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ABSTRACT

This thesis discusses several problems related to local symplectic groupoids.

In Chapter 1, we prove that if a local symplectic groupoid has uniformly

discrete associators, then its associative completion is a symplectic groupoid.

It follows that a Poisson manifold is integrable if and only if any of its local

integrations has uniformly discrete associators. In Chapter 2, we construct a

local symplectic groupoid integrating the Heisenberg-Poisson manifold which

is not 6-associative. In Chapter 3, we give the conditions for a function to be

the generating function for some local symplectic groupoid structure on the

cotangent bundle, both for a coordinate space and for an abstract manifold.

We also compare different notions of generating functions and analyze the role

of the SGA equation. In Chapter 4, we show that the algebraic equation in

the SGA equation is equivalent to a groupoid 2-cocycle condition. Under mild

assumptions on the local symplectic groupoid, we find a groupoid 2-cocycle

which under the van Est map yields the underlying Poisson bivector.
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INTRODUCTION

In [10], a precise connection between the integrability of a Lie algebroid

and the associativity in any of its local integration is established. A notion

that plays an important role in bridging the two concepts is the so-called

associative completion, denoted by AC(G), of a local Lie groupoid G.

As the name suggests, the associative completion is globally associative and

is a genuine groupoid. More precisely, [10] shows that under some connect-

edness assumptions on G, the associative completion AC(G) is a topological

groupoid, which is smooth if and only if the set of associators is uniformly

discrete. As a corollary, one deduces that a Lie algebroid is integrable if and

only if it admits a local integration with uniformly discrete associators.

Given any symplectic groupoid (G, ω) ⇒ M , there is a unique induced

Poisson structure π on the space of objects that makes the target map a

complete symplectic realization. When this happens, (G, ω) is said to be

an integration of the Poisson manifold (M,π). Not every Poisson manifold

integrates to a symplectic groupoid. In fact, a Poisson manifold is integrable

if and only if its cotangent bundle is an integrable Lie algebroid [7].

A local symplectic groupoid is a local Lie groupoid with a multiplicative

symplectic form. As for symplectic groupoids, given any local symplectic

groupoid, there is a unique Poisson structure on the space of objects for

which the target is a symplectic realization. In this case, we say that the

local symplectic groupoid is an integration of the Poisson manifold.

In contrast to integration by symplectic groupoids, every Poisson manifold

integrates to a local symplectic groupoid [5]. We show in Chapter 1 that

if any local integration has uniformly discrete associators, then the Poisson

manifold is integrable to a symplectic groupoid:

Theorem 1. Let (G,Ω) be a local symplectic groupoid whose associative

completion is smooth. Then AC(G) admits a unique multiplicative symplectic

form Ω for which the completion map p : G→ AC(G) is symplectic.
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Given a Lie groupoid G ⇒ M with Lie algebroid A and anchor ρ, recall

(see, e.g., [1]) that a closed infinitesimal multiplicative (IM) 2-form on

A is a bundle map σ : A→ T ∗M satisfying

σ(α)(ρ(β)) = −σ(β)(ρ(α))

σ([α, β]) = Lρ(α)σ(β)− Lρ(β)σ(α)− dσ(α)(ρ(β))

When a Lie groupoid has simply-connected source fibers, it is known that

every closed IM 2-form on A lifts to a closed multiplicative 2-form on G whose

non-degeneracy is equivalent to that of the former [1]. This implies that when

the associative completionAC(G) is smooth and has simply-connected source

fibers, it has a symplectic groupoid structure. However, examples show that,

in general, AC(G) does not have simply-connected source fibers. Therefore,

Theorem 1 does not follow from the known integration result for IM forms.

Given a Poisson manifold (S, π), the Heisenberg-Poisson manifold as-

sociated to S, denoted by HS, is S ×R equipped with the Poisson structure

yπ where y is the coordinate function on R. If S is symplectic and admits

a prequantization, [12] gives a construction of a symplectic groupoid inte-

grating HS using the explosion construction. We will see in Chapter 2 that

when S = S2, the explosion construction also gives rise to a local integration

of HS, which is not globally associative and thus not globalizable.

If M is a manifold and ω ∈ Ω2(M) is a 2-form, the prequantum Lie

algebroid Aω is the bundle TM × R with anchor the projection onto the

first coordinate and bracket given by

[(X, f), (Y, g)] = ([X, Y ], Xg − Y f + ω(X, Y ))

By the general integrability criteria (see [7], example 3.1), when M = S2 with

the usual area form ω, Aω is integrable and the A-path construction gives the

source 1-connected Lie groupoid integrating Aω. By shrinking the groupoid

structure to the open neighborhood consisting of arrows whose source and

target are not antipodal points, one obtains a local Lie groupoid isomorphic

to the open

G′ ⊂ S2 × S2 × R/4πZ
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consisting of (x0, x1, a) such that x0 6= x1 with structure maps given by

s(x1, x0, a) = x0, t(x1, x0, a) = x1,

(x2, x1, a1) · (x1, x0, a0) = (x2, x0, a0 + a1 + A(∆x0x1x2)),

where A(∆x0x1x2) is the area of the geodesic triangle with vertices x0, x1, x2.

Example 3.5 in [10] shows how one can modify this construction to obtain a

local Lie groupoid integrating Aω that is not 6-associative. Our construction

of a non-globalizable local symplectic groupoid integrating HS2 is inspired

by the similarity between the cotangent algebroid of HS2 and Aω, and this

example.

If (M,π) is a Poisson manifold, the Poisson homotopy groupoid is the

set of cotangent paths modulo cotangent path homotopies:

Π(M,π) =
cotangent paths

cotangent path-homotopy

Theorem 14.5 from [8] says that, when the cotangent algebroid of M is in-

tegrable, Π(M,π) admits a smooth structure and a symplectic form with

respect to which it is a symplectic groupoid integrating M . The cotangent

algebroid of HS2 is integrable by the general integrability criteria [7] or by

the construction in [12], so the Poisson homotopy groupoid associated toHS2

gives a (global) integration of the Poisson manifold.

In analogy to Example 3.5 in [10], we describe the Poisson homotopy

groupoid and find that the part consisting of cotangent paths over the sin-

gular part of HS2 is identified with TS × R, with the structure maps given

by

s(v0, F0) = (x, 0) = t(v0, F0),

(v0, F0) + (v1, F1) = (v0 + v1, F0 + F1 +
1

2
ωS(v0, v1)).

On the other hand, the part consisting of cotangent paths over the regular

part is identified with:{
(x, x′, y, F0) = ((x, y), (x′, y), F0) : x, x′ ∈ S, x 6= −x′, F0 ∈ R/

4π

y2
Z
}
.
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with structure maps given by

s(x, x′, y, F0) = (x′, y), t(x, x′, y, F0) = (x, y),

(x, x′, y, F0) + (x′, x′′, y, F1) = (x, x′′, y, F0 + F1 +
1

y2
A(xx′x′′)).

We see that the regular part can be viewed as a family of the local groupoid G′

as in Example 3.4 in [10] parametrized by y. To construct a non-globalizable

integration of the Heisenberg-Poisson manifold HS2, we use the same idea

as in Example 3.5 in [10], to modify the regular part. That is, in the last

coordinate, we will no longer take the quotient by 4π
y2
Z and we restrict the

multiplication appropriately.

There are two problems we need to solve: 1) we need a smooth structure

on the proposed local groupoid that makes it a local Lie groupoid; 2) We

need to show that the Lie algebroid of the local Lie groupoid is isomorphic

to the cotangent algebroid of the Heisenberg-Poisson manifold.

For the smooth structure, we use the explosion construction. For any Lie

groupoid, the explosion along the identity is a Lie groupoid. In particular,

the explosion of the pair groupoid S2× S2 along the diagonal is the so-called

Connes groupoid. We augment it with an R-component to get a smooth

structure on the proposed local groupoid.

We will see that the following crucial lemma, concerning the area of geodesic

triangles in S2, allows to show both that this local groupoid is smooth and

then that its Lie algebroid is isomorphic to the cotangent algebroid of HS2.

Lemma 1. Let X and Y be vector fields on S2. Let x ∈ S2. Let γ be the

integral curve of X starting at x and let ϕY (t, x) = ϕtY (x) be the flow of Y .

Then

lim
y→0

1

y2
A(x, γ(y), ϕY (y, γ(y))) =

1

2
ω(X(x), Y (x))

Although it is easy to write down geodesics on S2 and compute the area

of geodesic triangles, we were unable to give a direct proof of the Lemma.

Instead, the proof given in Section 2.7 makes use of the exponential map for

the Poisson homotopy groupoid for HS2.
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Next, in Chapter 3, we turn our attention to generating functions, where

our work was inspired by [2]. Recall that the graph of multiplication of (local)

symplectic groupoid (G,Ω) is a Lagrangian submanifold of the symplectic

manifold G × G × G, where G denotes the manifold G equipped with the

symplectic form −Ω. Now, let us look at the case where G ⊂ T ∗M equipped

with the canonical symplectic structure ωc. The map

φ0 : T ∗Rn × T ∗Rn × T ∗Rn → T ∗(T ∗Rn ×Rn T
∗Rn),

((p1, x1), (p2, x2), (p, x)) 7→ ((p1, x1 − x), (p2, x2 − x), (x, p− (p1 + p2)),

is a symplectomorphism mapping the graph of multiplication for the canon-

ical groupoid structure on the cotangent bundle T ∗Rn to the zero section. If

S : T ∗Rn×Rn T
∗Rn → R is a function, φ−1(Graph(dS)) is a Lagrangian. We

will show in Theorem 3.3.2 conditions for the Lagrangian φ−1(Graph(dS)) to

be the graph of multiplication of some local symplectic groupoid structure on

(T ∗Rn, ωc). Our result is inspired by techniques developed in [4] for the case

of formal symplectic groupoids. There the authors introduced the so-called

Symplectic Groupoid Associativity or SGA equation, which also plays

crucial role in our result.

We can also ask a more general question. Let (T ∗M,ωc) be the canonical

integration of the zero Poisson structure on M . The graph of multiplica-

tion Graph(m0) is a Lagrangian submanifold of T ∗M × T ∗M × T ∗M . Since

Graph(m0) ' T ∗M ×M T ∗M via

Graph(m0)→ T ∗M ×M T ∗M, (αx, βx, αx + βx) 7→ (αx, βx),

we can apply the Lagrangian Neighborhood Theorem (see, e.g., [3]) to obtain

a symplectomorphism φ from a neighborhood of Graph(m0) ⊆ T ∗M×T ∗M×
T ∗M to a neighborhood of the zero section in (T ∗(T ∗M×M T ∗M), ωc), which

maps Graph(m0) to the zero section. If S : T ∗M×M T ∗M → R is a function,

then as above φ−1(Graph(dS)) is a Lagrangian in T ∗M × T ∗M × T ∗M , and

we ask: when is φ−1(Graph(dS)) the graph of a multiplication of a local

symplectic groupoid G ⊂ T ∗M with symplectic form ωc?

An answer to this question is given in Theorem 3.2.1. The system of

equations expressing associativity is at the core of the argument. When

M = Rn and φ = φ0, we would like to compare this system of equations with
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the SGA equation. A natural guess is that they are equivalent. However, we

are only able to proof this equivalence under additional restrictions on the

function S. The details are given in Propositions 3.4.6 and 3.4.7.

There is also a different notion of generating functions introduced in [11]:

Let π : Z → X × Y be a fibration and let S be a function on Z. The set

of critical points of S with respect to π is the set of points at which the

differential dS vanishes on vectors in the fiber direction. At each critical

point z such that π(z) = (x, y), there are unique αx ∈ T ∗xX, αy ∈ T ∗Y for

which we have dzS = π∗(αx + αy). We denote the map CS → T ∗X × T ∗Y ,

z 7→ −αx +αy by dX×Y . We call a Lagrangian submanifold L in T ∗X ×T ∗Y
a canonical relation and we say that S is a generating function for L with

respect to π if dX×Y (CS) = L. Given a local symplectic groupoid structure on

T ∗M , the graph of multiplication Graph(m) is a Lagrangian relation between

M ×M and M and we can study its generating functions in the sense that

we just introduced. Since now we have two notions of generating functions

for Graph(m), it is natural to seek a precise relationship between them.

However, we were able to do so only in a very special case, but which leads

to an interesting interpretation of the SGA equation discussed in Chapter 4.

We show that, for generating functions in the sense of [11], the SGA equa-

tion becomes the cocycle condition for a groupoid 2-cocycle. We discuss two

examples where we are able to write down this cocycle explicitly. Our fi-

nal result shows that, under the van Est map, the class of this cocycle in

groupoid cohomology is mapped to class of the Poisson bivector in algebroid

cohomology, i.e., in Poisson cohomology.
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CHAPTER 1

THE ASSOCIATIVE COMPLETION OF
LOCAL SYMPLECTIC GROUPOIDS

1.1 Local Lie Groupoids

The following definition of a local Lie groupoid is taken from [10] and it is

the one that will be used throughout the rest of this thesis.

Definition 1.1.1. A local Lie groupoid over a manifold M is a manifold

G with

• s, t : G→M(source and target maps) submersions

• u : M → G, x 7→ 1x, (unit map) a smooth map such that s(u(x)) = x

and t(u(x)) = x for all x ∈M .

• m : U → G, (g, h) 7→ gh, (multiplication) a submersion where U is an

open neighborhood of

I2 :=
(
M ×s t G

)
∪
(
G ×s t M

)
in G(2) := {(g, h) ∈ G×G : s(g) = t(h)}

• i : V → V, g 7→ g−1, (inversion map) a smooth map where V is an

open neighborhood of u(M) in G such that {(g, h) ∈ V × V : s(g) =

t(h)} ⊆ U

satisfying the following axioms:

• s(gh) = s(h), t(gh) = t(g) for all (g, h) ∈ U

• g1s(g) = 1t(g)g = g for all g ∈ G

• s(g−1) = t(g), t(g−1) = s(g) for all g ∈ V.

• g−1g = 1s(g), gg
−1 = 1t(g) for all g ∈ V
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• (gh)l = g(hl) for all (g, h, l) ∈ W

where W is an open neighborhood of

I3 :=
(
G ×s t M ×s t M

)
∪
(
M ×s t G ×s t M

)
∪
(
M ×s t M ×s t G

)
in G(3) := {(g, h, l) : s(g) = t(h), s(h) = t(l)}. The manifold G is allowed

to be non-Hausdorff while M , the source and target fibers are required to be

Hausdorff.

We will often identify M with its image u(M) ⊂ G.

We can define a local topological groupoid analogously by requiring the

structure maps to be continuous instead of smooth. From here on, we will

denote by G(n) the set of all n-tuples of elements in G in which the source of

every entry is equal to the target of the next entry, for n ≥ 2

G(n) = {(g1, · · · , gn) : t(gi+1) = s(gi), 1 ≤ i ≤ n− 1}

Elements in G(n) will be called compatible n-tuples.

Given a local Lie groupoid G, there are two ways of obtaining a smaller

one G′:

• (Restriction) We say that G′ is obtained by restricting G if they have

the same space of arrows and objects and the same source and target

maps, and if the multiplication and inversion in G′ are restrictions of

the ones in G to smaller open neighborhoods of I2 and M , respectively.

• (Shrinking) We say that G′ is obtained by shrinking G if G′ is an

open neighborhood of the unit section in G, the source and target

maps are the restrictions of s and t to G′, multiplication in G′ is the

multiplication in G restricted to U ∩ (G′)(2) ∩m−1(G′) and inversion in

G′ is the inversion in G restricted to V ∩G′ ∩ i(G′).

Below are some examples of a local Lie groupoid.

Examples 1.1.2. Let G ⇒M be a Lie groupoid.

1. Any choice of an open U ⊆ G(2) containing (G ×s tM)∪ (M ×s t G) and

an open V ⊆ G containg M such that V = i(V) determines a local Lie

groupoid which is a restriction of G.
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2. Any open neighborhood in G containing the unit section determines a

local Lie groupoid which is a shrinking of G.

3. (One-point compatification) The one-point compactification of R, R∞ =

R ∪ {∞} becomes a local Lie group (a local Lie groupoid with objects

the singleton {∗}) with domain of muliplication R∞ × R∞ \ {(∞,∞)}
and the domain of inversion R\{∞} if we set g+∞ =∞ =∞+g for

all g ∈ R amd a + b to be the usual addition if a, b ∈ R and inversion

to be the usual one in R. We cannot extend this multiplication to

∞+∞ =∞, because it would not be smooth at (∞,∞).

1.1.1 Lie algebroid of a local Lie groupoid

In the definition of a local Lie groupoid given above, not every element needs

to be invertible. One consequence of this is that right multiplication, when

defined, may not induce a local diffeomorphism between the source fibers.

To define the Lie algebroid of a local Lie groupoid, we need the following

assumptions.

Definition 1.1.3. A local Lie groupoid is said to be:

• right-regular if for any (g, h) in the domain of multiplication, we have

an isomorphism

dRh : T s
gG→ T s

ghG.

• left-regular if for any (g, h) in the domain of multiplication, we have

an isomorphism

dRg : T t
hG→ T t

ghG.

• bi-regular if it is both right regular and left regular.

Let G be a left-regular local Lie groupoid and let A := T t
MG. For a

section α ∈ Γ(A), denote by α̃ the unique left invariant vector field such that

α̃|M = α. We define the Lie algebroid of G to be (A, ρ, [·, ·]) with anchor

and bracket given by

ρ : A→ TM, v 7→ ds(v)

[α, β] := [α̃, β̃]|M

9



We note that any local Lie groupoid G has a shrinking which is left-regular

and so one defines the Lie algebroid of G to be the Lie algebroid of any of

its left-regular shrinking.

1.1.2 Connectedness in a local Lie groupoid

In this section we list some assumptions on a local Lie groupoid that will be

needed when stating results from [10].

Definition 1.1.4. A local Lie groupoid is

1. source-connected if all of its source fibers are connected.

2. target-connected if all of its target fibers are connected.

3. inversional if every element can be written as a product of invertible

elements.

We also say that the local Lie groupoid has products connected to the

axes if for any (g, h) ∈ U , there is a path γ : [0, 1]→ s−1(t(h)) such that(γ(τ), h) ∈ U , τ ∈ [0, 1]

γ(0) = t(h), γ(1) = g

or there is a path γ : [0, 1]→ t−1(s(g)) such that(g, γ(τ)) ∈ U , τ ∈ [0, 1]

γ(0) = s(g), γ(1) = h

1.1.3 Associativity

Given a triple (g, h, l) such that (g, h), (h, l), (gh, l) and (g, hl) are all ele-

ments in U , it may not be true that (gh)l = g(hl), since (g, h, l) may not

be in the domain of associativity W . This suggests how one should define

3-associativity on a local groupoid, or more generally, n-associativity.

Definition 1.1.5. Let n ≥ 3. A local groupoid is n-associative if given

any compatible n-tuple, all defined products are equal. A local groupoid is

globally associative if it is n-associative for all n ≥ 3.
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As noted above, a local groupoid may fail to be 3-associative. However, a

result from [10] shows that for every n, every local groupoid has a restriction

which is n-associative. It is clear from the definitions that any restriction or

shrinking of a (global) Lie groupoid is globally associative. The same is true

for any restriction of a shrinking of a (global) Lie groupoid, for which we

have a name.

Definition 1.1.6. A local Lie groupoid is globalizable if it is a restriction

of an open neighborhood of the unit section in a Lie groupoid.

So the preceding remark says that every globalizable local Lie groupoid

is globally associative. Mal’cev’s Theorem for local Lie groupoids [10] says

that, under some connectedness assumption, the converse statement also

holds. The key ingredient in the proof of this theorem is what is called the

associative completion of a local Lie groupoid G, which is denoted by AC(G).

The name highlights the fact that the new structure is globally associative

and is a genuine groupoid.

1.2 The Associative Completion of a Local Lie

Groupoid

If G is a local groupoid we consider the set of well-formed words in G:

W (G) :=
⊔
n≥1

G(n).

Given any

g̃ = (g1, . . . , gk, gk+1, . . . , gn) ∈ W (G), where (gk, gk+1) ∈ U

if we let

˜̃g = (g1, . . . , gkgk+1, . . . , gn) ∈ W (G).

we say that g̃ is an expansion of ˜̃g and that ˜̃g is a contraction of g̃. If two

words in W (G) are related by an expansion or a contraction, then we say that

they are elementarily equivalent. We denote by ∼ the equivalence relation

generated by these elementary equivalences. We also write g̃ ≤ ˜̃g if g̃ can be

obtained from ˜̃g through a sequence of contractions.
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Definition 1.2.1. If G is a local groupoid, then

AC(G) = W (G)/ ∼

is called the associative completion of G and the quotient map p : G →
AC(G), g 7→ [(g)], is called the completion map.

