLF, 2000];

Not very interesting...

- A **Bott type connection** for a Lie algebroid, leading to a theory of **linear holonomy** [Ginzburg, 1999; RLF, 2000];
- Secondary characteristic classes (a la Chern-Simons) for Lie algebroids [RLF, 2000], which generalize the modular class [Weinstein, 1997; Evens, Lu & Weinstein, 1999; Huebschmann, 1999];
- Characteristic classes of representations of a Lie algebroid [Crainic, 2001].

K-theory

K-theory

Flat *A*-connections \Leftrightarrow **Representations** of *A*

Flat *A*-connections \Leftrightarrow **Representations** of *A*

Axioms for a representation of *A*:

Flat *A*-connections \Leftrightarrow **Representations** of *A*

Axioms for a representation of *A*:

 $E \to M$ is a vector bundle and there exists a product $\Gamma(A) \times \Gamma(E) \to \Gamma(E)$ such that: (i) $(f\alpha) \cdot s = f(\alpha \cdot s)$;

Flat *A*-connections \Leftrightarrow **Representations** of *A*

Axioms for a representation of *A*:

 $E \to M$ is a vector bundle and there exists a product $\Gamma(A) \times \Gamma(E) \to \Gamma(E)$ such that:

- (i) $(f\alpha) \cdot s = f(\alpha \cdot s);$
- (ii) $\alpha \cdot (fs) = (\alpha \cdot f)s + f(\alpha \cdot s);$

Ноте	Home Page	
Title Page		
Contents		
••	••	
•		
Page 27 of 39		
Go Back		
Full Screen		
Close		
Quit		

Flat *A*-connections \Leftrightarrow **Representations** of *A*

Axioms for a representation of *A*:

 $E \to M$ is a vector bundle and there exists a product $\Gamma(A) \times \Gamma(E) \to \Gamma(E)$ such that:

- (i) $(f\alpha) \cdot s = f(\alpha \cdot s);$
- (ii) $\alpha \cdot (fs) = (\alpha \cdot f)s + f(\alpha \cdot s);$
- (iii) $[\alpha, \beta] \cdot s = \alpha(\beta \cdot s) \beta \cdot (\alpha \cdot s);$

for any $\alpha, \beta \in \Gamma(A), s \in \Gamma(E), f \in C^{\infty}(M)$.

Flat *A*-connections \Leftrightarrow **Representations** of *A*

Axioms for a representation of *A*:

 $E \to M$ is a vector bundle and there exists a product $\Gamma(A) \times \Gamma(E) \to \Gamma(E)$ such that:

(i) $(f\alpha) \cdot s = f(\alpha \cdot s);$

(ii)
$$\alpha \cdot (fs) = (\alpha \cdot f)s + f(\alpha \cdot s);$$

(iii)
$$[\alpha, \beta] \cdot s = \alpha(\beta \cdot s) - \beta \cdot (\alpha \cdot s);$$

for any $\alpha, \beta \in \Gamma(A), s \in \Gamma(E), f \in C^{\infty}(M)$.

Proposition 3.2. Every representation of A determines a representation of $\mathcal{G}(A)$. The converse also holds, provided A is integrable.

Flat *A*-connections \Leftrightarrow **Representations** of *A*

Axioms for a representation of *A*:

 $E \to M$ is a vector bundle and there exists a product $\Gamma(A) \times \Gamma(E) \to \Gamma(E)$ such that:

(i) $(f\alpha) \cdot s = f(\alpha \cdot s);$ (ii) $\alpha \cdot (fs) = (\alpha \cdot f)s + f(\alpha \cdot s);$ (iii) $[\alpha, \beta] \cdot s = \alpha(\beta \cdot s) - \beta \cdot (\alpha \cdot s);$

for any $\alpha, \beta \in \Gamma(A), s \in \Gamma(E), f \in C^{\infty}(M)$.

Proposition 3.2. Every representation of A determines a representation of $\mathcal{G}(A)$. The converse also holds, provided A is integrable.

