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Abstract. Starting from a conformal symmetry, higher-order, Poisson tensors. deformation 
relations and master symmetries for the Toda lattice are obtained. A hierarchy of timedependent 
symmetries is also constructed. Using reduction, deformation relations previously known to hold 
up to a certain equivalence relation xe shown to be exact. 

Introduction 

In Damianou (1990), master symmetriei and deformation relations for the.Toda lattice were 
constructed, and its connection with the R-matrix approach given. On the other hand, a 
well known theorem of Oevel (1987) (see also theorem 2.1) relates master symmetries 
to a conformal symmetry of the system, when a recursion operator is available. In this 
paper we relate the two approaches using a recursion operator and reduction. In particular, 
deformation relations previously known to hold 'up to a certain equivalence relation a e  
shown to be exact. 

Our approach consists in working in physical variables and then reducing to Flaschka's 
variables. Although the recursion operator itself cannot be reduced (this is also observed 
in Morosi and Tandi~ (1990)), the deformation relations and master symmetries do reduce. 
One advantage of this approach is that it immediately yields a hierarchy of timedependent 
symmetries of the Toda lattice. These symmetries also appear in Damianou (1993). 

1. Master symmetries for differential equations 

.We recall some basic facts of the theory of master symmetries for differential equations. 
More details can  be^ found in Fuchssteiner (1983). Consider a differential equation on a 
manifold M: . .  

x = X ( x ) .  (1.1) 

As usual, a vector field Y is a symmetry of (1.1) if 

[Y, XI = 0. 
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(1.2) 
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More generally, a family Y = Y ( x ,  t )  of vector fields depending smoothly on t is a time- 
dependent symmetry of (1.1) if 

a y  -+[Y,Xl =o. 
at (1.3) 

We should view Y as a time-dependent vector field. 
We can generalize (1.2) as follows. A vector field Z is called apnerutor  ofdegree n if 

I[.. . [Z, X I , .  ..I, XI, XI] = 0. 

If Z is a generator of degree n then the timedependent vector field 

t k  

k! Y,  = exp(ad X ) Z  = -I[. . . [ Z ,  XI, .  . .I, XI, XI1 (1.4) 
k=O 

satisfies (1.3), and so is a time-dependent symmetry of (1.1). Thus, t time-dependent 
symmetries which are polynomial in  t are in 1:l correspondence with generators of degree 
n. 

Generators satisfy the following properties: 
(i) if Z is a generator of degree n, then [ Z ,  X] is a generator of degree n - 1; 
(ii) if Z I  and Z2 are generators~of degree nl and n2, then [Z , ,  ZZ] is a generator of 

(iii) a symmetry is a generator of~degree 0. 
In particular we see that the set of all generators form a Lie subalgebra of the algebra 

of all vector fields X(M). We shall call a generator of degree 1 a master symmetry. Thus 
the condition for Z to be a master symmetry is 

degreenl+nz- l ;  

[ [Z ,  XI, XI = 0 and [ Z ,  XI # 0. 

Proposition 1.1. Let Z be a master symmetry. Then 
(i) [ Z ,  XI is an ordinary symmetry; 
(ii) [ Z ,  [ Z ,  XI] is an ordinary symmetry; 

Proof. It is obvious from the definitions and the Jacobi identity. U 

In general, given a master symmetry all we get is the two symmetries given in the 
proposition. Under an additional assumption we can generate further symmetries as follows. 

Proposition 1.2. 
symmetry, and let Z be a master symmetry. Then [Z ,  Y] is also a symmetry. 