If G is inversional, then AC(G) is a groupoid with the following structure

maps:

• source and target: s̃([(g1, . . . , gn)]) = s(gn), t̃([(g1, . . . , gn)]) = t(g1);

• unit section : ũ(x) = [(1x)];

• multiplication: induced by concatenation of words.

Since G is inversional, every arrow can be written as a product of invertible

elements. Then if [(g1, . . . , gn)] ∈ AC(G), its inverse is defined by

[((wnkn)−1, . . . , (wn1 )−1, . . . , (w1
k1

)−1, . . . , (w1
1)−1)]

where gi = wi1 . . . w
i
ki

with each wij invertible. This does not depend on

the representative of the equivalence class. Moreover, if G is a topological

groupoid, then AC(G), with the quotient topology inherited from W (G), is

a topological groupoid.

When G is a local Lie groupoid, W (G) is the disjoint union of smooth

manifolds of different dimensions. In this case, we may ask if AC(G) ad-

mits a smooth structure that makes the quotient map W (G) → AC(G) a

submersion. To answer this question we need the notion of associator.

Definition 1.2.2. An element g ∈ s−1(x) ∩ t−1(x) = Gx is an associator

if there is g̃ ∈ W (G) such that (g) ≤ g̃ and (1x) ≤ g̃.

We denote by Assc(G) the set of associators in G. Clearly, Assc(G) is

contained in the kernel of the completion map p : G→ AC(G), but the two

sets may fail to coincide. However, they are equal under some assumptions

on the local Lie groupoid G.

Proposition 1.2.3 ([10]). If G is a biregular local Lie groupoid with product

connected to the axes, then Assc(G) = Ker(p), where p : G→ AC(G) is the

completion map.
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We say that Assc(G) is uniformly discrete if there is an open neigh-

borhood of the unit section u(M) in G that intersects Assc(G) only at the

identities. The following result from [10] gives a sufficient and necessary

condition for AC(G) to be a Lie groupoid.

Theorem 1.2.4 ([10]). Let G be a biregular local Lie groupoid with product

connected to the axes. The associative completion AC(G) is smooth if and

only if Assc(G) is uniformly discrete. In this case, p : G→ AC(G) is a local

diffeomorphism.

Remark 1.2.5. Any local Lie groupoid G has a shrinking which is biregular

with product connected to the axes. Note, however, that shrinking a Lie

groupoid may change the set of associators.

Let us recall the construction of the smooth structure on AC(G) when

Assc(G) is uniformly discrete. Given g̃ ∈ AC(G), we construct a chart around

g̃ modeled on an open set in G. To do this, we need to make three choices:

• A representative (g1, . . . , gn) of g̃;

• A k between 1 and n;

• For each 1 ≤ i ≤ n, i 6= k, a local bisection Ni of G at gi (that is, a

submanifold through g of the same dimension as M that is transverse

to both the source and target fibers).

We take Ni small enough so that s|Ni , t|Ni are diffeomorphisms. Then a chart

is constructed as follows.

Choose an open set O around gk in G. If O is small enough, each y ∈ O is

such that s(y) ∈ Im t|Nk+1
. In this case, let yk+1 = t|−1

Nk+1
(s(y)). Inductively,

for k + 1 ≤ i ≤ n − 1, by choosing O small enough, we can assume s(yi) ∈
Im t|Ni+1

and define yi+1 = t|−1
Ni+1

(s(yi). Similarly, if we take O small enough,

then t(y) ∈ Im s|k−1. In this case, let yk−1 = s|−1
Nk−1

(t(y)). Inductively,

for 1 ≤ i ≤ k − 1, choose O small enough to be have t(yi) ∈ Im s|Ni−1
,

let yi−1 = s|−1
Ni−1

(t(yi)). Then the chart corresponding to the three choices

(g1, . . . , gn), k and Ni is given by

O 3 y 7→ [(y1, . . . , yk−1, y, yk+1, . . . , yn)] ∈ AC(G).
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We will denote this chart by c : O → AC(G). The proof of the theorem above

consists in showing that, if O is small enough, then (i) this map is injective

and (ii) for any pair of charts the transition maps are smooth.

1.3 Local Symplectic Groupoids

Let G ⇒ M be a local Lie groupoid. Let U ⊆ G(2) be the domain of

multiplication

m : U → G,

and let

pr1, pr2 : U → G,

be the projections onto the first and the second coordinates, respectively.

Definition 1.3.1. A k-form ω ∈ Ωk(G) is said to be multiplicative if

pr∗1 ω −m∗ω + pr∗2 ω = 0.

A local symplectic groupoid is a local Lie groupoid with a multiplicative

symplectic form.

Just like for symplectic groupoids, each local symplectic groupoid induces

a unique Poisson structure on the manifold of units. Hence, one also has

a (local) integrability problem for Poisson manifolds, which always has an

affirmative answer:

Theorem 1.3.2 ([5]).

(i) Given a local symplectic groupoid (G,ω) ⇒ M , there is a unique

Poisson structure π on M for which the target map t : G → M is a

Poisson map.

(ii) Given a Poisson manifold (M,π), there is a local symplectic groupoid

(G,ω) ⇒M such that the target map is a Poisson map.
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1.4 The Associative Completion of a Local Symplectic

Groupoid

Theorem 1.2.4 answers the question of the smoothness of the associative

completion of a local Lie groupoid. In the symplectic context, we have:

Question 1.4.1. Given a local symplectic groupoid is the associative com-

pletion a symplectic groupoid (assuming that it is smooth)?

The main result of this chapter answers this question:

Theorem 1.4.2. Let (G,Ω) be a local symplectic groupoid whose associative

completion is smooth, then AC(G) admits a mutiplicative symplectic form Ω

for which the completion map p : G→ AC(G) is symplectic.

Corollary 1.4.3. A Poisson manifold is integrable to a (global) symplectic

groupoid if and only if any of its local integrations has uniformly discrete

associators.

Proof of Theorem 1.4.2. To begin the proof, we first define pointwise the 2-

form which will be the symplectic form on AC(G). Let g̃ ∈ AC(G) and let

c : O → AC(G) be a chart around g̃ as constructed at the end of the previous

section but where the bisections Ni used in the construction are chosen to

be Lagrangian:

Ω|Ni = 0.

We keep all the notations used there.

Definition 1.4.4. Let ω be the 2-form on AC(G) such that

Ωg = (dgc)
∗ωg̃.

We will prove later that this definition does not depend on the choice of

the chart. The proof uses crucially the fact that we only allow Lagrangian

bisections. Since for any chart c : O → AC(G) we have

Ω|O = c∗(ω|c(O)),

it is obvious that ω is smooth, closed and non-degenerate.
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Multiplicativity of ω is shown as follows. Let

g̃ = (g1, . . . , gk−1, g), g̃′ = (g′, gk+2, . . . , gn).

LetNi, 1 ≤ i ≤ k−1, k+2 ≤ i ≤ n be Lagrangian bisections at gi respectively.

Let N ′ be a Lagrangian bisection at g′. Assume s(g) = t(g′). We make three

choices of charts:

1) A chart around g̃: c : O → AC(G) determined by an open neighborhood

O of g and N1, . . . , Nk−1;

2) A chart around g̃′: c′ : O′ → AC(G) determined by an open neighbor-

hood O′ of g′ and Nk+2, . . . , Nn;

3) A chart around g̃g̃′: c′′ : O → AC(G) determined byO andN1, . . . , Nk−1,

N ′, Nk+2, . . . , Nn.

Let V denote the set of invertible elements in G. Let ε : O′ → V be a map

such that ε(y′)y′ ∈ N ′ whenever y′ ∈ O′. Such a map exists and is smooth if

O′ is small enough and, when it exists, it is unique. In the charts above, the

multiplication map takes the form

O ×O′ → O, (y, y′) 7→ yε(y′)−1.

Let x(τ), y(τ), x′(τ), y′(τ) be curves in O,O′ starting at g, g′ with s(x(τ)) =

t(x′(τ)), s(y(τ)) = t(y′(τ)). Let x̃(τ), ỹ(τ), x̃′(τ), ỹ′(τ) be the corresponding

curves in AC(G). We find:

m∗ω(g̃,g̃′)(( ˙̃x, ˙̃x′), ( ˙̃y, ˙̃y′)) = ωg̃g̃′(dm( ˙̃x, ˙̃x′), dm( ˙̃y, ˙̃y′))

= Ωg

( d

dτ
x(τ)ε(x′(τ))−1,

d

dτ
y(τ)ε(y′(τ))−1

)
= Ωg(ẋ, ẏ) + Ω1s(g)(

˙ε(x′)−1, ˙ε(y′)−1)

= Ωg(ẋ, ẏ) + Ω′g(ẋ
′, ẏ′)

= ωg̃( ˙̃x, ˙̃y) + ωg̃′( ˙̃x′, ˙̃y′)

= (pr∗1 + pr∗2)ω(g̃,g̃′)(( ˙̃x, ˙̃x′), ( ˙̃y, ˙̃y′)),
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where we have used that:

0 = Ωg′( ˙ε(x′)x′, ˙ε(y′)y′)

= Ω1s(g′)
( ˙ε(x′), ˙ε(y′)) + Ωg′(ẋ

′, ẏ′)

= −Ω1s(g′)
( ˙ε(x′)−1, ˙ε(y′)−1) + Ωg′(ẋ

′, ẏ′),

which follows from the fact that the bisections are Lagrangian and that in-

version is anti-symplectic. This proves multiplicativity.

To see that the completion map p : (G,Ω) → (AC(G), ω) is a symplecto-

morphism, we observe that if O ⊂ G is a small enough open containing g

then the restriction c := p|O is a chart around g̃ = (g) ∈ p(G). Hence:

Ωg = c∗ωg̃ = p∗ωg̃

To complete the proof it remains to show that the definition of ω is inde-

pendent of the choice of chart. For that, recall that each chart is determined

by three choices: the word representing the element, k and the Lagrangian

bisections. We will show that the definition of ω is independent of each.

Representative: Let g̃ = (g1, . . . , gk−1, g, g
′, gk+2, . . . , gn) ∈ AC(G) where

gg′ ∈ G is defined. Let U , Ni, N
′ be as before. Let y′ : U → N ′ be such

that t(y′(y)) = s(y) (or, equivalently, y′(y) = (t|N ′)−1(s(y))). This map is

defined if U is small enough. By making U even smaller, we assume further

that yy′(y) is defined in G for all y ∈ U . We choose two charts around g̃,

with the same k:

1) A chart with (g1, . . . , gk−1, g, g
′, gk+2, . . . , gn) as representative, Ni and

N ′ as bisections, U 3 g a small enough open.

2) A chart with (g1, . . . , gk−1, gg
′, gk+2, . . . , gn) as representative, Ni as bi-

sections, U ′ 3 gg′ a small enough open.

The transition map between these charts is given by y 7→ yy′(y). If x(τ),

y(τ) are curves in U starting at g, we have

Ωgg′( ˙xy′(x), ˙yy′(y)) = Ωg(ẋ, ẏ) + Ωg′( ˙y′(x), ˙y′(y)) = Ωg(ẋ, ẏ),

where the last equality follows from the fact that N ′ is lagrangian. Since any

two representatives of g̃ are related by a sequence of expansions and contrac-

17



tions, this proves that ωg̃ does not depend on the choice of representatives.

Choice of k: Let g̃ = (g1, . . . , gk−1, g, g
′, gk+2, . . . , gn) ∈ AC(G). Let Ni,

N ′ be as before. Let N be a Lagrangian bisection through g. We choose two

charts around g̃ with the same representative word:

1) A chart with U 3 g small enough, Ni, N
′ as bisections.

2) A chart with U ′ 3 g′ small enough, Ni, N as bisections.

Let ε : U → V be such that yε(y) ∈ N for each y ∈ U and let y′ : U → N ′ be

such that t(y′(y)) = s(y) for each y ∈ U . Such maps exist if U is chosen small

enough. The transition map between these charts is given by y → ε(y)−1y′(y).

If x(τ), y(τ) are curves in U starting at g, we have

Ωg′( ˙ε(x)−1y′(x), ˙ε(y)−1y′(y)) = Ω1s(g)(
˙ε(x)−1, ˙ε(y)−1) + Ωg′( ˙y′(x), ˙y′(y))

= −Ω1s(g)(
˙ε(x), ˙ε(y))

= Ωg(ẋ, ẏ),

where the second to last equality follows from that fact that Ω|M = 0 and

that N ′ is Lagrangian, while the last equality follows from

0 = Ωg( ˙xε(x), ˙yε(y))

= Ωg(ẋ, ẏ) + Ω1s(g)(
˙ε(x), ˙ε(y)),

where the first equality holds since N is Lagrangian. This shows that ωg̃

does not depend on the choice of k.

Bisections: Let g̃ ∈ AC(G) be as before. Let Ni, N
′
i be two sets of

Lagrangian bisections. This gives rise to two charts around g̃ with the same

representative and the same k:

1. A chart with U 3 g small enough, Ni as bisections.

2. A chart with U ′ 3 g′ small enough, N ′i as bisections.

Let yi : U → Ni be functions such that for each y ∈ U , t(yk+1(y)) =

s(y), t(yi+1(y)) = s(yi(y)) for all k + 1 ≤ i ≤ n − 1 and s(yk−1(y) = t(y),

s(yi(y) = t(yi+1(y)) for all 1 ≤ i ≤ k − 2. Let εn+1 : U → V , ε0 : U → V be

18



given by εn+1(y) = 1s(yn(y)), ε0(y) = 1t(y1(y)) respectively. For k + 1 ≤ i ≤ n,

let εi : U → V be such that εi(y)yiεi+1(y)−1 ∈ N ′i ; for 1 ≤ i ≤ k − 1,

let εi : U → V be such that εi−1(y)−1yiεi(y) ∈ N ′i . These maps exist if

U is chosen small enough. In that case, the transition map is given by

y → εk−1(y)−1yεk+1(y)−1. Let x(τ), y(τ) be curves in U starting at g.

We claim that:

Ω( ˙εi(x), ˙εi(y)) = 0, (i = 0, . . . , n+ 1).

This can be seen by induction: on the one hand, we have

Ω( ˙εn+1(x), ˙εn+1(y)) = 0,

since Ω|M = 0. For k + 1 ≤ i ≤ n, we have

Ω( ˙εi(x)yi(x)ε−1
i+1(x), ˙εi(y)yi(y)ε−1

i+1(y))) = 0,

Ω( ˙yi(x), ˙yi(y)) = 0,

since Ni, N
′
i are Lagrangian. Hence, Ω( ˙εi(x), ˙εi(y)) = 0.The argument is

similar for 1 ≤ i ≤ k − 1, proving the claim.

Now, since Ω|M = 0, we also obtain that Ω( ˙εi(x)−1, ˙εi(y)−1) = 0 for all i.

It follows that

Ω(
d

dτ
εk−1(x(τ))−1x(τ)εk+1(x(τ))−1,

d

dτ
εk−1(y(τ))−1y(τ)εk+1(y(τ))−1) =

=Ω( ˙εk−1(x)−1, ˙εk−1(y)−1) + Ω(ẋ, ẏ) + Ω( ˙εk+1(x)−1, ˙εk+1(y)−1)

=Ω(ẋ, ẏ).

This shows that that ωg̃ does not depend on the choice of bisections and

completes the proof.
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CHAPTER 2

A LOCAL INTEGRATION OF THE
HEISENBERG-POISSON MANIFOLD HS2

In this chapter we will construct a local symplectic groupoid integrating

the Heisenberg-Poisson manifold associated with the symplectic manifold S2,

equipped with its standard symplectic structure. Our construction is inspired

by Example 3.5 in [10], which gives a non-globalizable local Lie groupoid

integrating the so-called prequantum Lie algebroid Aω associated to a closed

2-form ω. We note the similarity between Aω and the cotangent algebroid

of a Heisenberg-Poisson manifold HS, for an arbitrary symplectic manifold

S, and we use it to construct a non-globalizable local symplectic groupoid

integrating HS2.

2.1 Heisenberg-Poisson manifolds

Definition 2.1.1 ([12]). Let (S, πS) be a Poisson manifold. The Heisenberg-

Poisson manifold HS is M = S × R equipped with the Poisson structure

π(x,y) := yπx.

The symplectic leaves of HS are of two types: (i) L × {y} for y 6= 0,

where L ⊂ S runs through the symplectic leaves of πS, and (ii) the points in

S×{0}. We will be mostly interested in the case where (S, πS) is symplectic.

2.2 A non-globalizable local Lie groupoid

In this section, we review the construction in [10, Example 3.5] of a non-

globalizable local Lie groupoid. Let M be a manifold and let ω ∈ Ω2(M) be

a closed 2-form. The prequantum Lie algebroid Aω associated to ω is defined

as follows. As a bundle, Aω = TM⊕R. The anchor is given by the projection
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onto the first coordinate and the bracket is given by

[(X, f), (Y, g)] = ([X, Y ], Xg − Y f + ω(X, Y )).

Example 3.1 in [4] shows that when M = S2 and ω is the the usual area form,

Aω is integrable and the A-path construction gives the source 1-connected

Lie groupoid integrating Aω. To describe it, consider the map

A : Ω(S2)→ R/4πZ, γ 7→
∫
Hγ

ω (mod 4πZ),

where Ω(S2) is the space of all loops in S2 and Hγ is any path-homotopy

contracting γ ∈ Ω(S2) to the trivial loop at γ(0) = γ(1). This map is well-

defined since the integrals over two such homotopies differ by
∫
η
ω for some

[η] ∈ π2(S2). The source 1-connected Lie groupoid integrating Aω is

G :=
{piecewise smooth path in S2} × R/4πZ

∼
,

where (γ0, a0) ∼ (γ1, a1) ifγ0, γ1 have the same end points

a1 = a0 + A(γ−1
1 · γ0).

The source and target maps are

s(γ, a) = γ(0), t(γ, a) = γ(1),

and the multiplication is given by

(γ1, a1) · (γ0, a0) = (γ1 · γ0, a1 + a0).

If we restrict to the open set G′ ⊂ G consisting of all elements [(γ, a)] with

γ(0) 6= γ(1), each element has a unique representative whose first entry is a

geodesic. This means that G′ can be identified with the open set

G′ ⊂ S2 × S2 × R/4πZ

consisting of elements (x0, x1, a) such that x0 6= x1. We can view G′ as a
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local groupoid (a shrinking of G) whose structure maps are given by

s(x1, x0, a) = x0, t(x1, x0, a) = x1,

(x2, x1, a1) · (x1, x0, a0) = (x2, x0, a0 + a1 + A(∆x0x1x2)),

and multiplication is only defined when x2 + x0 6= 0. We now let

G := {(x1, x0, a) : x0, x1 ∈ S2, x0 6= x1, a ∈ R}

be equipped with same structure maps as above, except that multiplication

is defined only when x2 6= x0 and −π < A(∆x0x1x2) < π. Then G is a local

Lie groupoid which is not 6-associative (see [10, Example 3.5]).

In this section, we are going to construct a local symplectic groupoid inte-

grating the Heisenberg-Poisson manifoldHS2. This local integration restricts

along certain orbits to copies of G, and therefore it is also not globalizable.

2.3 Poisson homotopy groupoid

In this section, we recall the definition of the Poisson homotopy groupoid of

a Poisson manifold and some of its properties that will be useful later. For

more details and proofs we refer to chapters 10 and 14 in [8].

In the following discussion we fix a Poisson manifold (M,π) and we denote

its cotangent algebroid by (T ∗M, [·, ·]π, π#).

Definition 2.3.1. A cotangent path in (M,π) is a path a : [0, 1]→ T ∗M

such that for all t ∈ [0, 1],

π#(a(t)) =
d

dt
(pr ◦a)(t).

If a : [0, 1] → T ∗M is a cotangent path and τ : [0, 1] → [0, 1] is smooth

with τ(0) = 0 and τ(1) = 1, the path

aτ [0, 1]→ T ∗M, t 7→ τ ′(t)a(τ(t))

is a cotangent path and we call aτ a reparametrization of a. Observe that

one can fix a reparameterization τ : [0, 1] → [0, 1], flat at t = 0, 1, so that
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for any cotangent path a : [0, 1] → T ∗M one has a new cotangent path aτ

vanishing at the end points together with all its derivatives.

Definition 2.3.2. Let Σ be a manifold. A cotangent map is a bundle map

Φ : TΣ→ T ∗M with base map φ : Σ→M such that

dΦ∗ = Φ∗dπ,

where Φ∗ : Xk(M)→ Ωk(Σ) is given by:

(Φ∗V)x(v1, . . . , vk) := Vφ(x)(Φ(v1), . . . ,Φ(vk)).