 $K(A) \equiv$ Grothendieck ring of the semi-ring of equivalence classes of representations

Flat *A*-connections \Leftrightarrow **Representations** of *A*

Axioms for a representation of *A*:

 $E \to M \text{ is a vector bundle and there exists a product } \Gamma(A) \times \Gamma(E) \to \Gamma(E) \text{ such that:}$ (i) $(f\alpha) \cdot s = f(\alpha \cdot s);$ (ii) $\alpha \cdot (fs) = (\alpha \cdot f)s + f(\alpha \cdot s);$ (iii) $[\alpha, \beta] \cdot s = \alpha(\beta \cdot s) - \beta \cdot (\alpha \cdot s);$ for any $\alpha, \beta \in \Gamma(A), s \in \Gamma(E), f \in C^{\infty}(M).$

Proposition 3.2. Every representation of A determines a representation of $\mathcal{G}(A)$. The converse also holds, provided A is integrable.

 $K(A) \equiv$ Grothendieck ring of the semi-ring of equivalence classes of representations

• The apropriate equivalence relation(s) were introduced by [Ginzburg, 2001];

Flat *A*-connections \Leftrightarrow **Representations** of *A*

Axioms for a representation of *A*:

 $E \to M$ is a vector bundle and there exists a product $\Gamma(A) \times \Gamma(E) \to \Gamma(E)$ such that:

(i) $(f\alpha) \cdot s = f(\alpha \cdot s);$ (ii) $\alpha \cdot (fs) = (\alpha \cdot f)s + f(\alpha \cdot s);$ (iii) $[\alpha, \beta] \cdot s = \alpha(\beta \cdot s) - \beta \cdot (\alpha \cdot s);$

for any $\alpha, \beta \in \Gamma(A), s \in \Gamma(E), f \in C^{\infty}(M)$.

Proposition 3.2. Every representation of A determines a representation of $\mathcal{G}(A)$. The converse also holds, provided A is integrable.

 $K(A) \equiv$ Grothendieck ring of the semi-ring of equivalence classes of representations

- The apropriate equivalence relation(s) were introduced by [Ginzburg, 2001];
- Representations lead to **Morita equivalence** in the context of Lie algebroids [Ginzburg, 2001; Crainic & RLF, 2002].

TO BE CONTINUED...

•

The Leibniz Identity.

For any sections α , $\beta \in \Gamma(A)$ and function $f \in C^{\infty}(M)$:

$$[\alpha, f\beta] = f[\alpha, \beta] + \#\alpha(f)\beta.$$

Ноте	Home Page		
Title	Title Page		
Contents			
••	••		
Page 2	Page 29 of 39		
Go	Go Back		
Full Screen			
Close			
Quit			

THE TANGENT LIE ALGEBROID.

M - a manifold

- bundle: A = TM;
- anchor: $#: TM \rightarrow TM, # = id;$
- Lie bracket: $[,]: \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$, usual Lie bracket of vector fields;
- characteristic foliation: $\mathcal{F} = \{M\}$.

Ноте	Home Page		
Title	Title Page		
Con	Contents		
••	••		
•			
Page 3	Page 30 of 39		
Go	Go Back		
Full S	Full Screen		
Close			
Quit			

THE LIE ALGEBROID OF A LIE ALGEBRA.

\mathfrak{g} - a Lie algebra

- bundle: $A = \mathfrak{g} \rightarrow \{*\};$
- anchor: # = 0;
- Lie bracket: $[,] : \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$, given Lie bracket;
- characteristic foliation: $\mathcal{F} = \{*\}$.

Ноте	Home Page		
Title Page			
Contents			
••	••		
•			
Page 31 of 39			
Go Back			
Full Screen			
Close			
Quit			

THE LIE ALGEBROID OF A FOLIATION.