Suppose Y is a symmetry of (1.1) which commutes with every other 

Proof. Use the Jacobi identity again. 0 
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2. Master symmetries and bi-Hamiltonian systems 

On a manifold M on which the first cohomology vanishes, we consider a bi-Hamiltonian 
vector field 

~~ XI = JldHo = JodH1 (2.1) 

where Ji are compatible Poisson tensors, and Hi are the Hamiltonian functions. We assume 
that JO is symplectic, so we can define the recursion operator 

N = .rI ql. (2.2) 

Recall that N is a tensor of type (1,l) with vanishing Nijenhuis torsion. There is a whole 
hierarchy of higher-order flows associated with the vector fields 

i = 1 , 2 ,  .... (2.3) x. - "-1x 
I -  

\ If we introduce the higher-order Poisson tens,ors 

Ji = N'Jo i = 1,2, .  . . . t (2.4) 

and define the Hamiltonians {Hi] by 

dH; = (N*)'dHo 

where N" denotes the adjoint of N, then the higher-order flows have the multi-Hamiltonian 
formulation . 

i = 1,2 , .  . . 

Xj+j = JjdHj. (2.5) 

Magi's (1978) theorem states that the flows (2.3) all commute with each other, and the 
functions [Hi] form a sequence of first integrals of each flow, in involution with respect to 
both Poisson brackets. 

For a bi-H&iltonian system master symmetries can be obtained from the following 
result due to Oevel (1987): 

Theorem 2.1. . Suppose that 20 is a conformal symmetry for both J o ~  J I  and Ho, i.e. for 
some scalars a, 6, and y we have 

Lz,Jo =~CUJO LGJ1 =BJ1  ,, Lz,Ho = yH0. 

Then the vector fields 

Zi = N'Zo 

satisfy 

(i) .Gi ,  Xjl = (B + Y + ( j  - 1)(B - 
(ii) [Zi, ZjI = (B - a)( j  - i)Zi+j 
(iii) Lz, Jj = (@ + ( j  - i - 1)@ - a))Ji+j. 

The set of first integrals [Hi] can be obtained from the formula 

(iv) (dHj, Zi) = (y + (i + j ) (B  - a))Hi+j. 

A proof of this result can be found in Oevel (1987). Using the methods of section 1 
we immediately obtain 
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Corollary 2.2. 
vector fields 

Under the hypothesis of the theorem, for each integer i = 1,2, . . . , the 

-, 

Yzj = Zj + r ( B  + y + (i - I)@ -ci))X;+j j = 1.2,. . . 

are time-dependent symmetries of the ith-order Bow. 

Proof. 
theorem 2.1 we compute 

Each Z j ,  j = 1.2,. , . , is a master symmetry. Using (1.4) and relation (i) of 

Yz, = Zj  + t [ Z j ,  Xi] = Zj + t (B  + y + (i - 1)(B - ci))Xi+j. 0 

3. The To& lattice 

We consider the finite, non-periodic, Toda lattice, i.e. a system of particles on the line 
under exponential interaction with nearby particles. It has the following bi-Hamiltonian 
formulation: 

Note that JO is symplectic. The recursion operator is then 

We will now show that the vector field 

is a conformal symmetry for both Jo, J1 and Ho, so we will be able to apply theorem 2.1 
and its corollary. 

In fact, we compute 
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Next observe that ZO is a Hamiltonian vector field with respect to J1 for the Hamiltonian 
I =-xi q', so we have 

LZ, J I  = 0. 

Finally, a simple computation shows that Lz,Ho = Ho. Therefore theorem 2.1 holds with 
(Y = -1, ,fJ = 0, y = 1. It follows ,that the higher-order Poisson tensors for the Toda lattice 
satisfy the deformation relations: 

Lz,J, = ( j  - i  - l)Ji+j 

Lz, Hj = (i + j + I)Hi+j 

(3.4) 

(3.5) 

where Zi N'Zo satisfy 

[Z, ,  Z j ]  = ( j  - i).Zj+j. (3.6) 

If we denote by Xi the Hamiltonian vector field generated by Hi, with respect to Jo, we 
also have 

[Zi, X j l  = jXi+j (3.7) 

and from the corollary we obtain the timedependent symmetries 

Yz, Z j  + itXi+j . j = L2;. . . . (3.8) 

Another multi-Hamiltonian formulation is known for Toda lattice in terms of the 
Flaschka's variables. Recall that the Flaschka transformation is the map i~ : R2" -+ Ea-' 
defined by 