When Σ = [0, 1], a bundle map Φ : TΣ → T ∗M takes the form Φ = adt,

where a : [0, 1] → T ∗M . It then follows that Φ : T [0, 1] → T ∗M is a

cotangent map if and only if a is a cotangent path.

Similarly, a bundle map Φ : T ([0, 1]× [0, 1]) → T ∗M takes the form Φ :=

Φ1dt+ Φ2dε where Φi : [0, 1]→ T ∗M and one has:

Definition 2.3.3. We say that two cotangent paths a0, a1 : [0, 1]→ T ∗M are

cotangent-path homotopic if there exist a cotangent map

Φ : T ([0, 1]× [0, 1])→ T ∗M, Φ := Φ1dt+ Φ2dε,

such that for all t, ε ∈ [0, 1]:

Φ1(t, 0) = a0(t), Φ2(0, ε) = 0,

Φ1(t, 1) = a1(t), Φ2(1, ε) = 0.

Cotangent-path homotopy is an equivalence relation on the space of cotan-

gent paths.

A standard argument shows that a cotangent path is cotangent-path ho-

motopic to any of its reparametrizations. In particular, one sees that:

Lemma 2.3.4. Every contangent-path homotopy class [a] has a representa-

tive a : [0, 1]→ T ∗M which is flat at t = 0 and t = 1.

The definition of cotangent-path homotopy is not very practical. In prac-

tice, one uses the following alternative characterization of cotangent-path

homotopies.
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Proposition 2.3.5. For a bundle map Φ = Φ1dt+ Φ2dε : T ([0, 1]× [0, 1])→
T ∗M with base map γ : [0, 1]× [0, 1]→M , the following are equivalent:

(i) Φ is a cotangent map;

(ii) π# ◦ Φ = dγ and for any (t, ε)-dependent 1-forms αt,ε and βt,ε with

αt,ε(γ(t, ε)) = Φ1(t, ε), βt,ε(γ(t, ε)) = Φ2(t, ε),

one has: (dβt,ε
dt
− dαt,ε

dε

)
(γ(t, ε)) = −[αt,ε, βt,ε]π(γ(t, ε)).

The Poisson homotopy groupoid is

Π(M,π) =
cotangent paths

cotangent path-homotopy

where multiplication is given by concatenation of appropriate reparametriza-

tions, as in Lemma 2.3.4, to keep the concatenated path smooth. Theorem

14.5 from [8] says that if the cotangent algebroid (T ∗M, [·, ·]π, π#) is inte-

grable, then Π(M,π) admits a smooth structure and a symplectic form with

respect to which Π(M,π) is a symplectic groupoid integrating (M,π).

2.4 Poisson Homotopy Groupoid of the

Heisenberg-Poisson Manifold

We describe now the Poisson homotopy groupoid of the Heisenberg-Poisson

manifold. We start by looking at its Lie algebroid, and then investigate the

cotangent paths over the singular and regular parts HS.

2.4.1 Cotangent Algebroid of HS

Let (S, ωS) be a symplectic manifold and let πS be the corresponding Poisson

structure. Denote by HS the Heisenberg-Poisson structure on S × R. We

have T ∗HS = T ∗S × T ∗R. The anchor and Lie bracket of the cotangent
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algebroid are given by (for convenience, write α + fdy as (α, f)):

ρ(α, f) = yπ#
S (α),

[(α, f), (β, g)] = (y[α, β]πS , yπ
#
S (α)g − yπ#

S (β)f − πS(α, β)).

If we identify T ∗S with TS using π#
S , the cotangent algebroid becomes

T ∗HS ' TS × T ∗R with structure maps

ρ(X, f) = yX,

[(X, f), (Y, g)] = (y[X, Y ], yXg − yY f + ωS(X, Y )).

2.4.2 Singular Part

We look at cotangent paths over the symplectic leaves of the form {(x, 0)}.
These are pairs (a0, f0), where a0 : [0, 1] → T ∗xS and f0 : [0, 1] → R. Two

such paths (a0, f0), (a1, f1) are cotangent path-homotopic when a0, a1 are

cotangent path-homotopic with respect to the zero Poisson structure on S

and there is some cotangent path-homotopy Φ = atdt+aεdε connecting them

such that ∫ 1

0

f0 −
∫ 1

0

f1 =

∫ 1

0

∫ 1

0

πS(at, aε)dtdε.

Notice that:

• Every cotangent path is homotopic to a constant path (A0, F0), where

A0 ∈ T ∗xS and F ∈ R.

• Two constant paths (A0, F0), (A1, F1) are cotangent path-homotopic if

and only if A0 = A1 and for some cotangent homotopy Φ = atdt+ aεdε

from A0 to A1, we have

F0 − F1 =

∫ 1

0

∫ 1

0

πS(at, aε)dtdε.

We claim that this equivalence relation on constant paths is actually trivial.

To see this, let Φ = atdt+aεdε be a cotangent homotopy from A0 to A1 = A0

for which F0 − F1 =
∫ 1

0

∫ 1

0
π(at, aε)dtdε. If we let v0 = π#

S (A0), vt = π#
S (at)
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and vε = π#
S (aε), we have

F0 − F1 = −
∫ 1

0

∫ 1

0

ωS(vt, vε)dtdε.

Since π vanishes at (x, 0), using the fact that at and aε are the components of

a cotangent path-homotopy, we have that ∂vε
∂t

= ∂vt
∂ε

. So there exists a smooth

function F (t, ε) ∈ TxS such that vt = ∂F
∂t

and vε = ∂F
∂ε

. Since ∂F
∂ε

(0, ε) = 0,

we have F (0, 0) = F (0, 1). Since ∂F
∂t

(t, 0) = ∂F
∂t

(t, 1) = v0, we also have

F (t, 0) = F (t, 1). Let F 0(t, ε) := tv0. Then we find∫ 1

0

∫ 1

0

vεdεdt =

∫ 1

0

F (t, 1)− F (t, 0)dt = 0,

which gives∫ 1

0

∫ 1

0

(ωS)x(vt, vε)dtdε =

∫ 1

0

∫ 1

0

(ωS)x(vt − v0, vε)dtdε

=

∫ 1

0

∫ 1

0

(ωS)x

(∂(F − F 0)

∂t
,
∂(F − F 0)

∂ε

)
dtdε

=

∫
I2

(F − F 0)∗(ωS)x =

∫
I2

d(F − F 0)∗α

=

∫
∂I2

(F − F 0)∗α = 0,

where α is any 1-form on the vector space TxS such that (ωS)x = dα, and

the last equality follows since (F −F 0)∗α|∂I2 = 0. We conclude that F0 = F1,

as claimed.

In conclusion, the arrows in the Poisson homotopy groupoid over the sin-

gular part can be identified with the points in T ∗S×R. They form a bundle

of abelian groups over S, i.e., the structure maps are given by

s(A0, F0) = (x, 0) = t(A0, F0, )

(A0, F0) + (A1, F1) = (A0 + A1, F0 + F1 −
1

2
πS(A0, A1)).

Identifying T ∗S with TS via π#
S , we obtain an identification of these arrows
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with TS × R, with the structure maps given by

s(v0, F0) = (x, 0) = t(v0, F0),

(v0, F0) + (v1, F1) = (v0 + v1, F0 + F1 +
1

2
ωS(v0, v1)).

2.4.3 Regular Part

We now consider the arrows over the regular part. The cotangent paths over

a symplectic leaf S×{y}, for y 6= 0, are pairs (γ, f) where γ : [0, 1]→ S×{y}
and f : [0, 1]→ R. Two such paths (γ0, f0) and (γ1, f1) are cotangent path-

homotopic if and only if there is a homotopy γ from γ0 to γ1 such that∫ 1

0

f0 −
∫ 1

0

f1 = − 1

y2

∫ 1

0

∫ 1

0

ωS

(dγ

dt
,
dγ

dε

)
dtdε.

We now notice that:

• Every pair is cotangent path-homotopic to a pair of the form (γ0, F0),

where F0 ∈ R.

• Two such pairs (γ0, F0) and (γ1, F1) are cotangent path-homotopic if

there is a homotopy γ from γ0 to γ1 such that

F0 − F1 = − 1

y2

∫ 1

0

∫ 1

0

ωS

(dγ

dt
,
dγ

dε

)
dtdε.

2.4.4 The case of the 2-sphere

When S = S2 with its usual area form ωS, we can represent a path connecting

non-antipodal points by the shortest geodesic. We conclude that the regular

part of the Poisson homotopy groupoid of HS2 has an open neighborhood

around the identities consisting of the points in S × S × {y} × R/4π
y2
Z

{
(x, x′, y, F0) = ((x, y), (x′, y), F0) : x, x′ ∈ S, x 6= −x′, F0 ∈ R/

4π

y2
Z
}
.
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The structure maps are given by

s(x, x′, y, F0) = (x′, y), t(x, x′, y, F0) = (x, y),

(x, x′, y, F0) + (x′, x′′, y, F1) = (x, x′′, y, F0 + F1 +
1

y2
A(xx′x′′)).

where the multiplication is defined only when x 6= x′′.

2.4.5 Exponential Map

We now describe the exponential map of HS2. This will be useful later.

To start, let ∇ be the Levi-Civita connection on S2 for the round metric.

We extend it to a connection ∇′ on S2 × R by setting it to 0 on the R
component. Then ∇′ induces a connection on T ∗(S2 × R) given by

∇∗Xα(Y ) = X(α(Y ))− α(∇′XY ),

for X, Y ∈ X(S2 × R) and α, β ∈ Ω1(S2 × R). Finally, this connection

determines a T ∗(S2 × R)-connection on T ∗(S2 × R)

∇̃αβ = ∇∗
π#

S2×R
(α)
β.

Let F ∈ R and y0 6= 0. For simplicity, we also denote by F the class

[F ]R/ 1
y2

4πZ. An element (x, x′, y0, F ) in the cotangent groupoid corresponds

to a class of cotangent paths represented by( 1

y0

ω[(γ̇), F ((dy)y0)
)
,

where γ : [0, 1]→ S2 is the geodesic in S2 such that γ(0) = x and γ(1) = x′.

Lemma 2.4.1. If γ : [0, 1] → S2 is the geodesic such that γ(0) = x and

γ(1) = x′, then the path
(

1
y0
ω[(γ̇), F (dy)y0

)
is a geodesic with respect to ∇̃.

Proof. Let X be a time-dependent vector field on S2 such that X(t, γ(t)) =

γ̇(t). Since γ is a geodesic, we have (∇XX+ dX
dt

)(t, γ(t)) = 0. Let α(t, x, y) =

( 1
y0
ω[(X(t, x)), F (dy)y). We have that α is a time-dependent 1-form on S2×R
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extending ( 1
y0
ω[(γ̇), F (dy)y0):

α(t, γ(t), y0) = (
1

y0

ω[(γ̇), F (dy)y0).

Now, notice that:

∇̃αα = ∇∗X(
1

y0

ω[(X), Fdy) =
1

y0

∇∗Xω[(X),

where the last 1-form is zero on the R component. On the other hand, if Y

is a vector field on S2, we find

1

y0

∇∗Xω[(X)(Y ) =
1

y0

(X(ω((X, Y ))− ω(X,∇′XY )))

=
1

y0

(X(ω((X, Y ))− ω(X,∇XY )))

= − 1

y0

ω(
dX

dt
, Y ),

where for the last equality we have used that ∇Xω = 0 and ∇XX + dX
dt

= 0,

so that

0 = ∇Xω(X, Y ) = X(ω(X, Y ))− ω(∇XX, Y )− ω(X,∇XY )

= X(ω(X, Y )) + ω(
dX

dt
, Y )− ω(X,∇XY ).

It follows that(
∇̃αα +

dα

dt

)
(Y ) =

1

y0

∇∗Xω[(X)(Y ) +
dα

dt
(Y )

= − 1

y0

ω(
dX

dt
, Y ) +

dα

dt
(Y )

= − d

dt
(

1

y0

ωb(X))(Y ) +
dα

dt
(Y )

= −dα

dt
(Y ) +

dα

dt
(Y ) = 0

On the other hand, since πS2×R(x, 0) = 0, for any vx ∈ TxS2 and F ∈ R,

the constant path (ω[(vx), F (dy)y=0) is a geodesic with respect to ∇̃. This

and the Lemma imply the following, which we will need later.
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Proposition 2.4.2. Let G be the cotangent groupoid, let γ : [0, 1] → S2 be

the geodesic such that γ(0) = x and γ(1) = x′, and let exp∇̃ : T ∗(S2×R)→ G
be the exponential map with respect to ∇̃. We have:

(i) For y0 6= 0: exp∇̃( 1
y0
ω[(γ̇(0)), F (dy)y0) = [( 1

y0
ω[(γ̇), F (dy)y0)] = (x, x′, y0, F );

(ii) For y0 = 0: exp∇̃(ω[(vx), F (dy)y=0) = [(ω[(vx), F (dy)y=0)] = (vx, F ).

In particular:

(i) If y0 6= 0: exp∇̃(α, F (dy)y0) = (x, exp∇(v), y0, F ), where v = y0π
#
S (α).

(ii) If y0 = 0: exp∇̃(α, F (dy)y=0) = (vx, F ), where v = π#
S (α).

2.5 Connes’ Groupoid

In the next sections we will construct a local symplectic groupoid integrat-

ing the Heisenberg-Poisson manifold, using explosion. Our presentation is

inspired by the construction in [12] of a global groupoid associated with a

Heisenberg-Poisson manifold, which in general is not smooth.

2.5.1 Explosions

Let X be a manifold and let Y ⊂ X be a submanifold. As a set, the

explosion of X along Y is

E(X, Y ) := X × (R \ {0})
⋃

N(X, Y ),

where N(X, Y ) = TYX/TY is the normal bundle of Y in X. One should

think of this construction as replacing X × {0} ⊂ X × R by N(X, Y ), and

this can be made a smooth manifold as follows. The smooth structure on the

piece X×R\{0} is the usual product smooth structure. To construct charts

around points in N(X, Y ), choose a chart Rn × Rm → X, (y, z) 7→ Φ(y, z),

with (y, 0) 7→ Φ(y, 0) a chart for Y . The explosion chart

E(Φ) : Rn × Rm × R→ E(X, Y )
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is then given by

ε 6= 0 : E(Φ)(y, z′, ε) = (Φ(y, εz′), ε),

ε = 0 : E(Φ)(y, z′, 0) = dΦ((0, z)(y,0)),

where (0, z)(y,0) is viewed as a tangent vector at (y, 0) and we take its image

in the normal bundle.

The explosion along a submanifold is also called the deformation to the

normal cone. We refer to [9] for more details.

2.5.2 Explosion Along Identity

Let G be a groupoid over M , the explosion E(G,M) has a groupoid structure

over M × R given as follows.

• On G× (R \ {0}), the structure maps are:

s̃(g, y) = (s(g), y), t̃(g, y) = (t(g), y), (g0, y)·(g1, y) = (g0·g1, y).

• On N(G,M), the structure maps are:

s̃(v1x) = (x, 0) = t̃(v1x), v1x · w1x = v1x + w1x .

2.5.3 The Connes Groupoid

When G = S×S is the pair groupoid, the groupoid structure on E(S×S, S)

is known as the Connes groupoid. Its algebroid has underlying vector

bundle isomorphic to TS × R→ S × R via the identification:

• y ∈ R \ {0}: (vx, y) 7→ (0x, yvx, 0y);

• y = 0: (vx, 0) 7→ [(0x, vx)];

where we identify T0xNx(S × S, S) ' Nx(S × S, S). The anchor is given by

ρ : TS × R→ TS × TR, ρ(vx, y) = (yvx, 0y).
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For the Lie bracket, given a y-dependent vector field X = X(x, y) on S, we

consider the section of the algebroid given by

X̃(x, y) = (X(x, y), y) ∈ TS × R,

and we set:

[X̃, Ỹ ](x, y) := (y[X, Y ], y).

2.5.4 Central Extension of the Connes Algebroid

The 2-form ωS induces an algebroid cocycle on TS × R. The corresponding

central extension is the Lie algebroid with supporting vector bundle

(TS × R)× R→ S × R, (vx, y, F ) 7→ (x, y),

and structure maps are given by

ρ : (TS × R)× R→ TS × TR, ρ(vx, y, F ) = (yvx, 0y),

[(X̃, f), (Ỹ , g)](x, y) = ([X̃, Ỹ ](x, y), yX(g)− yY (f) + (ωS)x(X, Y )).

Using the vector bundle isomorphism

(TS × R)× R ' TS × T ∗R, (vx, y, F ) 7→ (vx, F (dy)y),

we see that this central extension of the Connes algebroid is isomorphic to

the cotangent algebroid of the Heisenberg-Poisson manifold HS of Section

2.4.1.

2.5.5 Local Groupoid Structure on E(S2 × S2,S2)× R

From now on we will set S = S2. We extend the Conn’s groupoid structure

on E(S2 × S2,S2) to a local groupoid structure on E(S2 × S2,S2) × R over

the same base S2 × R = HS2:

• On S2 × S2 × R \ {0} × R, we let

s(x, x′, y, F ) = (x′, y′), t(x, x′, y, F ) = (x, y)
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and we define multiplication of (x, x′, y, F0) and (x′, x′′, y, F1) only when

x 6= −x′′ by:

(x, x′, y, F0) · (x′, x′′, y, F1) = (x, x′′, y, F0 + F1 +
1

y2
A(xx′x′′)).

• On TS2 × R,

s(vx, F ) = (x, 0) = t(vx, F ),

(vx, F0) · (wx, F1) = (vx + wx, F0 + F1 +
1

2
ωS2(vx, wx)).

2.6 Smoothness and Algebroid of the Groupoid

E(S2 × S2,S2)× R

In this section we set ω = ωS2 and π = πS2 , and we denote the Heisenberg-

Poisson structure by πS2×R. We will show that the groupoid E(S2×S2,S2)×R
is smooth and that is algebroid is isomorphic to the cotangent groupoid of

HS2. For that we will make use of the following auxiliary result:

Lemma 2.6.1. Let X and Y be vector fields on S2. Let x ∈ S2. Let γ be the

integral curve of X starting at x and let ϕY (t, x) = ϕtY (x) be the flow of Y .

Then

lim
y→0

1

y2
A(x, γ(y), ϕY (y, γ(y))) =

1

2
ω(X(x), Y (x))

The proof of this lemma is deferred for later.

2.6.1 Smoothness of E(S2 × S2,S2)× R

Proposition 2.6.2. The groupoid E(S2 × S2,S2)× R is smooth.

Proof. To show that the groupoid structure defined above is smooth, we need

to write down the structure maps in a chart for E(S2×S2, S2)×R. We start

by taking an explosion chart for E(S2 × S2,S2).

Let (θ, φ) be a smooth chart on S2. Denote by (θ, φ, θ′, φ′) the induced
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chart on S2 × S2. Making the change of coordinates

θ′ = θ − θ′,

φ′ = φ− φ′,

then (θ, φ, θ′, φ′) is a chart adapted to the submanifold S2 = ∆S2×S2 ⊆ S2×S2.

The induced explosion chart on E(S2 × S2,S2) is given by

(θ, φ, θ, φ, y) 7→ (θ, φ, θ − yθ, φ− yφ, y) ∈ S2 × S2 × R \ {0}, if y 6= 0,

(θ, φ, θ, φ, 0) 7→ −θ ∂

∂θ

∣∣∣∣
(θ,φ)

− φ ∂

∂φ

∣∣∣∣
(θ,φ)

∈ TS2 ' N(S2 × S2,S2), if y = 0.

On the chart (θ, φ, θ, φ, F ) for E(S2× S2,S2)×R, where F denotes the coor-

dinate on the R factor, the structure maps are given by

s(θ, φ, θ, φ, y, F ) = (θ − yθ, φ− yφ, y),

t(θ, φ, θ, φ, y, F ) = (θ, φ, y),

u(θ, φ, y) = (θ, φ, 0, 0, y, 0),

i(θ, φ, θ, φ, y, F ) = (θ − yθ, φ− yφ,−θ,−φ, y,−F ).

All these maps are smooth. On the other hand, for the multiplication we

find:

• y 6= 0, θ − yθ = θ′, φ− yφ = φ′:

(θ, φ, θ, φ, y, F0)·(θ′, φ′, θ′, φ′, y, F1) = (θ, φ, θ+θ
′
, φ+φ

′
, y, F0+F1+L(θ, φ, θ, φ, y),

where:

L(θ, φ, θ, φ, y) =
1

y2
A((θ, φ), (θ−yθ, φ−yφ), (θ−yθ−yθ′, φ−yφ−yφ′))).