${\mathcal F}$ - a regular foliation

- bundle: $A = T\mathcal{F} \rightarrow M$;
- anchor: $#: T\mathcal{F} \hookrightarrow TM$, inclusion;
- Lie bracket: $[,] : \mathfrak{X}(\mathcal{F}) \times \mathfrak{X}(\mathcal{F}) \to \mathfrak{X}(\mathcal{F})$,

usual Lie bracket restricted to vector fields tangent to \mathcal{F} ;

• characteristic foliation: \mathcal{F} .

Ноте	Home Page		
Title	Title Page		
Con	Contents		
••	••		
•			
Page 3	Page 32 of 39		
Go	Go Back		
Full	Full Screen		
CI	Close		
Q	Quit		

THE ACTION LIE ALGEBROID.

 $\rho:\mathfrak{g}\to\mathfrak{X}(M)$ - an infinitesimal action of a Lie algebra

• bundle:
$$A = M \times \mathfrak{g} \rightarrow M$$
;

- anchor: $#: A \to TM$, $#(x, v) = \rho(v)|_x$;
- Lie bracket: $[,]: C^{\infty}(M, \mathfrak{g}) \times C^{\infty}(M, \mathfrak{g}) \to C^{\infty}(M, \mathfrak{g})$

 $[v,w](x) = [v(x),w(x)] + (\rho(v(x)) \cdot w)|_x - (\rho(w(x)) \cdot v)|_x;$

• characteristic foliation: orbit foliation.

THE LIE ALGEBROID OF A PRESYMPLECTIC MANIFOLD.

M - an presymplectic manifold with closed 2-form ω

- bundle: $A = TM \times \mathbb{R} \to M$;
- anchor: $# : A \to TM, #(v, \lambda) = v;$
- Lie bracket: $\Gamma(A) = \mathfrak{X}(M) \times C^{\infty}(M)$

 $[(X, f), (Y, g)] = ([X, Y], X(g) - Y(f) - \omega(X, Y));$

• characteristic foliation: $\mathcal{F} = \{M\}$.

THE COTANGENT LIE ALGEBROID.

M - a Poisson manifold with Poisson tensor π

- bundle: $A = T^*M$;
- anchor: $#: TM^* \to TM, #\alpha = i_{\pi}\alpha;$
- Lie bracket: $[,] : \Omega^1(M) \times \Omega^1(M) \to \Omega^1(M)$, Kozul Lie bracket:

$$[\alpha,\beta] = \mathcal{L}_{\#\alpha}\beta - \mathcal{L}_{\#\beta}\alpha - d\pi(\alpha,\beta);$$

• characteristic foliation: the symplectic foliation.

The Pair Groupoid.

M - a manifold

- arrows: $\mathcal{G} = M \times M$;
- **objects**: *M*;
- target and source: s(x, y) = x, t(x, y) = y;
- **product**: $(x, y) \cdot (y, z) = (x, z)$;

THE LIE GROUPOID OF A LIE GROUP.

G - a Lie group

- arrows: $\mathcal{G} = G$;
- **objects**: $M = \{*\};$
- **target** and **source**: **s**(*x*) = **t**(*x*) = *;
- **product**: $g \cdot h = gh$;

THE HOLONOMY GROUPOID.

 ${\mathcal F}$ - a regular foliation in M

- **arrows**: $\mathcal{G} = \{ [\gamma] :$ holonomy equivalence classes $\}$;
- **objects**: *M*;
- target and source: $\mathbf{s}([\gamma]) = \gamma(0)$, $\mathbf{t}([\gamma]) = \gamma(1)$;
- product: $[\gamma] \cdot [\gamma'] = [\gamma \cdot \gamma'];$

Ноте	Home Page		
Title	Title Page		
Contents			
••	••		
•			
Page 3	Page 38 of 39		
Go	Go Back		
Full S	Full Screen		
Close			
Quit			

THE ACTION GROUPOID.

 $G \times M \rightarrow M$ - an action of a Lie group on M

- arrows: $\mathcal{G} = G \times M$;
- **objects**: *M*;
- target and source: s(g, x) = x, t(g, x) = gx;
- **product**: $(h, y) \cdot (g, x) = (hg, x);$