( q l ,  . . . , q", P I . .  . ., pn)  H 

1 -  , + I ,  

. . , a " - ~ ,  bl, . . . , b,) 

where ai = e(q 4 

checked directly by setting 
, bj = pi.  The Poisson tensm Jo and J1 reduce to R2"-'. This can be 

a 
-aibi+l- A - 

i=I  

(3.9) 

and observing~that @e projection i~ : (RZn, J , )  + (Etzn-' .  4 )  is a Poisson morphism. 

the one defined by the Poisson tensors (3.9) and the reduced Hamiltonians 
The bi-Hamiltonian formulation for the Toda lattice in Flaschka's variables is exactly 
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There is, however, a big difference between the original bi-Hamiltonian formulation and the 
reduced bi-Hamiltonian formulation. The Poisson structures .?o and & are. not symplectic, 
and so there is no obvious recursion operator. In fact, the recursion operator N given by 
(3.2) cannot he reduced. This is most easily seen using the notion of projectable vector 
field. Recall that a vector field Z is projectable if for every vector field Y tangent to the 
fibres K ' ( x ) ,  the vector field LyZ  is also tangent to the fibres. If that is the case, the vector 
field Z can be reduced to a vector field 2 given by i ( n ( x ) )  =-dn(x) . Z(x). Conversely, 
any vector field on the reduced space is the image by z of a projectable vector field. 

Now we claim that N does not map projectable vector fields to projectable vector fields, 
as is necessary for the reduction to York. To prove this we note that the fibres are the lines 
in E?" parallel to the vector (1,. . . . l , O ,  . . . ,O), so a vector field Z is projectable if for 
every function f E C'"(M) there exists a function g E C m ( M )  such that 

a a [ZJ E,,] i 
= g c @ .  i 

For example, the vector field a/aq' is projectable but 

is not projectable. We conclude that no recursion operator exists relating the two reduced 
Poisson tensors. .. 

In spite of the fact that there is no recursion operator for the reduced Toda lattice, 
higher-order Poisson structures are known, and they satisfy certain deformation relations 
[ l ] .  This can be explained by the following result. 

Theorem 3.1. The vector fields Zi = N'Zo, i = 0, 1.2, .. ., are projectable. The 
corresponding reduced vector fields satisfy 

[2,, i j l  = ( j  - i)Zi+j. (3.10) 

In particular, the higher-order Poisson tensors can be reduced to Poisson tensors &, satisfying 
the deformation relations 

L ~ ~ J ; .  = ( j  - i - l ) & + j .  (3.1 1)  

There are also reduced Hamiltonians [ f i i ]  and reduced higher-order flows k; satisfying 

~ 2 , f i j  = (i + j + ~ ) f i j + j  (3.12) 

[ii, kj] = j . F j + j .  (3.13) 

Proof. All we have to prove is that the vector fields 5; are projectable, so that all the 
hierarchy can be reduced. The rest of the proposition follows from relations (3.4)-(3.7). 

We compute 
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Therefore, for any f E Cm(M), we find 

so the Z; = N'Zo, i = 0, 1,2,. . . , are projectable. 0 

The deformation relations (3.1 1) were known to hold up to a certain equivalence relation 
Damianou (1990). Our proof shows that they are, in fact, exact. We note that the master 
symmetries ( & I ,  for i > 2, are different from the mater symmetries given in Damianou 
(1990). However, for i = 1 they differ by a multiple of the Hamiltonian vector field XI, 
and so the higher order reduced Poisson tensors (3.11), coincide with the ones given in 
Dadmianou (1990). 

It follows, exactly as in corollary 2.2, that we have a, hierarchy of reduced time- 
dependent symmetries: 

Corollary 3.2. For each integer i = 1,2, .  . . , the vector fields 
- - 

y -  z -  =z. ,+i tXi+j  ~ j = 1 , 2  ... 

are time-dependent symmetries .~ of the ith-order Toda flow. 

been obtained in Damianou (1993), although by different~methods. 
We have learned during the preparation of this manuscript that corollary 3.2 had also 
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