• y = 0, θ = θ′, φ = φ′:

(θ, φ, θ, φ, 0, F0)·(θ′, φ′, θ′, φ′, 0, F1) = (θ, φ, θ+θ
′
, φ+φ

′
, 0, F0+F1+L0(θ, φ, θ, φ))
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where:

L0(θ, φ, θ, φ) =
1

2
ω(θ,φ)(−θ

∂

∂θ
− φ ∂

∂φ
,−θ′ ∂

∂θ
− φ′ ∂

∂φ
)).

Applying Lemma 2.6.1 with

X = −θ ∂
∂θ
− φ ∂

∂φ
, Y = −θ′ ∂

∂θ
− φ′ ∂

∂φ
,

we see that:

lim
y→0

L(θ, φ, θ, φ, y) = L0(θ, φ, θ, φ),

so multiplication is smooth.

2.6.2 Lie Algebroid of E(S2 × S2,S2)× R

We will now show that:

Proposition 2.6.3. The Lie algebroid of E(S2 × S2,S2) × R is isomorphic

to the cotangent algebroid of S2 × R

Proof. For (x, y) ∈ S2 × R where y 6= 0, the corresponding identity element

is u(x, y) = (x, x, y, 0) ∈ E(S2×S2,S2)×R. The target fiber and its tangent

space at u(x, y) are given by

t−1(x, y) = {(x, x′, y, F ) : x′ ∈ S2, F ∈ R},

Tu(x,y)t
−1(x, y) =

{
(0x, vx, 0y, f

∂
∂F

∣∣
F=0

) : vx ∈ TxS2, f ∈ R
}
.

We have the identification

TxS2 × {y} × R→ Tu(x,y)t
−1(x, y),

(vx, y, f) 7→ (0x, yvx, 0y, f
∂
∂F

∣∣
F=0

).

On the other hand, for (x, 0) ∈ S2 × R, the identity element is u(x, 0) =

(0x, 0) ∈ TS2 × R ' N(S2 × S2,S2) × R ⊆ E(S2 × S2, S2) × R. The target

fiber and the tangent space at u(x, 0) are

t−1(x, 0) = {(vx, F ) : vx ∈ TxS2, F ∈ R},

Tu(x,0)t
−1(x, 0) = TxS2 × R,
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where we have identified T0xTxS2 ' TxS2 and T0R ' R. To be precise, we

have the isomorphism

TxS2 × R→ Tu(x,0)t
−1(x, 0), (vx, f) 7→

(
d
dt
tvx, f

∂
∂F

∣∣
F=0

)
.

We further identify TxS2 × {0} × R ' TxS2 × R, so have an isomorphism of

vector bundles:

TS2 × R× R ' LieAlg(E(S2 × S2,S2)× R). (2.1)

We need to find the anchor and bracket of the algebroid under this identifi-

cation.

• Anchor:

ρ(vx, y, f) = ds(0x, yvx, 0y, f
∂
∂F

∣∣
F=0

) = (yvx, 0y),

ρ(vx, 0, f) = ds( d
dt
tvx, f

∂
∂F

∣∣
F=0

) = (0x, 0y=0).

This agrees with the anchor for the cotangent algebroid.

• Bracket: Observe that sections α = (X, f) of the form:

S2 × R→ TS2 × R× R,

(x, y) 7→ (X(x), y, f(x, y)),

where X ∈ X(S2) and f ∈ C∞(S2 × R) generate the space of all sections of

this vector bundle, as a C∞(S2 × R)-module. Hence, since we have already

checked that the anchors are preserved by (2.1), we only need to show that

this isomorphism preserves Lie brackets for this type of sections.

For such a section α = (X, f), we find the corresponding left invariant

vector field α̃ on the groupoid restricted to the open and dense subset S2 ×
S2 × (R \ {0})× R. Along the identity section we have:

α̃(x, x, y, 0) = (0x, yX(x), 0y, f(x, y) ∂
∂F

∣∣
F=0

).

If γy and g(t) are curves in S2 and R, respectively, such that γ̇y(0) = yX(x)
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and ġ(0) = f(x, y)( ∂
∂F

)F=0, then at (x′, x, y, F ) we have for y 6= 0:

α̃(x′, x, y, F ) = d
dt

∣∣
t=0

(x′, x, y, F )(x, γy(t), y, g(t))

= d
dt

∣∣
t=0

(
x′, γy(t), y, F + g(t) + 1

y2
A(x′, x, γy(t))

)
=
(
0x′ , yX(x), 0y, (f(x, y) + d

dt

∣∣
t=0

1
y2
A(x′, x, γy(t)))

∂
∂F

)
=
(
0x′ , yX(x), 0y, (f(x, y) +BX(x′, x, y, F )) ∂

∂F

)
,

where we have introduce the notation BX for the function

BX : S2 × S2 × (R \ {0})× R→ R

(x′, x, y, F ) 7→ d
dt

∣∣
t=0

1
y2
A(x′, x, γy(t))).

Let α = (X, f), β = (Y, g) be two sections, corresponding to vector fields

X, Y ∈ X(S2) and functions f, g ∈ C∞(S2×R). The associated left invariant

vector fields, when restricted to S2 × S2 × (R \ {0})× R, are then

α̃(x′, x, y, F ) = (0x′ , yX(x), 0y, (f(x, y) +BX(x′, x, y, F )) ∂
∂F

),

β̃(x′, x, y, F ) = (0x′ , yY (x), 0y, (g(x, y) +BY (x′, x, y, F )) ∂
∂F

).

The Lie bracket of these two sections is given by

[α, β](x, y) = [α̃, β̃](x, x, y, 0)

= (0x, y
2[X, Y ](x), 0y, (yX(g +BY )(x, y)− yY (f +BX)(x, y)) ∂

∂F

∣∣
F=0

),

a section of the algebroid. Under the identification with TS2 × R × R, we

conclude that:

[α, β] = (y[X, Y ], y, yX(g)− yY (f) + yX(BY )− yY (BX)).

Therefore, to show that the bracket is the same as the bracket for the cotan-

gent algebroid, it remains to prove that:

yX(BY ) =
1

2
ω(X, Y ).

Notice that, if γ is the integral curve ofX through x and ϕyY (t, x) = ϕtyY (x)
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is the flow of the vector field yY , then we have

yX(BY )(x, y) = y
d

dt

∣∣∣
t=0

d

ds

∣∣∣
s=0

1
y2
A(x, γ(t), ϕyY (s, γ(t)))

Replacing yY with Y , we see that it is enough to show

d

dt

∣∣∣
t=0

d

ds

∣∣∣
s=0

A(x, γ(t), ϕY (s, γ(t))) =
1

2
ω(X(x), Y (x)). (2.2)

We claim that this follows from Lemma 2.6.1. Indeed, if we use the notation

a(s, t) := A(x, γ(t), γYy (s, γ(t))), we have a(0, t) = 0 = a(s, 0), so that at

(0, 0) the following partial derivatives vanish: as, at, ass, att = 0. This implies

that
d

dt

∣∣∣
t=0

d

ds

∣∣∣
s=0

a(s, t) = lim
y→0

1

y2
a(y, y),

so (2.2) amounts to:

lim
y→0

1

y2
A(x, γ(y), ϕY (y, γ(y))) =

1

2
ω(X(x), Y (x)),

which is precisely the statement of Lemma 2.6.1.

2.7 Proof of an auxiliary lemma

In this section we prove Lemma 2.6.1. For simplicity, we denote both F ∈ R
and its class [F ]R/ 1

y2
4πZ by the same symbol. Also, we let X, Y be vector

fields on S2 and denote by γ the integral curve of X starting at x and by

ϕY (t, x) = ϕtY (x) the flow of Y.

First, we show that:

Lemma 2.7.1. If γy : [0, 1] → S2 is the geodesic with γy(0) = γ(y) and

γy(1) = ϕY (y, γ(y)) then

lim
y→0

1

y
γ̇y(0) =

∂

∂s

∣∣∣∣
s=0

ϕY (s, x).

Proof. Using the standard immersion S2 ⊂ R3, the geodesic starting at x

with tangent vector v is

γx,v(t) = cos(|v|t)x+ sin(|v|t) v
|v| .
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The definition for γy implies that γy = γγ(y),vy where vy ∈ Tγ(y)S2 is such that

v0 = 0 and

ϕY (y, γ(y)) = γγ(y),vy(1) = cos(|vy|)γ(y) + sin(|vy|)
vy
|vy|

.

Differentiating both sides, we have for the left-hand side:

d

dy

∣∣∣∣
y=0

ϕY (y, γ(y)) =
∂

∂s

∣∣∣∣
s=0

ϕY (s, x) + γ̇(0),

while for the right-hand side:

d

dy

∣∣∣∣
y=0

(
cos(|vy|)γ(y) + sin(|vy|)

vy
|vy|
)

=

= γ̇(0) + lim
y→0

(
cos(|vy|)−

sin(|vy|)
|vy|

)vy|vy|′
|vy|

+
sin(|vy|)
|vy|

v′y

)
= γ̇(0) + lim

y→0
v′y

= γ̇(0) +
d

dy

∣∣∣∣
y=0

vy,

where the second equality holds since vy |vy |′
|vy | is bounded.

This shows that ∂
∂s

∣∣
s=0

ϕY (s, x) = d
dy

∣∣
y=0

vy, so the lemma holds.

Corollary 2.7.2. With the same notation as in the Lemma:

lim
y→0

(x, γ(y), y, F ) = (X(x), F ), (a)

lim
y→0

(γ(y), ϕY (y, γ(y)), y, F ) = (Y (x), F ), (b)

where the left sides are curves in the Poisson homotopy groupoid.

Proof. When X = 0, (b) becomes (a), so we only need to prove (b).

By Proposition 2.4.2, (b) amounts to

lim
y→0

(
1

y
ω[(γ̇y(0)), F (dy)y) = (Y (x), F (dy)y=0),

or equivalently

lim
y→0

1

y
γ̇y(0) =

∂

∂s

∣∣∣
s=0

ϕY (s, x)
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where γy is the geodesic in S2 such that γy(0) = γ(y) and γy(1) = ϕY (y, γ(y)).

So the corollary follows from the previous lemma.

Finally, we can prove Lemma 2.6.1. Recall that the multiplication of the

Poisson homotopy groupoid discussed in Section 2.3:

• Regular Part: In S2 × S2 × (R \ {0}) × (R/ 1
y2

4πZ), the multiplication

is given by

(x, x′, y, F0) · (x′, x′′, y, F1) = (x, x′′, y, F0 + F1 + 1
y2
A(x, x′, x′′)).

• Singular Part: In TS2 × R, the multiplication is given by

(vx, F0) · (v′x, F1) = (vx + v′x, F0 + F1 + 1
2
ω(vx, v

′
x)).

Then, using Corollary 2.7.2, we have:

lim
y→0

(x, ϕY (y, γ(y)), y, 1
y2
A(x, γy, ϕY (y, γ(y)))) =

= lim
y→0

(x, γ(y), y, 0) · (γ(y), ϕY (y, γ(y)), y, 0)

= lim
y→0

(x, γ(y), y, 0) · lim
y→0

(γ(y), ϕY (y, γ(y)), y, 0)

= (X(x), 0) · (Y (x), 0)

= (X(x) + Y (x), 1
2
ω(X(x), Y (x))).

Hence, we have

lim
y→0

(x, ϕY (y, γ(y)), y, 1
y2
A(x, γy, ϕY (y, γ(y)))) = (X(x)+Y (x), 1

2
ω(X(x), Y (x))).

Writing L = limy→0
1
y2
A(x, γ(y), ϕY (y, γ(y))), using Proposition 2.4.2 and an

argument as in the proof of Lemma 2.7.1, we find:

(X(x) + Y (x),
1

2
ω(X(x), Y (x))) = lim

y→0
(x, ϕY (y, γ(y)), y,+ 1

y2
A(x, γy, ϕY (y, γ(y))))

= lim
y→0

exp∇(
1

y
ω[(γ̇y(0)) + 1

y2
A(x, γy, ϕY (y, γ(y)))(dy)y)

= exp∇(ω[(X(x) + Y (x)) + L(dy)y=0)

= (X(x) + Y (x), L)
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where γy : [0, 1]→ S2 is the geodesic with γ(0) = x and γ(1) = ϕY (y, γ(y)).

We conclude that:

lim
y→0

1

y2
A(x, γy, ϕY (y, γ(y))) = L =

1

2
ω(X(x), Y (x)),

hence Lemma 2.6.1 holds.

2.8 Epilogue

The previous results and [10] allows us to deduce:

Corollary 2.8.1. The Heisenberg-Poisson manifold HS2 admits a local sym-

plectic groupoid integrating it which is not 6-associative.

Indeed, the results in Section 2.6 show that E(S2 × S2,S2) × R is a local

Lie groupoid with Lie algebroid isomorphic to the cotangent algebroid of the

Heisenberg-Poission manifold HS2. Since it has 1-connected target fibers,

it admits a multiplicative symplectic form for which it is a local symplectic

groupoid integrating HS2.

This local groupoid contains a copy of the local Lie groupoidG′′ of Example

3.5 in [10], by considering the embedding:

G′′ → E(S2 × S2,S2)× R, (x0, x1, F ) 7→ (x0, x1, 1, F ),

which is a local groupoid homomorphism over

S2 → S2 × R, x 7→ (x, 1).

It is shown in Example 3.5 of [10] that G′′ is not 6-associative. Hence, it

follows that the local symplectic groupoid E(S2 × S2,S2) × R is also not

6-associative.
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CHAPTER 3

GENERATING FUNCTIONS AND THE
SGA EQUATION

3.1 Main Question

Let (T ∗M,ωc) be the canonical integration of the zero Poisson structure on

M . This means that ωc is the canonical symplectic structure, and the graph

of multiplication is given by

Graph(m0) = {(αx, βx, αx + βx) : αx, βx ∈ T ∗xM}.

The graph Graph(m0) is a Lagrangian submanifold of T ∗M × T ∗M × T ∗M ,

where T ∗M denotes the symplectic manifold T ∗M equipped with the sym-

plectic form −ωc. Since Graph(m0) ' T ∗M ×M T ∗M via

Graph(m0)→ T ∗M ×M T ∗M, (αx, βx, αx + βx) 7→ (αx, βx),

we can apply the Lagrangian Neighborhood Theorem to obtain a symplecto-

morphism φ from an open neighborhood of Graph(m0) ⊆ T ∗M×T ∗M×T ∗M
to an open neighborhood of the zero section in (T ∗(T ∗M×M T ∗M), ωc), such

that for all αx, βx ∈ T ∗xM

φ(αx, βx, αx + βx) = 0(αx,βx).

If S : T ∗M ×M T ∗M → R is any function, then we obtain a Lagrangian

submanifold:

φ−1(Graph(dS)) ⊂ T ∗M × T ∗M × T ∗M.

We would like to find under what assumptions on S does φ−1(Graph(dS))

arise as the graph of multiplication of a local symplectic groupoid structure

on T ∗M . More precisely, we have:
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Question 3.1.1. When is there a local symplectic groupoid structure on an

open neighborhood of 0T ∗M in T ∗M equipped with the canonical symplectic

form and such that:

(i) x 7→ 0x is the identity section;

(ii) α 7→ −α is the inversion map;

(iii) Graph(m) ⊆ φ−1(Graph(dS)).

Definition 3.1.2 ([4]). If G is a local symplectic groupoid satisfying the above

conditions, we call S a generating function for G with respect to φ.

In order to answer the question above, let us assume that there is a local

symplectic groupoid O ⊆ T ∗M satisfying conditions (i)-(iii) and see what

this implies for S. We denote the structure maps of O ⇒M by

s, t : O →M,

m : U → O,

i : V → V,

u : M → O.

Then we can make the following observations:

1. Since u(x) = 0x and (u(x),u(x),u(x)) ∈ Graph(m) for all x ∈ M , we

have

0(0x,0x) = φ(0x, 0x, 0x)

= dS(π ◦ φ(0x, 0x, 0x)) = dS(0x, 0x);

where π : T ∗(T ∗M ×M T ∗M)→ T ∗M ×M T ∗M is the projection.

2. Since x = s(u(x)) = s(0x) and (α,u(s(α)), α) ∈ Graph(m) ⊆ φ−1(Graph(dS)),

we see that x = s(α) is a solution of the equation:

φ(α, 0x, α) = dS(π ◦ φ(α, 0x, α)).

Similarly, y = t(α) is a solution of the equation:

φ(0y, α, α) = dS(π ◦ φ(0y, α, α)).

43



3. Since m(α,u(s(α))) = m(u(s(α)), α) = α, we have

(α, 0, α ∈ Graph(m) =⇒ α = α,

(0, α, α) ∈ Graph(m) =⇒ α = α.

If Graph(m) = φ−1(Graph(dS)), then

φ(α, 0, α) = dS(π ◦ φ(α, 0, α)) =⇒ α = α,

φ(0, α, α) = dS(π ◦ φ(0, α, α)) =⇒ α = α.

4. Since i(α) = −α and m(α, i(α)) = 0t(α), we have

φ(α,−α, 0t(α)) = dS(π ◦ φ(α,−α, 0t(α))).

5. Since t(i(α)) = s(α), we have

φ(0s(α),−α,−α) = dS(π ◦ φ(0s(α),−α,−α)).

6. For (α1, α2, α3) in the domain of associativity, if (α1, α2), (α2, α3) ∈ U
and

(m(α1, α2), α3), (α1,m(α2, α3)) ∈ U,

and α = m(α1, α2) and α̃ = m(α2, α3), there is α such that

φ(α1, α2, α) = dS(π ◦ φ(α1, α2, α)),

φ(α2, α3, α̃) = dS(π ◦ φ(α2, α3, α̃)),

φ(α1, α̃, α) = dS(π ◦ φ(α1, α̃, α)),

φ(α, α3, α) = dS(π ◦ φ(α, α3, α)).

The conditions above give restrictions on a generating function S. We will

see in this chapter that they are all it is needed to answer the question posed

above.
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3.2 Generating function for an abstract manifold

Theorem 3.2.1. Let φ : T ∗M × T ∗M × T ∗M → T ∗(T ∗M ×M T ∗M) be a

symplectomorphism around {(0x, 0x, 0x) : x ∈ M} such that φ(αx, βx, αx +

βx) = 0(αx,βx) for any αx, βx ∈ T ∗xM . Let S : T ∗M ×M T ∗M → R be a

function and assume that there is an open neighborhood O of 0T ∗M where the

following hold.

0. dS(0x, 0x) = 0(0x,0x).

1. (Source and Target Maps) The equations

φ(α, 0x, α) = dS(π ◦ φ(α, 0x, αx)),

φ(0x, α, α) = dS(π ◦ φ(0x, α, αx)).

have unique solutions for x on O. Moreover, there are surjective sub-

mersions s, t : O → R defined by

s(α) = x if (φ(α, 0x, α) = dS(π ◦ φ(α, 0x, α))),

t(α) = x if (φ(0x, α, α) = dS(π ◦ φ(0x, α, α))).

2. (Naturality)

(a) There is an open neighborhood D of 0T ∗M ×T ∗M in T ∗M ×T ∗M
on which for all (α, α) in D we have:

φ(α, 0, α) = dS(π ◦ φ(α, 0, α)) =⇒ α = α,

φ(0, α, α) = dS(π ◦ φ(0, α, α)) =⇒ α = α.

(b) We have for all α ∈ O:

φ(α,−α, 0t(α)) = dS(π ◦ φ(α,−α, 0t(α))).

3. (Associativity) There is an open neighborhood W = {(α1, α2, α3)} of

{(α, 0s(α), 0s(α)) : α ∈ O}∪{(0t(α), α, 0s(α)) : α ∈ O}∪{(0t(α), 0t(α), α) : α ∈ O}
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in Os ×t Os ×t O on which we have functions

α : W → T ∗M, α̃ : W → T ∗M, α : W → T ∗M,

such that

(a)

α(α0, 0s(α0), 0s(α0)) = α(0t(α0), α0, 0s(α0)) = α0,

α̃(0t(α0), 0t(α0), α0) = α̃(0t(α0), α0, 0s(α0)) = α0,

α(0t(α0), 0t(α0), α0) = α(0t(α0), α0, 0s(α0)) = (α0, 0s(α0), 0s(α0)) = α0.

(b) The following system of equations is satisfied:

φ(α1, α2, α) = dS(π ◦ φ(α1, α2, α)),

φ(α2, α3, α̃) = dS(π ◦ φ(α2, α3, α̃)),

φ(α1, α̃, α) = dS(π ◦ φ(α1, α̃, α)),

φ(α, α3, α) = dS(π ◦ φ(α, α3, α)).

4. (Multiplication)There is an open neighborhood Q ⊂ (T ∗M)3 around

{(α, 0s(α), α) : α ∈ O} ∪ {(0t(α), α, α) : α ∈ O}

on which φ−1(Graph(dS)) intersects each {α1} × {α2} × T ∗M at at

most one point.

5. There is an open neighborhood V ⊂ T ∗M of 0T ∗M on which we have

φ(0s(α),−α,−α) = dS(π ◦ φ(0s(α),−α,−α)).

Then there is a local symplectic groupoid structure on an open neighborhood

of 0T ∗M in T ∗M compatible with the canonical symplectic form such that

(i) x 7→ 0x is the identity section;

(ii) α 7→ −α is the inversion map;

(iii) Graph(m) ⊆ φ−1(Graph(dS)).
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Proof. We first introduce some notations. We set

I2 = {(α, 0s(α)) : α ∈ O} ∪ {(0t(α), α) : α ∈ O},

I3 = {(α, 0s(α), 0s(α)) : α ∈ O} ∪ {(0t(α),α, 0s(α)) : α ∈ O} ∪ {(0t(α), 0t(α), α) : α ∈ O}.

By assumption on W , there is an open neighborhood U ′ ⊂ Os×tO of I2 on

which we have (α1, α2, 0s(α2)) ∈ W and (0t(α1), α1, α2) ∈ W . It then follows

from assumption 3 that, if (α1, α2) ∈ U ′,

φ(α1, α2, α) = dS(π ◦ φ(α1, α2, α)), φ(α1, α2, α̃) = dS(π ◦ φ(α1, α2, α̃)),

where

α = α(α1, α2, 0s(α2)), α̃ = α̃(0t(α1), α1, α2).

If (α1, α2) = (α, 0s(α)), by the assumptions on α and α̃, we have

α = α(α, 0s(α), 0s(α)) = α = α̃(0t(α), α, 0s(α)) = α̃,

so that (α1, α2, α), (α1, α2, α̃) are contained in Q, as in assumption 4. Simi-

larly, the same equation holds for (α1, α2) = (0t(α), α). It follows that we can

restrict U ′ around I2 and have that, for all (α1, α2) ∈ U ′

(α1, α2, α), (α1, α2, α̃) ∈ Q

which implies that α = α̃.

This shows that we have a well-defined map

m′ : U ′ → O,

(α1, α2) 7→ α(α1,α2, 0t(α2)) = α̃(0t(α1), α1, α2).

Equivalently, we can define m′(α1, α2) ∈ O to be the unique point such that

1. φ(α1, α2,m
′(α1, α2)) = dS(π ◦ φ(α1, α2,m

′(α1, α2)));

2. (α1, α2,m
′(α1, α2)) ∈ Q.

If α ∈ V , we have s(α) = t(−α) by assumption 5. So let V ′ = V ∩ (−V )
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and define

i′ : V ′ → V ′,

α 7→ −α.

We now check the groupoid axioms.

1. s(0x) = x, t(0x) = x: This follows from the definition of s,t and that

φ(0x, 0x, 0x) = 0(0x,0x)

= dS(0x, 0x) = dS(π ◦ φ(0x, 0x, 0x)).

2. m′(α, 0s(α)) = α: For all α ∈ O, we have (α, 0s(α)) ∈ U ′ and (α, 0s(α), 0s(α)) ∈
W . By the definition of m′

m′(α, 0s(α)) = α(α, 0s(α), 0s(α)) = α.

3. m′(0t(α), α) = α: For all α ∈ O, we have (0t(α), α) ∈ U ′ and (0t(α), 0t(α), α) ∈
W . By the definition of m′

m′(0t(α), α) = α̃(0t(α), 0t(α), α) = α.

4. s(m′(α1, α2)) = s(α2): If (α1, α2) ∈ U ′, (α1, α2, 0s(α2)) ∈ W . Assump-

tion 3 says that

φ(α1, α2, α) = dS(π ◦ φ(α1, α2, α)),

φ(α2, 0s(α2), α̃) = dS(π ◦ φ(α2, 0s(α2), α̃)),

φ(α1, α̃, α) = dS(π ◦ φ(α1, α̃, α)),

φ(α, 0s(α2), α) = dS(π ◦ φ(α, 0s(α2), α)),

where

α = α(α1, α2, 0s(α2)) = m′(α1, α2), α̃ = α̃(α1, α2, 0s(α2)),

α = α(α1, α2, 0s(α2)).

For (α1, α2) = (α, 0s(α)), assumption 2(a) and the second equation

above imply that α̃ = 0s(α). For (α1, α2) = (0t(α), α), we have α̃ = α
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by assumption 3. This means that we can restrict U ′ around I2 so that

(α2, 0s(α2), α̃) ∈ Q. The second equation then implies that α̃ = α2 and

then the first and third equation imply that α = α = m′(α1, α2), where

we need to restrict U ′ further so that (α1, α2, α) ∈ Q. The 4th equation

and the definition of s then imply that s(m′(α1, α2)) = s(α) = s(α2).

5. t(m′(α1, α2)) = t(α1): this is entirely similar to the previous item.

6. m′(α, i′(α)) = 0t(α): By restricting V ′ around 0T ∗M so that V ′ ⊆ Ob,

then 2(b) implies that

φ(α,−α, 0t(α)) = dS(π ◦ φ(α,−α, 0t(α))).

We also restrict V ′ so that (α,−α, 0t(α)) ∈ Q. If (α,−α) ∈ U ′, we have

φ(α,−α,m′(α,−α)) = dS(π ◦ φ(α,−α,m′(α,−α)))

and (α,−α,m′(α,−α)) ∈ Q. Assumption 4 then gives m′(α,−α) =

0t(α).

7. m′(i(α), α) = 0s(α): This follows from (6) and (7) by reversing the sign

of α.

The restrictions on the sets U ′ and V ′ in the proof of the axioms are all

done so that we still have I2 ⊆ U ′ and 0T ∗M ⊆ V ′. We denote the final

restricted sets by U and V , respectively. We define

m : U → O, m = m′|U , and i : V → V , i = i′|V .

Restrict W to an open neighborhoodW of I3 in Os×tOs×tO for which we

have

(α1, α2, α), (α2, α3, α̃), (α, α3, α), (α1, α̃, α),

are all elements in Q. This is possible by assumptions 2(a) and 3. Let

(α1, α2, α3) ∈ W be such that (α1, α2), (α2, α3) are elements in U and

(m(α1, α2), α3), (α1,m(α2, α3)),
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are also elements in U . If

α = α(α1, α2, α3), α̃ = α̃(α1, α2, α3), α = α(α1, α2, α3),

assumptions 3 and 4 imply that

m(α1, α2) = α

m(α2, α3) = α̃

m(m(α1, α2), α3) = α

m(α1,m(α2, α3)) = α

In other words, multiplication m is associative on W . This concludes the

proof that

(O,M, (U ,m), (V , i),W)

is a local symplectic groupoid structure satisfying the required properties.

3.3 Generating function for M = Rn.

Now we will restrict attention to the special case where M = Rn and

φ = φ0 : T ∗Rn × T ∗Rn × T ∗Rn → T ∗(T ∗Rn ×Rn T
∗Rn),

((p1, x1), (p2, x2), (p, x)) 7→ ((p1, x1 − x), (p2, x2 − x), (x, p− (p1 + p2)),

where for the range, we use coordinates (p1, p2, x) in the base T ∗Rn×RnT
∗Rn,

and then the identification

T ∗(T ∗Rn ×Rn T
∗Rn) ' T ∗(R∗n × R∗n × Rn).

Given a function S : T ∗M ×T ∗M → R elements in φ−1(Graph(dS)) take the

form

((p1,∇1S(p1, p2, x) + x), (p2,∇2S(p1, p2, x) + x), (∇xS(p1, p2, x) + p1 + p2, x))

where∇1S(p1, p2, x) means the derivative of S with respect to the first coordi-

nate at the point (p1, p2, x), and similarly for∇2S(p1, p2, x) and∇xS(p1, p2, x).

Let W be the open set in assumption 3 of Theorem 3.2.1. For any point
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(α1, α2, α3) ∈ W , referring to the same assumption, we set

α = α(α1, α2, α3), α̃ = α̃(α1, α2, α3), α = α(α1, α2, α3).

Since M = Rn and T ∗M ' R∗n×Rn, we can write these elements in coordi-

nates:

αi = (pi, xi), α = (p, x), α̃ = (p̃, x̃), α = (p, x).

In these coordinates, the equations in items (a) and (b) in assumption

3 of Theorem 3.2.1, which were obtained by writing down the associativity

equation

m(α1,m(α2, α3)) = m(m(α1, α2), α3)

become

((p1, x1 − x),(p2, x2 − x), (x, p− (p1 + p2))) =

=((p1,∇1S(p1, p2, x)), (p2,∇2S(p1, p2, x)), (x,∇xS(p1, p2, x)))

((p2, x2 − x̃),(p3, x3 − x̃), (x̃, p̃− (p2 + p3))) =

=((p2,∇1S(p2, p3, x̃)), (p2,∇2S(p2, p3, x̃)), (x̃,∇xS(p2, p3, x̃)))

((p, x− x), (p3, x3 − x), (x, p− (p+ p3))) =

=((p,∇1S(p, p3, x)), (p3,∇2S(p, p3, x)), (x,∇xS(p, p3, x)))

((p1, x1 − x),(p̃, x̃− x), (x, p− (p1 + p̃))) =

=((p1,∇1S(p1, p̃, x)), (p̃,∇2S(p1, p̃, x)), (x,∇xS(p1, p̃, x)))

or equivalently

x1 − x = ∇1S(p1, p2, x), x2 − x = ∇2S(p1, p2, x), p− (p1 + p2) = ∇xS(p1, p2, x),

x2 − x̃ = ∇1S(p2, p3, x̃), x3 − x̃ = ∇2S(p2, p3, x̃), p̃− (p2 + p3) = ∇xS(p2, p3, x̃),

x− x = ∇1S(p, p3, x), x3 − x = ∇2S(p, p3, x), p− (p+ p3) = ∇xS(p, p3, x)

x1 − x = ∇1S(p1, p̃, x), x̃− x = ∇2S(p1, p̃, x), p− (p1 + p̃) = ∇xS(p1, p̃, x).
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Canceling the variables x1, x2, x3, p, we obtain

∇1S(p1, p2, x) + x = ∇1S(p1, p̃, x) + x,

∇2S(p1, p2, x) + x = ∇1S(p2, p3, x̃) + x̃, (3.1)

∇2S(p2, p3, x̃) + x̃ = ∇2S(p, p3, x) + x,

∇xS(p1, p2, x) + p1 + p2 = ∇xS(p, p3, x) + p2 + p3,

and

x = ∇1S(p, p3, x) + x,

p = ∇xS(p1, p2, x) + p1 + p2,

x̃ = ∇2S(p1, p̃, x) + x,

p̃ = ∇xS(p2, p3, x̃) + p2 + p3.

Let us set now:

∆S(p1, p2, p3, x) = S(p1, p2, x) + S(p, p3, x)− (S(p2, p3, x̃) + S(p1, p̃, x))

F (p1, p2, p3, x) = p(x− x)− p̃(x̃− x) + (p2 + p3)x̃− (p1 + p2)x

If we view p1, p2, p3, x as independent variables, we find

∂

∂p1

∆S = ∇1S(p1, p2, x) +∇xS(p1, p2, x)
∂x

∂p1

+∇1S(p, p3, x)
∂p

∂p1

+

− (∇xS(p2, p3, x̃)
x̃

∂p1

+∇1S(p1, p̃, x) +∇2S(p1, p̃, x))
∂p̃

∂p1

= x1 − x+ (p− (p1 + p2))
∂x

∂p1

− ((p̃− (p2 + p3))
∂x̃

∂p1

+ x1 − x+ (x̃− x)
∂p̃

∂p1

)

=
∂

∂p1

(p(x− x)− p̃(x̃− x) + (p2 + p3)x̃− (p1 + p2)x) =
∂F

∂p1

and similarly,

∂

∂p2

∆S =
∂F

∂p2

,
∂

∂p3

∆S =
∂F

∂p3

,
∂

∂x
∆S =

∂F

∂x
.

If one requires that S(0, 0, x) = 0 for all x ∈ M , we then have ∆S = F ,
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which can be rewritten as

S(p1, p2, x)+S(p, p3, x)− p(x− x) + (p1 + p2)x = (3.2)

=S(p2, p3, x̃) + S(p1, p̃, x)− p̃(x̃− x) + (p2 + p3)x̃

We have obtained the so-called Symplectic Groupoid Associativity or

SGA equation from [4].

Remark 3.3.1. In [4], the notion of generating functions for a symplectic

groupoid structure on T ∗Rn is with respect to the map

φ′0 : T ∗Rn × T ∗Rn × T ∗Rn → T ∗(T ∗Rn ×Rn T
∗Rn)

((p1, x1), (p2, x2), (p, x)) 7→ ((p1, x1), (p2, x2), (x, p))

For a given sympletic groupoid structure on T ∗Rn, it is easy to check that S

is a generating function with respect to φ0 if and only if S+S0 is a generating

function with respect φ′0, where S0(p1, p2, x) = (p1 +p2)x. Note that the latter

function is a generating function for the canonical groupoid structure with

respect to φ′0.

Having the SGA equation at hand, we can now answer Question 3.1.1 in

the case M = Rn. The proof is based on an argument given for formal

groupoids in [4].

Theorem 3.3.2. Assume that there is an open O ∈ T ∗Rn around the zero

section for which the following hold.

0. dS(0, 0, x) = 0(0,0,x) for all x ∈ Rn.

1. (Source and Target Maps) The maps s, t : O → Rn given by

s(p, x) = ∇2S(p, 0, x) + x, t(p, x) = ∇1S(0, p, x) + x

are surjective submersions.

2. (Naturality) For all (p, x) in O:

(a) S(p, 0, x) = 0, S(0, p, x) = 0,

(b) S(p,−p, x) = 0, S(−p, p, x) = 0.
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3. (SGA Equation) There is an open neighborhood W of

{(p, 0, 0, x) : (p, x) ∈ O}∪{(0, p, 0, x) : (p, x) ∈ O}∪{(0, 0, p, x) : (p, x) ∈ O}

on which the SGA equation holds. That is, there are functions

p, x, p̃, x̃ : W → T ∗Rn

such that, for (p, x) ∈ O

p(p, 0, 0, x) = p(0, p, 0, x) = p, p̃(0, p, 0, x) = p̃(0, 0, p, x) = p,

and we have for all (p1, p2, p3, x) ∈ W :

S(p1, p2, x)+S(p, p3, x) + (p1 + p2)x+ (p+ p3)x− px

=S(p2, p3, x̃) + S(p1, p̃, x) + (p2 + p3)x̃+ (p1 + p̃)x− p̃x̃,

p = ∇xS(p1,p2, x) + p1 + p2, x = ∇1S(p, p3, x) + x,

p̃ = ∇xS(p2,p3, x̃) + p2 + p3, x̃ = ∇2S(p1, p̃, x) + x,

4. (Multiplication) The map (R∗n)2 × Rn → T ∗Rn × T ∗Rn given by

(p1, p2, x) 7→ ((p1,∇1S1(p1, p2, x) + x), (p2,∇2S2(p1, p2, x) + x))

is an injective immersion on an open neighborhood of

{(p, 0, x) : (p, x) ∈ O} ∪ {(0, p, x) : (p, x) ∈ O}.

Then there is a local symplectic groupoid structure on O compatible with

the canonical symplectic form such that Graph(m) ⊆ φ−1(Graph(dS)). The

other structure maps are given by

s(p, x) = ∇2S(p, 0, x) + x, i(p, x) = (−p, x),

t(p, x) = ∇1S(0, p, x) + x, u(x) = (0, x).

Proof. We include assumption 0 for convenience as it is actually implied by

54



assumption 2(a). We start by setting up some notations. Let

I2 = {(p, 0, x) : (p, x) ∈ O} ∪ {(0, p, x) : (p, x) ∈ O},

I3 = {(p, 0, 0, x) : (p, x) ∈ O} ∪ {(0, p, 0, x) : (p, x) ∈ O}∪

∪ {(0, 0, p, x) : (p, x) ∈ O},

I2 = {(α, 0s(α)) : α ∈ O} ∪ {(0t(α), α) : α ∈ O},

I3 = {(α, 0s(α), 0s(α)) : α ∈ O} ∪ {(0t(α), α, 0s(α)) : α ∈ O}∪

∪ {(0t(α), 0t(α), α) : α ∈ O}.

For clarity, all subsets in the coordinate spaces (e.g. (R∗n)2 × Rn) will be

denoted by capital letters and domains of the groupoid structure maps (e.g.

domain of multiplication) will be denoted by curly letters. Also, we will refer

to items in the above assumptions by their indices.

Note first that, for each x ∈ Rn

s(u(x)) = ∇2S(0, 0, x) + x = x,

t(u(x)) = ∇1S(0, 0, x) + x = x,

by assumption 0 above.

Let

U1 = {(p1, p3, x) ∈ R∗n × R∗n × Rn : (p1, 0, p3, x) ∈ W}.

If (p1, p3, x) ∈ U1, then the SGA equation is satisfied for (p1, 0, p3, x). By our

assumption on W the set U1 contains I2. Consider the map

a : U1 → T ∗M,

(p1, p3, x) 7→ (p1, x),

where x = x(p1, 0, p3, x) is as in the SGA equation. When (p, x) ∈ O, we

have

p(p, 0, 0, x) = p, p(0, 0, p, x) = ∇xS(0, 0, x) = 0,

so that, by 2(a),

x(p, 0, 0, x) = ∇1S(p, 0, x) + x = ∇1S(p, 0, x) + x = x,

x(0, 0, p, x) = ∇1S(p, 0, x) + x = ∇1S(0, 0, x) + x = x.
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This means that the map a sends I2 into O. We can then restrict U1 to

a−1(O), keeping I2 ⊆ U1. In a similar way, we can further restrict U1 to an

open neighborhood around I2 such that

(p3, x̃) ∈ O,

for all (p1, p3, x) ∈ U1. With this choice of U1, assumption 2(a) now implies

that, for any (p1, p3, x) ∈ U1, we have

p = ∇xS(p1, 0, x) + p1 = p1,

p̃ = ∇xS(0, p3, x̃) + p3 = p3.

It follows that:

x = ∇1S(p1, p3, x) + x,

x̃ = ∇2S(p1, p3, x) + x.

Differentiating the SGA equation with respect to p2 and evaluating at

(p1, 0, p3, x), we find

s(p1,∇1S(p1, p3, x) + x) = s(p1, x) = ∇2S(p1, 0, x) + x

= ∇1S(0, p3, x̃) + x̃

= t(p3, x̃) = t(p3,∇2S(p1, p3, x) + x).

This means that

s(p1,∇1S(p1, p3, x) + x) = t(p3,∇2S(p1, p3, x) + x).

Moreover,

((p1,∇1S(p1, p3, x) + x), (p3,∇2S(p1, p3, x) + x), (∇xS(p1, p3, x) + p1 + p3, x))

is an element in φ−1(Graph(dS)).

Similarly, let U2 = {(p1, p3, x) ∈ R∗n × R∗n × Rn : (p1, p3, 0, x) ∈ W}. We

restrict U2 to an open neighborhood of I2 such that, at each (p1, p3, x) ∈ U2,
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we have

x(p1, p3, 0, x) = x,

p(p1, p3, 0, x) = ∇xS(p1, p3, x) + p1 + p3,

x̃(p1, p3, 0, x) = ∇2S(p1, p3, x) + x,

p̃(p1, p3, 0, x) = p3.

By differentiating the SGA equation with respect to p3 and evaluating at

(p1, p3, 0, x), we have

s(p3,∇2S(p1, p3, x) + x) = s(p3, x̃) = ∇2S(p3, 0, x̃) + x̃

= ∇2S(p, 0, x) + x

= s(p, x) = s(∇xS(p1, p3, x) + p1 + p3, x).

In the same way, let U3 ⊆ {(p1, p3, x) : (0, p1, p3, x) ∈ W} be an open

neighborhood of I2 such that, for any (p1, p3, x) ∈ U3, we have

t(p1,∇1S(p1, p3, x) + x) = t(∇xS(p1, p3, x) + p1 + p3, x).

If U = U1 ∩ U2 ∩ U3, since U ⊆ U1, the map

U → T ∗M × T ∗M,

(p1, p3, x) 7→ ((p1,∇1S(p1, p3, x) + x), (p2,∇3S(p1, p3, x) + x)),

has image in T ∗Ms×tT ∗M . Restricting U around I2 if necessary, assumption

4 implies that the map is a diffeomorphism onto an open set. Moreover, for

any α = (p, x) ∈ O, assumption 2 and the definitions of s, t imply that

∇1S(p, 0, x) + x = x,

∇2S(p, 0, x) + x = s(α),

∇1S(0, p, x) + x = t(α),

∇2S(0, p, x) + x = x.

Since I2 ⊆ U , the elements (α, 0s(α)), (0t(α), α) are in the image of the above
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map. We denote this image by U :

I2 ⊆ U := {((p1,∇1S(p1, p3, x)+x), (p3,∇2S(p1, p3, x)+x)) : (p1, p3, x) ∈ U},

and we define m : U → T ∗Rn by

(α1, α3) = ((p1,∇1S(p1, p3, x) + x), (p3,∇2S(p1, p3, x) + x))

7−→m(α1, α3) = (∇xS(p1, p3, x) + p1 + p3, x)

Summarizing what was shown above, we have U ⊆ T ∗Rn ×s t T
∗Rn and

s(m(α1, α3)) = s(α3),

t(m(α1, α3)) = t(α1).

Moreover, for any α ∈ O

m(α, 0s(α)) = α,

m(0t(α), α) = α.

Now we look at the domain of the inverse map and the remaining groupoid

axioms. For p ∈ R∗n, define the following functions Rn → Rn

Fp(x) = ∇2S(p, 0, x) + x,

F̃p(x) = ∇2S(−p, p, x) + x,

Gp(x) = ∇1S(0, p, x) + x,

G̃p(x) = ∇1S(p,−p, x) + x.

Note that for any (p, x) ∈ O

Fp(x) = s(p, x), Gp(x) = t(p, x).

Let

Ṽ = {(p, x) ∈ O : (p,−p, p, x), (−p, p, 0, x), (0,−p, p, x) ∈ W}.

By definition, for each (p, x) ∈ Ṽ the SGA equation is satisfied with (p,−p, p, x).

We restrict Ṽ around 0T ∗M if necessary to ensure that (p, x(p,−p, p, x)) ∈ O,

58



so that assumption 2(b) implies that

p = ∇xS(p,−p, x) + p− p = 0,

x = ∇1S(p, p, x) + x = ∇1S(0, p, x) + x.

Similarly, we restrict Ṽ around 0T ∗M to have

p̃ = ∇xS(−p, p, x̃)− p+ p = 0,

x̃ = ∇2S(p, p̃, x) = ∇2S(p, 0, x) + x.

Differentiating the SGA equation with respect to p2 at (p,−p, p, x) and using

assumption 2(a), we have

F̃p(Fp(x)) = ∇2S(−p, p, x̃) + x̃

= ∇2S(0, p, x) + x = x.

By definition of Ṽ , for each (p, x) ∈ Ṽ , the SGA equation is satisfied

at (−p, p, 0, x). In the same way as the previous paragraph, we restrict Ṽ

around 0T ∗M so that at (−p, p, 0, x):

p = ∇xS(−p, p, x)− p+ p = 0,

x = ∇1S(p, 0, x) + x = x,

p̃ = ∇xS(p, 0, x̃) + p = p,

x̃ = ∇2S(−p, p̃, x) + x = ∇2S(−p, p, x) + x.

Differentiating the SGA equation with respect to p3 at (−p, p, 0, x) and using

2(a) imply that

Fp(F̃p(x)) = ∇2S(p, 0, x̃) + x̃

= ∇2S(0, 0, x) + x = x.

A similar argument shows that, for all (p, x) ∈ Ṽ ,

G̃p(Gp(x)) = x, Gp(G̃p(x)) = x.
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On the other hand, assumption 2(b) says that

∇1S(p,−p, x) + x = ∇2S(p,−p, x) + x,

or in the notation above, for all (p, x) ∈ Ṽ ,

G̃p(x) = F̃−p(x).

By what we have shown above, if (−p, x) ∈ Ṽ , then

F−p(G̃p(x)) = x,

and if (p, x) ∈ Ṽ , then

F−p(y) = Gp(y),

where y = G̃p(x). It follows that the image of the map Ṽ ∩ (−Ṽ ) → T ∗Rn

given by

(p, x) 7→ (p, G̃p(x)),

contains an open neighborhood V of 0T ∗M and for (p, y) ∈ V :

s(−p, y) = F−p(y) = Gp(y) = t(p, y).

Moreover, if (p, y) ∈ V ∩ (−Ṽ ), then

y = F̃−p(Gp(y)) = ∇2S(p,−p, t(p, y)) + t(p, y)

and if (p, y) ∈ (−V ) ∩ (−Ṽ )

y = G̃−p(Fp(y)) = ∇1S(−p, p, s(p, y)) + s(p, y)

On the other hand, the following two elements belong to φ−1(Graph(dS)):

((−p,∇1S(−p, p, s) + s), (p,∇2S(−p, p, s) + s), (∇xS(−p, p, s)− p+ p, s)),

((p,∇1S(p,−p, t) + t), (−p,∇2S(p,−p, t) + t), (∇xS(−p, p, t)− p+ p, t)),

where s = s(p, y) and t = t(p, y).
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In summary, we have shown that

s(−p, y) = t(p, y),

t(−p, y) = s(p, y),

((p, y), (−p, y), (0, t(p, y))) ∈ φ−1(Graph(dS)),

((−p, y), (p, y), (0, s(p, y))) ∈ φ−1(Graph(dS)).

for any (p, y) ∈ V ′ := Ṽ ∩ (−Ṽ ) ∩ V ∩ (−V ).

We restrict V ′ so that (p,−p, t(p, y)), (−p, p, s(p, y)) are in U and we

denote the restriction by V . If (p, y) ∈ V is such that ((p, y), (−p, y)) ∈
U , then (p,−p, t(p, y)) ∈ U is such that the corresponding point in U is

((p, y), (−p, y)). This means that

m((p, y), (−p, y)) = (0, t(p, y)).

Similarly, if (p, y) ∈ V is such that ((−p, y), (p, y)) ∈ U , then

m((−p, y), (p, y)) = (0, s(p, y)).

Now we have a domain of multiplication U and a domain of inverse V
on which the axioms of a groupoid are satisfied. Next we find a domain of

associativity. For this, consider the open neighborhood of I3:

W̃ = {(p1, p2, p3, x) ∈ W : (p1, p2, x), (p2, p3, x̃) ∈ U}.

Also, define ι : W̃ → T ∗M ×s t T
∗M ×s t T

∗M by

(p1, p2, p3, x) 7→ ((p1, x1), (p2, x2), (p3, x3)),

where

x1 = ∇1S(p1, p2, x), x2 = ∇2S(p1, p2, x), x3 = ∇2S(p2, p3, x̃).

The definition of W̃ implies that ι is well-defined (that is, the image is indeed

in T ∗M ×s t T
∗M ×s t T

∗M).
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Let

W1 = {(α1, α2, α3) : (α1, α2), (α2, α3), (α1, α2α3), (α1α2, α3) ∈ U}.

Then W1 is an open neighborhood of I3 in T ∗M ×s t T
∗M ×s t T

∗M . Around

I3, the map ι has an inverse defined on W1:

ι−1(α1, α2, α3) = (π1(α1), π1(α2), π1(α3), π(α1(α2α3)))

This means that there is an open neighborhood around I3 on which ι is a

diffeomorphism onto an open neighborhood W of I3 in W1. We take W to

be the domain of associativity. This finishes the proof.

3.4 Comparison of assumptions

In Section 3.1 we deduced necessary conditions on a generating function

S : T ∗M ×M T ∗M → R so that Graph(dS) ⊂ T ∗M × T ∗M ×T ∗M becomes

the graph of multiplication of a local symplectic groupoid. These were the

assumptions used in Theorem 3.2.1, which shows that they are also suffi-

cient. In contrast, the assumptions in Theorem 3.3.2 are more obscure, and

now reason was given for why they should be assumed. In this section, we

compare the assumptions made in the two theorems, and we will see that the

conditions appearing in Theorem 3.3.2 are in fact necessary conditions too.

3.4.1 Comparison of source/target maps conditions

Since assumptions 0 are identical in both theorems, we start by looking at

assumptions 1 which allow to define the source and target maps.

Proposition 3.4.1. Let O be an open neighborhood of 0T ∗M such that

S(p, 0, x) = 0, S(0, p, x) = 0, for all (p, x) ∈ O.

Then the assumptions 1 in Theorems 3.2.1 and 3.3.2 are equivalent.
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Proof. Suppose first that there is an open neighborhood O of 0T ∗M in T ∗M

on which the function given by

s : O →M, (p, x) 7→ ∇2S(p, 0, x) + x,

is a surjective submersion. We have that

((p,∇1S(p, 0, x) + x), (0,∇2S(p, 0, x) + x), (∇xS(p, 0, x) + p, x))

belongs to φ−1(Graph(dS)). If (p, x) ∈ O ∩ O the above element becomes

((p, x), (0,∇2S(p, 0, x) + x), (p, x)).

If y′ ∈M is such that

((p, x), (0, y′), (p, x)) ∈ φ−1(Graph(dS)).

We know that there is (p′, p′′, x′) such that

((p, x), (0, y′), (p, x)) =

((p′,∇1S(p′, p′′, x′) + x′), (p′′,∇2S(p′, p′′, x′) + x′), (∇xS(p′, p′′, x′) + p′ + p′′, x′)).

It follows that p′ = p, p′′ = 0, x′ = x and then y′ = ∇2S(p, 0, x) + x. This

shows that assumption 2(a) in Theorem 3.2.1 is satisfied.

Now assume that there is an open neighborhood O of 0T ∗M such that for

each α = (p, x) ∈ O there exists a unique y ∈M for which we have

(α, 0y, α) ∈ φ−1(Graph(dS)).

This means that

((p, x),(0, y), (p, x)) =

((p,∇1S(p, 0, x) + x), (0,∇2S(p, 0, x) + x), (∇xS(p, 0, x) + p, x)).

In particular, we have y = ∇2S(p, 0, x) + x and it follows that the function

s : O →M, (p, x) 7→ ∇2(p, 0, x) + x,

is a surjective submersion.
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3.4.2 Comparison of Naturality Conditions

In this section we compare assumptions 2(a) and 2(b) in Theorems 3.2.1 and

3.3.2 .

Proposition 3.4.2. The following statements are equivalent.

(i) There is an open neighborhood Da = {(p, x)} around 0T ∗M in T ∗M on

which we have

S(p, 0, x) = 0.

(ii) There is an open neighborhood Oa around 0T ∗M ×T ∗M in T ∗M ×T ∗M
on which we have

φ0(α, 0, α) ∈ Graph(dS) =⇒ α = α,

for any (α, α) ∈ Oa.

Proof. ( =⇒ ) Indeed, let α = (p, x) and α = (p, x). We have φ0(α, 0y, α) ∈
Graph(dS) if and only if

x− x = ∇1S(p, 0, x),

y − x = ∇2S(p, 0, x),

p− p = ∇xS(p, 0, x).

If (p, x) ∈ Da, then we have S(p, 0, x) = 0 and the first and third equation

imply x = x and p = p , i.e., α = α. Therefore we can take

Oa = ι−1(Da)

where

ι : T ∗M × T ∗M → T ∗M, (α, α) 7→ (πcot(α), π(α)),

or in coordinates ((p, x), (p, x)) 7→ (p, x).

( ⇐= ) Conversely, for each (p, x), we have the following element in

φ−1(Graph(dS))

((p,∇1S(p, 0, x) + x), (0,∇2(p, 0, x) + x), (∇xS(p, 0, x) + p, x)).
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If ((p,∇1S(p, 0, x) + x), (∇xS(p, 0, x) + p, x)) ∈ Oa, then we have

p = ∇xS(p, 0, x) + p,

x = ∇1S(p, 0, x) + x.

This implies that ∇xS(p, 0, x) = 0 and ∇1S(p, 0, x) = 0. So if we take

Da = ι(Oa),

where ι : T ∗M → T ∗M × T ∗M is now defined by

ι(p, x) = ((p,∇1S(p, 0, x) + x), (∇xS(p, 0, x) + p, x)),

we have ∇1S(p, 0, x) = ∇xS(p, 0, x) = 0 on Da. By our normalization con-

dition S(0, 0, x) = 0, we obtain S(p, 0, x) = 0 on Da.

Similarly, one shows that:

Proposition 3.4.3. The following statements are equivalent.

(i) There is an open neighborhood Da = {(p, x)} around 0T ∗M in T ∗M on

which we have

S(0, p, x) = 0

(ii) There is an open neighborhood Oa = {(α, α)} around 0T ∗M × T ∗M in

T ∗M × T ∗M on which we have

φ0(0, α, α) ∈ Graph(dS) =⇒ α = α

This result finishes the proof that 2(a) in Theorem 3.2.1 yields 2(a) in

Theorem 3.3.2 when we specialize to M = Rn and φ = φ0.

To show the equivalence of assumptions 2(b) in the special and general

case, we need both 2(a) and the SGA equation (as in Theorem 3.3.2).
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Proposition 3.4.4. Assume 2(a) and the SGA equation hold. Then the

following statements are equivalent:

(i) There is an open neighborhood Db = {(p, x)} around 0T ∗M in T ∗M on

which we have

∇1S(p,−p, x) = ∇2S(p,−p, x),

∇xS(p,−p, x) = 0.

(ii) There is an open neighborhood Ob around 0T ∗M in T ∗M on which we

have

φ0(α,−α, 0t(α)) ∈ Graph(dS).

Proof. ( =⇒ ) Notice first that for each (p, x),

φ0((p,∇1S(p,−p, x) + x), (−p,∇2S(p,−p, x) + x), (∇xS(p,−p, x), x))

is an element in Graph(dS). If (p, x) ∈ Db, we have

∇1S(p,−p, x) = ∇2S(p,−p, x), ∇xS(p,−p, x) = 0.

This implies that the above element is of the form (α,−α, 0x). As in the

proof of Theorem 3.3.2, by 2(a) and the SGA equation, there is an open

neighborhood of 0T ∗M in T ∗M on which we have, for each (p0, x0),

F̃p0 : x 7→ ∇1S(p0,−p0, x) + x

is the inverse of

Fp0 : x 7→ ∇1S(0, p0, x) + x = t(p0, x)

around x0. By making Db smaller, we have, for each (p, x) ∈ Db,

x = Fp ◦ F̃p(x) = Fp(∇1S(p,−p, x) + x) = t(p,∇1S(p,−p, x) + x).

To finish the proof, we need to show that the image of

Db → T ∗M, (p, x) 7→ (p,∇1S(p,−p, x) + x),

66



is an open neighborhood around 0T ∗M in T ∗M . Clearly, 0T ∗M is mapped to

itself. The above argument with Fp, F̃p shows that the map of interest is a

local diffeomorphism at each point in Db. This finishes the proof.

( ⇐= ) If α = (p, y) and x = t(α), we have φ0(α,−α, 0x) ∈ Graph(dS) if

and only if

(α,−α, 0x) =

(p,∇1S(p,−p, x) + x), (−p,∇2S(p,−p, x) + x), (∇xS(p,−p, x), x).

This implies that ∇1S(p,−p, x) = ∇2S(p,−p, x) and ∇xS(p,−p, x) = 0 if

α ∈ Ob. We must show that the image of

Ob → T ∗M, (p, y) 7→ (p, t(p, y)),

is an open neighborhood around 0T ∗M in T ∗M . Indeed, this follows because

what we have shown above implies that this map is a local diffeomorphism

and it maps 0T ∗M onto itself.

3.4.3 Different Parameterizations of the SGA Equation

In this section, we compare assumption 3 in Theorems 3.2.1 and 3.3.2 . For

convenience, we will reference assumption 3 in Theorem 3.2.1 by (∗1) and

assumption 3 in Theorem 3.3.2 by (∗2). We restate the assumptions below

for the convenience of the reader.

(∗1). There is an open neighborhood W = {(α1, α2, α3)} of

{(α, 0s(α), 0s(α)) : α ∈ O} ∪ {(0t(α), α, 0s(α)) : α ∈ O} ∪ {(0t(α), 0t(α), α) : α ∈ O}

in Os ×t Os ×t O on which we have functions

α : W → T ∗M, α̃ : W → T ∗M, α : W → T ∗M,

such that

(a)

α(α0, 0s(α0), 0s(α0)) = α(0t(α0), α0, 0s(α0)) = α0,
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α̃(0t(α0), 0t(α0), α0) = α̃(0t(α0), α0, 0s(α0)) = α0,

α(0t(α0), 0t(α0), α0) = α(0t(α0), α0, 0s(α0)) = (α0, 0s(α0), 0s(α0)) = α0.

(b) The following system of equations is satisfied:

φ(α1, α2, α) = dS(π ◦ φ(α1, α2, α)),

φ(α2, α3, α̃) = dS(π ◦ φ(α2, α3, α̃)), (3.3)

φ(α1, α̃, α) = dS(π ◦ φ(α1, α̃, α)),

φ(α, α3, α) = dS(π ◦ φ(α, α3, α)).

(∗2). (SGA Equation) There is an open neighborhood W of

{(p, 0, 0, x) : (p, x) ∈ O} ∪ {(0, p, 0, x) : (p, x) ∈ O} ∪ {(0, 0, p, x) : (p, x) ∈ O}

on which the SGA equation holds. That is, there are functions

p, x, p̃, x̃ : W → T ∗Rn

such that, for (p, x) ∈ O

p(p, 0, 0, x) = p(0, p, 0, x) = p, p̃(0, p, 0, x) = p̃(0, 0, p, x) = p,

and we have for all (p1, p2, p3, x) ∈ W :

S(p1, p2, x)+S(p, p3, x) + (p1 + p2)x+ (p+ p3)x− px

=S(p2, p3, x̃) + S(p1, p̃, x) + (p2 + p3)x̃+ (p1 + p̃)x− p̃x̃, (3.4)

p = ∇xS(p1,p2, x) + p1 + p2, x = ∇1S(p, p3, x) + x,

p̃ = ∇xS(p2,p3, x̃) + p2 + p3, x̃ = ∇2S(p1, p̃, x) + x.

We want to show that, in the setting of Theorem 3.3.2, that is, when

M = Rn and φ = φ0, (∗2) is equivalent to (∗1). We have seen how the

SGA equation can be derived from (∗1) at the end of section 1, but the

computation there only gives rise to (∗2) when the differential equations

(3.1) are satisfied for (p1, p2, p3, x) on an open subset of (R∗n)3 × Rn, which

is not immediate given the domain of the equations in (∗1).
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Pointwise, it is clear how equations (3.3) and (3.4) are related. For each

(p1, p2, p3, x) ∈ W , take (α1, α2, α3) to be

((p1,∇1S(p1, p2, x) + x), (p2,∇2S(p1, p2, x) + x), (p3,∇2S(p2, p3, x̃))).

Differentiating the algebraic equation in the SGA equation with respect to

p1, p2, p3, x, we recover (3.3) at (α1, α2, α3).

Conversely, if (α1, α2, α3) ∈ W , take pi = πcot(αi), 1 ≤ i ≤ 3, x = π(α)

where α = α(α1, α2, α3). Then, as we have seen before, the differential equa-

tions (3.1) are satisfied for (p1, p2, p3, x) and if this is true on an open neigh-

borhood in (R∗n)3×Rn, equation (3.4) is satisfied at the point (p1, p2, p3, x).

The question we want to answer is the following.

Question 3.4.5. When are (∗1) and (∗2) equivalent?

For the implication (∗1) ⇐= (∗2), we need to make two assumptions

from Theorem 3.3.2.

Proposition 3.4.6. Assume that the following statements hold.

(a) For all (p, x) ∈ O, we have

S(p, 0, x) = S(0, p, x) = 0;

(b) The map (R∗n)2 × Rn → T ∗M × T ∗M

(p1, p2, x) 7→ ((p1,∇1S1(p1, p2, x) + x), (p2,∇2S2(p1, p2, x) + x))

is an injective immersion on an open neighborhood of

{(p, 0, x) : (p, x) ∈ O} ∪ {(0, p, x) : (p, x) ∈ O}.

Then we have (∗1) ⇐= (∗2).

For the proofs of this section we continue using the notations set up before:

I3 = {(α, 0s(α), 0s(α)) : α ∈ O} ∪ {(0t(α), α, 0s(α)) : α ∈ O} ∪ {(0t(α), 0t(α), α) : α ∈ O},

I3 = {(p, 0, 0, x) : (p, x) ∈ O} ∪ {(0, p, 0, x) : (p, x) ∈ O} ∪ {(0, 0, p, x) : (p, x) ∈ O}.
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Also, for simplicity of notations, assume that the maps s, t are defined on

T ∗M . Recall that the definitions of these maps in Theorems 3.2.1 and 3.3.2

agree.

Proof of Proposition 3.4.6. Define ι : W → T ∗M × T ∗M × T ∗M by

ι(p1, p2, p3, x) = ((p1,∇1S(p1, p2, x)+x), (p2,∇2S(p1, p2, x)+x), (p3,∇2S(p2, p3, x̃)+x̃)),

where

x = x(p1, p2, p3, x), x̃ = x̃(p1, p2, p3, x).

We have seen in the proof for Theorem 3.3.2 that if (a) holds, then whenever

(p′, 0, p′′, y) ∈ W one has

((p′,∇1S(p′, p′′, y) + y), (p′′,∇2S(p′, p′′, y) + y)) ∈ T ∗M ×s t T
∗M.

One the other hand, it follows from the SGA equation (3.4) that

∇2S(p1, p2, x) + x = ∇1S(p2, p3, x̃) + x̃,

so we can restrict W around I3 and assume that ι has image contained in

T ∗M ×s t T
∗M ×s t T

∗M .

Let U ⊆ T ∗M ×s t T
∗M be the domain of multiplication as in the proof

for Theorem 3.3.2. We see there that it is defined whenever (a) and (b)

are assumed. The set of compatible triples determined by U is an open

neighborhood W ′
of I3 in T ∗M ×s t T

∗M ×s t T
∗M . On W ′

, we define

κ : (α1, α2, α3) 7→ (πcot(α1), πcot(α2), πcot(α3), π(α)),

where α = m(α1,m(α2, α3)). This map is a left inverse to ι|ι−1(W ′ ), which

implies that ι|ι−1(W ′ ) is an injective immersion. Since the two manifolds W

and T ∗M ×s t T
∗M ×s t T

∗M have the same dimension, the image of ι|ι−1(W ′ )

is an open neighborhood of I in T ∗M ×s t T
∗M ×s t T

∗M . As we have seen

above, each element (α1, α2, α3) in the image satisfies the equations in (3.3)

with

α = (p, x), α̃ = (p̃, x̃), α = (p, x),

where by assumption, p, x, p̃, x̃, p are smooth functions of (p1, p2, p3, x) =

κ(α1, α2, α3). This implies that we can take W = ι(W ∩ ι−1(W ′
)) and the
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restriction of the functions α, α̃, α. The normalization properties of α, α̃, α

follow from those of p, p̃ and (a).

For the implication (∗1) =⇒ (∗2), we have the following.

Proposition 3.4.7. Assume that

(a) For all (p, x) ∈ O, we have

S(p, 0, x) = S(0, p, x) = 0;

(b) The map

κ :W → (R∗n)3 × Rn,

(α1, α2, α3) 7→ (πcot(α1), πcot(α2), πcot(α3), π(α)),

where α = α(α1, α2, α3), is injective on an open neighborhood of I3.

Then we have (∗1) =⇒ (∗2).

Proof. We want to show that κ is a local diffeomorphism along I3 by finding

a (local) left inverse. The obvious choice is the map ι defined above. The

difficulty here is that the expressions

(p1,∇1S(p1, p2, x) + x), (p2,∇2S(p1, p2, x) + x), (p3,∇xS(p2, p3, x̃) + x̃)

require a solution x of

{
x = ∇1S(p, p3, x) + x,

p = ∇xS(p1, p2, x) + p1 + p2,
(3.5)

and also a solution x̃ of{
x̃ = ∇2S(p1, p̃, x) + x,

p̃ = ∇xS(p2, p3, x̃) + p2 + p3.
(3.6)

Without assuming (∗1), we do not know if solutions to these equations exist.

To solve this problem, we first rewrite (3.5) as

x = ∇1S(∇xS(p1, p2, x) + p1 + p2, p3, x) + x. (3.7)
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Let α = (p, x) ∈ O and v0 = (p, 0, 0, x). Note that κ(α, 0x, 0x) = v0. We also

let

F (x, p1, p2, p3, x) = x− (∇1S(∇xS(p1, p2, x) + p1 + p2, p3, x) + x).

At (x, v0), (a) implies that F (x, v0) = 0 and also that:

∂F

∂x

∣∣∣
(x,v0)

=

(
I −∇1∇1S(∇xS(p1, p2, x) + p1 + p2, p3, x)

∂∇xS(p1, p2, x)

∂x

) ∣∣∣
(x,v0)

= I,

since by (a), ∇xS(p′, 0, x′) = 0 for (p′, x′) in an open set around (p, x).

It follows that the map defined by

F̃ (x, p1, p2, p3, x) =
(
F (x, p1, p2, p3, x), p1, p2, p3, x

)
is a local diffeomorphism around (x, v0). Let U,U

′
be open neighborhoods of

x and v0, respectively, such that F̃ |U×U ′ is a diffeomorphism onto its image.

This image is an open neighborhood of (0, p, 0, 0, x) in Rn× (R∗n)3×Rn and

denoting by G̃ the inverse of F̃ |U×U ′ we have:

G̃(y, p1, p2, p3, x) = (G(y, p1, p2, p3, x), p1, p2, p3, x).

Shrinking U
′

if necessary, we conclude that, for (p1, p2, p3, x) ∈ U
′
, x =

G(0, p1, p2, p3, x) is the unique point in U such that F (x, p1, p2, p3, x) = 0.

In particular, x is a solution to (3.7). The construction for equation (3.6) is

similar.

We conclude that we have an open neighborhood W
′

of v0 in (R∗n)3 ×Rn

on which (3.5) (3.6) have solutions. We define

ι : W
′ → T ∗M × T ∗M × T ∗M,

(p1, p2, p3, x) 7→ ((p1,∇1S(p1, p2, x)), (p2,∇2S(p1, p2, x)), (p3,∇2S(p2, p3, x̃))).

We claim that, on an open neighborhood of (α, 0x, 0x) inW , ι is a left inverse

of κ.

Around (α, 0x, 0x), to each point (α1, α2, α3) ∈ W we associate the points

α(α1, α2, α3) = (p, x), α̃(α1, α2, α3) = (p̃, x̃) as in (3.3). Let us denote the
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second coordinates of these points by

xW(α1, α2, α3) = x, x̃W(α1, α2, α3) = x̃.

Mapping (α1, α2, α3) via κ, we get a point (p1, p2, p3, x
′) near κ(α, 0, 0) =

(p, 0, 0, x) = v0. By the definition of ι, we have

ι(p1, p2, p3, x
′
) = ((p1,∇1S(p1, p2, x)), (p2,∇2S(p1, p2, x), (p3,∇2S(p2, p3, x̃))),

where x, x̃ are obtained as solutions to (3.5)(3.6) as above. We denote them

by

xW
′

(κ(α1, α2, α3)) = x, x̃W
′

(κ(α1, α2, α3)) = x̃.

If we can show that

xW(α1, α2, α3) = xW
′

(κ(α1, α2, α3)),

x̃W(α1, α2, α3) = x̃W
′

(κ(α1, α2, α3)),

then equations (3.3) imply that ι is a left inverse of κ, as claimed. Al-

though both sides of the equations, together with (p1, p2, p3, x
′
) yield solu-

tions to (3.5) and (3.6), they need not be equal. However, since we know

that xW(α, 0x, 0x) = x, we can choose an open neighborhood of (α, 0x, 0x) on

which we have

κ(α1, α2, α3) ∈ U ′ , xW(α1, α2, α3) ∈ U,

where U,U
′

are as in the first part of the proof. Then we have

F̃ (xW , p1, p2, p3, x
′
) = (0, p1, p2, p3, x

′) = F̃ (xW
′

, p1, p2, p3, x
′
),

and since F̃ |U×U ′ is a diffeomorphsim, we must have

xW(α1, α2, α3) = xW
′

(κ(α1, α2, α3)).

The proof for x̃ is similar. This finishes the proof that, at points of the form

(α, 0x, 0x), κ is an immersion and thus a local diffeomorphism, since W and

(R∗n)3 × Rn have the same dimension. The proof around points of the form

(0x, α, 0x), (0x, 0x, α) is similar.
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Since κ is injective around I3, it maps a neighborhood of I3 to a neigh-

borhood of I3. By the same argument following the proof of Theorem 3.2.1,

on this neighborhood there are smooth functions p, x, p̃, x̃ for which the SGA

equation (3.4) is satisfied. The normalization properties of p, p̃ follow directly

from those of α, α̃.

3.5 The SGA equation

In this section we will take a deeper look into the SGA equation (3.2).

3.5.1 The Exponential Map as a Symplectomorphism

In the derivation of the SGA equation, following Theorem 3.2.1, the variables

x1, x2, x3, p all cancel so they do no appear in the final equation. In this sec-

tion, we take a different symplectomorphism φ and follow the same procedure

and see that now all variables appear in the new form of the equation.

Let M be a manifold. We recall that X = T ∗M ×M T ∗M is identified

with Graph(m0) in T ∗M × T ∗M × T ∗M . Let g be a Riemannian metric on

T ∗M × T ∗M × T ∗M so that, around X, the associated exponential map is a

diffeomorphism onto its image

exp : NX → T ∗M × T ∗M × T ∗M.

On the other hand, we have a diffeomorphism from NX to T ∗X

NX → T ∗X,

v 7→ −ω[0(v)|X ,

where ω0 = − pr∗1 ωc− pr∗2 ωc + pr∗3 ωc. Denoting the inverse of this map by ι,

we obtain a diffeomorphism

exp ◦ ι : T ∗X = T ∗(T ∗M ×M T ∗M)→ T ∗M × T ∗M × T ∗M,

which is defined around X in T ∗X. When M = Rn and T ∗M ×T ∗M ×T ∗M
has the usual Euclidean metric, the above map is a symplectomorphism. Its
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inverse is given by

φ : ((p1, x1), (p2, x2), (p, x)) 7→

((p1 − 1
3(p1 + p2 − p), x− x1),(p2 − 1

3(p1 + p2 − p), x− x2), (1
3(x1 + x2 + x), p1 + p2 − p)).

The SGA equation with respect to φ is

S12− + S23 − 1
3((p2 + p− p− p̃)x1 + (p1 − p3 − p+ p̃)x2 + (p1 + p2 + p3 − p)x)

=S1∼ + S−3 + 1
3((−p2 − p+ p+ p̃)x3 + (−p1 − p2 − p3 + p)x̃+ (−p1 + p− p̃+ p3)x),

where

S12− = S(p1 −
1

3
(p1 + p2 − p), p2 −

1

3
(p1 + p2 − p),

1

3
(x1 + x2 + x)),

S23 = S(p2 −
1

3
(p2 + p3 − p̃), p3 −

1

3
(p2 + p3 − p̃),

1

3
(x2 + x3 + x̃)),

S1∼ = S(p1 −
1

3
(p1 + p̃− p), p̃− 1

3
(p1 + p̃− p), 1

3
(x1 + x̃+ x)),

S−3 = S(p− 1

3
(p+ p3 − p), p3 −

1

3
(p+ p3 − p),

1

3
(x+ x3 + x)),

and

p1 + p2 − p = ∇xS(p1 −
1

3
(p1 + p2 − p), p2 −

1

3
(p1 + p2 − p),

1

3
(x1 + x2 + x)),

p2 + p3 − p̃ = ∇xS(p2 −
1

3
(p2 + p3 − p̃), p3 −

1

3
(p2 + p3 − p̃),

1

3
(x2 + x3 + x̃)),

p1 + p̃− p = ∇xS(p1 −
1

3
(p1 + p̃− p), p̃− 1

3
(p1 + p̃− p), 1

3
(x1 + x̃+ x)),

p+ p3 − p = ∇xS(p− 1

3
(p+ p3 − p), p3 −

1

3
(p+ p3 − p),

1

3
(x+ x3 + x)),

x− x1 = ∇1S(p1 −
1

3
(p1 + p2 − p), p2 −

1

3
(p1 + p2 − p),

1

3
(x1 + x2 + x)),

x̃− x2 = ∇1S(p2 −
1

3
(p2 + p3 − p̃), p3 −

1

3
(p2 + p3 − p̃),

1

3
(x2 + x3 + x̃)),

x− x1 = ∇1S(p1 −
1

3
(p1 + p̃− p), p̃− 1

3
(p1 + p̃− p), 1

3
(x1 + x̃+ x)),

x− x = ∇1S(p− 1

3
(p+ p3 − p), p3 −

1

3
(p+ p3 − p),

1

3
(x+ x3 + x)).

The details of these computations are given in appendix A.
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3.5.2 An Interpretation of the SGA Equation

From this point on, we will use the SGA equation in its original form (see

[4]), which we now recall.

SGA Equation. There is an open neighborhood W of

I3 = {(p, 0, 0, x) : (p, x) ∈ O} ∪ {(0, p, 0, x) : (p, x) ∈ O}∪

∪ {(0, 0, p, x) : (p, x) ∈ O},

on which we have functions p, x, p̃, x̃ : W → R for which the following equa-

tions hold:

S(p1, p2, x) + S(p, p3, x)− px = S(p2, p3, x̃) + S(p1, p̃, x)− p̃x̃,

p = ∇xS(p1, p2, x), x = ∇1S(p, p3, x),

p̃ = ∇xS(p2, p3, x̃), x̃ = ∇2S(p1, p̃, x).

As noted in Remark 3.3.1, we can recover this form of the SGA equation

from the equation used in Theorem 3.3.2 by replacing S with S− (p1 + p2)x.

Moreover, with a similar argument as in Theorem 3.3.2, we can prove that

if the SGA equation and some other assumptions hold, S is a generating

function for a local symplectic groupoid structure on some open neighborhood

of 0T ∗Rn in T ∗Rn with respect to the symplectomorhpism

φ′0 : T ∗Rn × T ∗Rn × T ∗Rn → T ∗(T ∗Rn ×Rn T
∗Rn) ' T ∗(R∗n × R∗n × Rn),

((p1, x1), (p2, x2), (p, x)) 7→ ((p1, p2, x), (x1, x2, p)). (3.8)

Let X, Y be manifolds. The set rel(X, Y ) of canonical Lagrangian relations

between X and Y consists of all Lagrangian submanifolds in T ∗X × T ∗Y ,

where the overline indicates, as usual, the negative of the canonical symplec-

tic structure.

Let π : Z → X × Y be a fibration and let φ : Z → R be a smooth

function. A point z ∈ Z is said to be a critical point of φ with respect to π

if dzφ(v) = 0 for any vertical tangent vector v ∈ ker(dzπ). Denote the set of

critical points by Cφ. Note that if z ∈ Cφ and π(z) = (x, y), then there is a

unique covector α at (x, y) such that dzφ = φ∗α. We write this covector as
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α = αx + αy, using the identification T ∗(X × Y ) = T ∗X × T ∗Y , and we will

denote dX×Y φ(z) = −αx + αy.

Definition 3.5.1 ([11]). Given a Lagrangian relation L ∈ rel(X, Y ), we call

φ a generating function for L with respect to the fibration π if

L = {(dφ)X×Y (z) : z ∈ Cφ}.

Now, suppose we have a local symplectic groupoid structure on T ∗Rn and

S : R∗n × R∗n × Rn → R is a generating function with respect to

φ′0 : T ∗Rn × T ∗Rn × T ∗Rn → T ∗(R∗n × R∗n × Rn)

((p1, x1), (p2, x2), (p, x)) 7→ ((p1, p2, x), (x1, x2, p))

as in [4], that is,

Graph(m) = {((p1,∇1S(p1, p2, x)), (p2,∇2S(p1, p2, x)), (∇xS(p1, p2, x), x))}.

Then we also have that the graph of multiplication is a Lagrangian sub-

manifold in T ∗Rn × T ∗Rn × T ∗Rn = T ∗(Rn × Rn) × T ∗Rn. In other words,

Graph(m) is a Lagrangian relation between Rn × Rn and Rn:

Graph(m) ∈ rel(R× R,R).

Then we can find a generating function in the sense of the above definition.

Proposition 3.5.2. Let S̃ : (T ∗Rn)3 → R be the function

S̃((p1, x1), (p2, x2), (p, x)) = −p1x1 − p2x2 + S(p1, p2, x), (3.9)

and consider the fibration

π : Rn × Rn × Rn × R∗n × R∗n → Rn × Rn × Rn,

(x1, x2, x3, p1, p2) 7→ (x1, x2, x3).

Then S̃ is a generating function for φ−1
0 (Graph(dS)) with respect to π.
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Proof. The set CS̃ of critical points of S̃ is determined by the equations

−x1 +∇1S(p1, p2, x) = 0

−x2 +∇2S(p2, p3, x̃) = 0

We only need to note that, at each z ∈ CS̃, we have

d(Rn×Rn)×RS̃(z) = ((p1, x1), (p2, x2), (∇xS(p1, p2, x), x))

Let us observe now that the graphs of the maps defined on the set of

compatible triples by

(α1, α2, α3) 7→ m(α1,m(α2, α3)),

(α1, α2, α3 7→ m(m(α1, α2), α3),

are Lagrangian relations between Rn × Rn × Rn and Rn. Namely, they are

the composition of Lagrangian relations:

L1 = Graph(m) ◦ (Graph(idT ∗Rn)×Graph(m)),

L2 = Graph(m) ◦ (Graph(m)×Graph(idT ∗Rn)).

Here, L1, L2 ∈ rel(Rn×Rn×Rn,Rn) and for the various Lagrangian relations

in these compositions we have:

Graph(m) ∈ rel(Rn × Rn,Rn),

Graph(idT ∗R) ∈ rel(Rn,Rn),

Graph(idT ∗R)×Graph(m) ∈ rel(Rn × (Rn × Rn),Rn × Rn),

Graph(m)×Graph(idT ∗Rn) ∈ rel((Rn × Rn)× Rn,Rn × Rn).

We can use the function S̃ given by (3.9) to find generating functions for

L1 and L2. The associativity of the groupoid multiplication is equivalent

to the statement that L1 = L2, as sets. By the definition of a generating

function, this equivalent to some condition on the two generating functions,

which we would like to determine.
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To find the generating functions for L1, L2, we use the following result,

which can be found in Section 5.7 of [11]:

Lemma 3.5.3. Let φ1 and φ2 be generating functions for L1 ∈ rel(X, Y ) and

L2 ∈ rel(Y, Z) with respect to the trivial fibrations X × Y ×F → X × Y and

Y × Z ×Q→ Y × Z, respectively. If L = L2 ◦ L1 ∈ rel(X,Z), then

φ(x, z, p, q, y) = φ1(x, y, p) + φ2(y, z, q),

is a generating function for L with respect to the trivial fibration X × Z ×
Y × P ×Q→ X × Z.

Note also that if φ and φ
′

are generating functions for L ∈ rel(X, Y ) and

L
′ ∈ rel(X

′
, Y

′
) with respect to the fibrations π : Z → X × Y and π

′
: Z

′ →
X
′ ×Y ′ , respectively, then the product relation L×L′ ∈ rel(X×X ′ , Y ×Y ′)

has a generating function (z, z
′
) 7→ φ(z) + φ

′
(z
′
) with respect to the product

fibration Z × Z ′ → X × Y ×X ′ × Y ′ = X ×X ′ × Y × Y ′ .

Coming back to the problem of finding generating functions for L1 and

L2, observe that T̃ (x3, x
′
3, q) = q(−x3 + x

′
3) is a generating function for

Graph(idT ∗Rn) ∈ rel(Rn,Rn) with respect to the fibration

Rn × Rn × R∗n → Rn × Rn,

(x3, x
′

3, p3) 7→ (x3, x
′

3).

By the above lemma and remark following it, we find that a generating

function for L2 with respect to the fibration

Rn × Rn × Rn × Rn × R∗n × R∗n × R∗n × R∗n × R∗n × Rn × Rn → Rn,

(x1, x2, x3, x, p1, p2, p3, p, p
′
3, x
′
3, x) 7→ (x1, x2, x3, x),

is given by

φ2(x1, x2, x3, x, p1, p2, p3, p, p
′
3, x
′
3, x) = −p1x1 − p2x2 + S(p1, p2,x) + p3(−x3 + x′3)

−px− p′3x′3 + S(p, p′3, x).

In this expression, we have denoted by x′3, x the fiber variables. Similarly,
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we find that a generating function for L1 with respect to the fibration

Rn × Rn × Rn × Rn × R∗n × R∗n × R∗n × R∗n × R∗n × Rn × Rn → Rn,

(x1, x2, x3, x, p1, p2, p3, p
′
1, p̃, x

′
1, x̃) 7→ (x1, x2, x3, x),

given by

φ1(x1, x2, x3, x, p1, p2, p3, p̃, p
′
1, x
′
1, x̃) = −p2x2 − p3x3 + S(p2,p3, x̃) + p1(−x1 + x′1)

− p̃x̃− p′1x′1 + S(p′1, p̃, x).

Now the fiber variables have been denoted by x̃, x′1.

We now compute the critical points of φ1 with respect to the given fibra-

tion. This is done by differentiating φ1 with respect to each of the fiber vari-

ables and then set the result equal to 0. We find that (x1, x2, x3, x, p1, p2, q, x
′
1)

is a critical point if and only if

x′1 = x1,

p′1 = p1

x1 = ∇1S(p′1, p̃.x),

x2 = ∇1S(p2, p3, x̃),

x3 = ∇2S(p2, p3, x̃),

x̃ = ∇2S(p′1, p̃, x),

p̃ = ∇xS(p2, p3, x̃).

If this is true, the corresponding covector on the base manifold is given by

p1(dx1)x1 + p2(dx2)x2 + p3(dx3)x3 +∇xS(p1, p̃, x)(dx)x.

Similarly, we find that (x1, x2, x3, x, p1, p2, q, x
′
3) is a critical point for φ2 with
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respect to the given fibration if and only if

x′3 = x3,

p′1 = p1,

x1 = ∇1S(p1, p2.x),

x2 = ∇2S(p1, p2, x),

x3 = ∇2S(p, p3, x),

x = ∇1S(p, x3, x),

p̃ = ∇xS(p1, p2, x),

and, if this is true, the corresponding covector on the base is

p1(dx1)x1 + p2(dx2)x2 + p3(dx3)x3 +∇xS(p, p3, x)(dx)x.

Finally, we note that, each quadruple (p1, p2, p3, x) determines a unique

critical point of φi, i = 1, 2. Denoting the corresponding covectors by

αi(p1,p2,p3,x), i = 1, 2, we conclude that the groupoid multiplication is asso-

ciative, i.e., that L1 = L2, if and only if

α1
(p1,p2,p3,x) = α2

(p1,p2,p3,x),

for every (p1, p2, p3, x) ∈ R∗n×R∗n×R∗n×Rn. Now this happens if and only

if, for all (p1, p2, p3, x), we have:

∇1S(p1, p2, x) = ∇1S(p1, p̃, x),

∇2S(p1, p2, x) = ∇1S(p2, p3, x̃),

∇2S(p, p3, x) = ∇2S(p2, p3, x̃),

∇xS(p, p3, x) = ∇xS(p1, p̃, x),

where

x = ∇1S(p, p3, x), x̃ = ∇2S(p1, p̃, x),

p = ∇xS(p1, p2, x), p̃ = ∇xS(p2, p3, x).

If we assume that S(0, 0, x) = 0 for all x ∈M , these equations are equivalent

to the SGA equation.
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CHAPTER 4

A GROUPOID COCYLE AND THE VAN
EST MAP

At the end of the last chapter, we looked at the general notion of gener-

ating functions for canonical relations, from [11]. Also, we established a

first connection between them and the generating functions appearing in

the SGA equation. Namely, if S is a generating function with respect to

the symplectomorphism φ′0 given by (3.8), then the function defined by

S̃((p1, x1), (p2, x2), x) = −p1x1 − p2x2 + S(p1, p2, x) is a generating function

for Graph(m) viewed as a canonical relation in rel(M ×M,M), with respect

to the projection T ∗M × T ∗M ×M → M3. If we extend S̃ to a function

on (T ∗M)3 by composing with the projection in the third factor, it is also

a generating function with respect to the projection (T ∗M)3 → M3. By re-

stricting S̃ to the graph of multiplication, the SGA equation on S ammounts

to the statement that S̃ is a groupoid cocyle. In this chapter, we will look

closer into this phenomenon.

4.1 A Groupoid Cocycle

Let G ⇒M be a Lie groupoid. Recall (see, e.g., [6]) that the Bott-Schulman

bicomplex consists of differential forms Ωk(G(n)), together with:

• the deRham differential d : Ωk(G(n))→ Ωk+1(G(n)), and

• the simplicial differential δ : Ωk(G(n))→ Ωk(G(n+1)):

δω =
n+1∑
i=0

(−1)iδ∗i ω,

where δi : G(n+1) → G(n) denotes the i-th face map which omits the

vertex i from a string of n+ 1-composable arrows (g1, . . . , gn+1).
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In the case of a local groupoid G⇒M , the definition of a cochain should

no longer be forms on G(n). For example, two elements g, h could satisfy

s(g) = t(h) and not be composable, so δ would not be well-defined. Moreover,

since 3-associativity does not hold on all compatible triples, we could have

δ2 6= 0. For this reason and for our purposes in this section, we will take

G(1) = G,

G(2) = U,

G(3) = W,

where U is the domain of multiplication and W is the space of all triples

such that both triple products are defined and are equal. The simplicial

differentials are defined as in the above formula:

δ : Ωk(G)→ Ωk(U), ω 7→ pr∗1 ω −m∗ω + pr∗2 ω,

δ : Ωk(U)→ Ωk(W ), ω 7→ pr∗2,3 ω −m∗1,2ω +m∗2,3ω − pr∗1,2 ω,

where m1,2,m2,3 : W → U are given by

m1,2(α1, α2, α3) = (m(α1, α2), α3),

m2,3(α1, α2, α3) = (α1,m(α2,α3)).

We have a commutative diagram

Ωk(G) Ωk+1(G)

Ωk(U) Ωk+1(U)

Ωk(W ) Ωk+1(W )

d

δ δ

d

δ δ

d

(4.1)

where d is the De Rham differential. We will call a function σ ∈ Ω0(U) a

groupoid 2-cocyle if δφ = 0.

Now let (G,Ω) ⇒M be a local symplectic groupoid. We will first assume

that Ω is exact:

There is α ∈ Ω1(G) such that Ω = dα. (A1)
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The commutativity of the upper square in (4.1) for k = 1 implies that

dδα = δdα = δΩ = 0,

since Ω is multiplicative.

We make a second assumption:

There is φ ∈ Ω0(U) such that δα = dφ. (A2)

Then, by the commutativity of the upper square for k = 0, we have

dδφ = δdφ = δ2α = 0.

Here we used that δ2 = 0, which follows as in the usual case by applying

3-associativity.

Recall that multiplicativity of Ω implies that u∗Ω = 0. Since Ω is closed,

the Tubular Neighborhood Theorem, implies that there is an open neighbor-

hood V of the identity section of G on which Ω is exact:

dα = Ω|V .

Therefore, by replacing G by V we see that we can assume that (A1) is

satisfied. On the other hand, we will see next that if a generating function

is given then (A2) is also satisfied.

4.2 Example: M = Rn with a generating function S.

Let M = Rn and consider the symplectomorphism (3.8):

φ′0 : T ∗M × T ∗M × T ∗M → T ∗(T ∗M ×M T ∗M) ' T ∗(M∗ ×M∗ ×M),

((p1, x1), (p2, x2), (p, x)) 7→ ((x1, p1), (x2, p2), (p, x)).

Also, let S be a function on T ∗M ×M T ∗M 'M∗ ×M∗ ×M :

S : T ∗M ×M T ∗M → R, (p1, p2, x) 7→ S(p1, p2, x).
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As we in the previous chapter, elements in φ′−1
0 (Graph(dS)) ⊆ T ∗M×T ∗M×

T ∗M take the form

((p1,∇1S(p1, p2, x)), (p2,∇2S(p1, p2, x)),(∇xS(p1, p2, x), x))

for (p1, p2, x) ∈ M∗ ×M∗ ×M . Assume that the SGA equation holds on

some W ⊆ (M∗)3 ×M , that is, there exist functions

p, x, p̃, x̃ : W → R

for which we have, for all (p1, p2, p3, x) ∈ W

S(p1, p2, x) + S(p, p3, x)− px = S(p2, p3, x̃) + S(p1, p̃, x)− p̃x̃,

p = ∇xS(p1, p2, x), x = ∇1S(p, p3, x),

p̃ = ∇xS(p2, p3, x̃), x̃ = ∇2S(p1, p̃, x).

As in the proof of Theorem 3.3.2, define ι : W → (T ∗M)3 by

(p1, p2, p3, x) 7→ ((p1,∇1S(p1, p2, x)), (p2,∇2S(p1, p2, x)), (p3,∇2S(p2, p3, x̃))).

Assume ι is a diffeomorphism onto its imageW (see the previous chapter for

assumptions guaranteeing that this holds). For each (α1, α2, α3) ∈ W , let

α(α1, α2, α3) = (p, x),

α̃(α1, α2, α3) = (p̃, x̃),

α(α1, α2, α3) = (∇xS(p, p3, x), x).

Then the SGA equation implies that these define smooth functions onW for

which
(α1, α2, α)

(α2, α3, α̃)

(α, α3, α)

(α1, α̃, α)

 ∈ φ
′−1
0 (Graph(dS)).

On the other hand, as we saw in the previous section, we can view φ′−1
0 (Graph(dS))
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as a canonical relation in rel(M ×M,M). The function

S̃ : T ∗M × T ∗M × T ∗M → R,

((p1, x1), (p2, x2), (p, x)) 7→ −p1x1 − p2x2 + S(p1, p2, x),

is a generating function for φ′−1
0 (Graph(dS)), in the sense of Definition 3.5.1,

with respect to the fibration

π : T ∗M × T ∗M × T ∗M →M ×M ×M,

((p1, x1), (p2, x2), (p, x)) 7→ (x1, x2, x).

If we define ∆S̃ :W → R by

∆S̃(α1, α2, α3) = S̃(α1, α2, α) + S̃(α, α3, α)− S̃(α2, α3, α̃)− S̃(α1, α̃, α),

using the definition of S̃, we see that the integral equation in the SGA equa-

tion is equivalent to ∆S̃ = 0. So we have ∆S̃ = 0 on W .

Now assume that S is a generating function for a local symplectic groupoid

with respect to φ′0. Let U be the domain of multiplication and define

φ : U → R, (α1, α2) 7→ S̃(α1, α2, α),

where α = m(α1, α2). Then for any (α1, α2, α3) ∈ W , we have

δφ(α1, α2, α3) = φ(α1, α2) + φ(m(α1, α2), α3)

− φ(α2, α3)− φ(α1,m(α2, α3))

= ∆S̃(α1, α2, α3) = 0,

which shows that φ is a groupoid cocycle.

Notice that (A1) is satisfied since the canonical symplectic form ω has

primitive the Liouville 1-formα. On the other hand, −φ also satisfies (A2):
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if (v1, v2, v) ∈ T(α1,α2,α) Graph(m), we have

dφ(α1, α2)(v1, v2) = dS̃(α1, α2, α)(v1, v2, v)

= (−α1,−α2, α)dπ(v1, v2, v)

= −α1(dp(v1))− α2(dp(v2)) + α(dp(v))

= −δα(α1, α2)(v1, v2),

where p : T ∗M →M is the projection. The second equality holds since each

(α1, α2, α) ∈ Graph(m) is a critical point of S̃ and

dS̃(α1, α2, α) = π∗(−α1,−α2, α).

4.3 Example: Manifold M with a generating function

Let M be any manifold and consider a local symplectic groupoid structure

on (T ∗M,ωc) over M . The graph of multiplication Graph(m) is a canonical

relation in rel(M ×M,M). We assume that this canonical relation admits a

generating function S̃ with respect to a fibration

π : Z →M ×M ×M.

Denote the set of critical points of S̃ by CS̃. For each z ∈ CS̃, the assump-

tion that S̃ is a generating function for Graph(m) with respect to π means

that

dzS̃ = π∗(−α1,−α2, α),

where (α1, α2, α) is an element in Graph(m). In this notation, we obtain a

function φ : U → R, defined on the domain of multiplication and such that

for all z ∈ CS̃:

S̃(z) = φ(α1, α2)

Let W ⊆ T ∗Ms×t T ∗Ms×t T ∗M be an open neighborhood of I3 on which

associativity holds. Then δφ : W → R is given by

δφ(α1, α2, α3) = φ(α1, α2) + φ(α, α3)− φ(α2, α3)− φ(α1, α̃),
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where

α = m(α1, α2), α̃ = m(α2, α3), α = m(α1, α2, α3).

If (ṽ1, ṽ2, ṽ3) ∈ T(α1,α2,α3)W and vi = dp(ṽi), we find:

(dδφ)(α1,α2,α3)(ṽ1, ṽ2, ṽ3) =(dφ)(α1,α2)(ṽ1, ṽ2) + (dφ)(α,α3)(dm(ṽ1, ṽ2), ṽ3)

− (dφ)(α2,α3)(ṽ2, ṽ3)− (dφ)(α1,α̃)(ṽ1, dm(ṽ2, ṽ3)).

To compute the above expression, let (ṽ1, ṽ2, dm(ṽ1, ṽ2)) ∈ T(α1,α2,α) Graph(m),

and let z ∈ CS̃, v ∈ TzCS̃, be such thatdzS̃ = π∗(−α1,−α2, α),

dzl(v) = (ṽ1, ṽ2, dm(ṽ1, ṽ2)).
(4.2)

where l : CS̃ → Graph(m) is given by z 7→ (α1, α2, α). We have

(dφ)(α1,α2)(ṽ1, ṽ2) = dxS̃(v)

= 〈π∗(−α1,−α2, α), v〉

= 〈(−α1, α2, α), dπ(v)〉

= 〈(−α1, α2, α), dπ(dl(v))〉

= 〈(−α1, α2, α), dπ(ṽ1, ṽ2, dm(ṽ1, ṽ2))〉

= −α1(dp(ṽ1))− α2(dp(ṽ2)) + α(dp(dm(ṽ1, ṽ2)))

= −α1(v1)− α2(v2) + α(dp(dm(ṽ1, ṽ2)))

This implies that

dδφ(α1, α2, α3)(ṽ1, ṽ2, ṽ3) = −α1(v1)− α2(v2) + α(dp(dm(ṽ1, ṽ2)))

− α(dp(dm(ṽ1, ṽ2)))− α3(v3) + α(dp(dm(ṽ1, ṽ2, ṽ3)))

− (−α2(v2)− α3(v3) + α(dp(dm(ṽ2, ṽ3)))

− α3(v3)− α̃(dp(dm(ṽ2, ṽ3))) + α(dp(dm(ṽ1, ṽ2, ṽ3))))

= 0

If we assume that φ(1x, 1x) = 0 for some x ∈ M and W is connected, we

conclude that δφ = 0, i.e., φ is a groupoid cocycle.

Note also that if α is the Liouville 1-form on T ∗M , the above computation
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shows that

(dφ)(α1,α2)(ṽ1, ṽ2) = −α1(v1)− α2(v2) + α(dp(dm(ṽ1, ṽ2)))

= (− pr∗1 α− pr∗2 α + pr∗3 α)(α1,α2,α)(ṽ1, ṽ2, dm(ṽ1, ṽ2))

= −((pr∗1−m∗ + pr∗2)α)(α1,α2)(ṽ1, ṽ2)

= −(δα)(α1,α2)(ṽ1, ṽ2).

Again, we conclude that (A1) and (A2) are satisfied:

ω = dα, dφ = −δα,

where α is the Liouville 1-form.

4.4 From groupoid cocycles to Poisson Structures

The following result gives a relationship between the groupoid cocycle as-

sociated with a generating function of a local symplectic groupoid and the

underlying Poisson structure.

Theorem 4.4.1. Let (G,Ω) be a local symplectic groupoid with domain of

multiplication U , integrating a Poisson manifold (M,π). Assume there exists

α ∈ Ω1(G) and φ ∈ Ω0(U,R) such that

dα = Ω, dφ = δα, φ|M = 0.

Then under the van Est map the class of φ is mapped to the class of π:

VE : H2(U,R)→ H2(A,R), [φ] 7→ [π].

Before we prove the theorem, let us recall the definition of the van Est

map (see, e.g., [6, 13]). Given a Lie groupoid G ⇒ M with Lie algebroid

A, we denote by Cn(A,R) the space of “A-forms”, i.e., all C∞-multilinear

antisymmetric map

ω : (X1, · · · , Xn) 7→ ω(X1, · · · , Xn) ∈ C∞(M),

where Xi are sections of A. We also denote by Cn(G,R) the space of groupoid
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n-cochains. Then the van Est map, at the level of cochains, is given by

VE : Cn(G,R)→ Cn(A,R),

VE(σ)(X1, · · · , Xn)(x) =
∑
τ∈Sn

sgn(τ)(Xτ(1) · · ·Xτ(n)σ)(x),

where Xi are sections of A and x ∈ M . The expression Xτ(1) · · ·Xτ(n)σ

is defined as follows. For a fixed (g1, · · · , gn−1) ∈ G(n−1). We can view

σ(g1, · · · , gn−1,−) as a function defined on t−1(s(gn−1)). We differentiate it

at 1s(gn−1) with respect to Xτ(n) to get a number. This defines Xτ(n)σ as a

function on G(n−1). More explicitly, we have

Xτ(n)σ(g1, · · · , gn−1) =
d

dt

∣∣∣
t=0
σ(g1, · · · , gn−1, γ(t)),

where γ is a path in t−1(s(gn−1)) such that γ(0) = 1s(gn−1) and γ̇(0) =

Xτ(n)(s(gn−1)). We continue this process for Xτ(1), · · · , Xτ(n−1) and in the

end we are left with a function on G0 = M .

We are interested in the van Est map at degree 2 for a local symplectic

groupoid. There are two things we need to be careful with. The first one

concernes the definition of groupoid cochains for local groupoids, which was

already discussed at the beginning of this chapter. The second one is the fact

that, since A is isomorphic to the cotangent algebroid of M with the induced

Poisson structure, we can identify Cn(A,R) with the space of n-multivector

fields on M . Hence, in what follows, we will focus on the van Est map in

degree 2 and we will view it as a map:

VE : Ω0(U,R)→ X2(M).

Proof of Theorem 4.4.1. Under the assumptions of the theorem, notice that

φ is a groupoid 2-cocycle. As noted above, the Lie algebroid of G is isomor-

phic to the cotangent algebroid T ∗M of the induced Poisson structure on M

via the map

σΩ : A→ T ∗M, α 7→ Ω[(α)|M ,

so the image of an arbitrary φ ∈ Ω0(U,R) under the van Est map is a bivector

on M . We will write down the map more explicitly below.

Let X1, X2 be sections of the Lie algebroid of G. The definition of the van
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Est map and the identification above mean that we have

VE(φ)(Ω[(X1)|M ,Ω[(X2)|X) = X1X2φ−X2X1φ,

where the expressions X1X2φ, X2X1φ are computed as follows. For x ∈ M
and g ∈ G

X2φ(g) =
d

ds

∣∣∣
s=0

φ(g, ϕsX2
(s(g))),

X1X2φ(x) = X1(X2φ)(x) =
d

dt

∣∣∣
t=0

d

ds

∣∣∣
s=0

φ(γ1(t), ϕsX2
(s(γ1(t)))),

where γ1 is the integral curve of X1 starting at x and ϕsX2
is the flow of X2.

We have

d

ds

∣∣∣
s=0

φ(γ1(t), ϕsX2
(s(γ1(t)))) = dφ(0γ1(t), X2(s(γ1(t))))

=δα(0γ1(t), X2(s(γ1(t))))

=(− pr∗1 α− pr∗2 α +m∗α)(0γ1(t), X2(s(γ1(t))))

=(− pr∗1 α− pr∗2 α)(0γ1(t), X2(s(γ1(t)))) + α(dLγ1(t)(X2(s(γ1(t)))))

=− α(X2(s(γ1(t)))) + α(dLγ1(t)(X2(s(γ1(t)))))

=− α(X̃2)((s(γ1(t)))) + α(X̃2)(γ1(t)),

where X̃2 is the left invariant vector field corresponding to X2. Therefore,

we have

X1X2φ(x) =
d

dt

∣∣∣
t=0

(−α(X̃2)((s(γ1(t)))) + α(X̃2)(γ1(t)))

= −ds(X1(x))(α(X̃2)) +X1(x)(α(X̃2)),

and it follows that

X1X2φ−X2X1φ = −ds(X1(x))(α(X̃2)) +X1(x)(α(X̃2))

+ ds(X2(x))(α(X̃1))−X2(x)(α(X̃1))).

91



On the other hand, we also find:

π(Ω[(X1)|M ,Ω[(X2)|M) =Ω[(X1)|M(π#(Ω[(X2)|M))

=Ω[(X1)|M(ds(X2))

=Ω(X1, ds(X2)) = Ω(X1, X2),

where the last equality follows from the fact that X2 − ds(X2) is tangent to

the source fiber, so we have by the multiplicativity of Ω:

Ω(X1, X2 − ds(X2)) = 0.

Using now the assumption Ω = dα, we conclude that

(VE(φ)− π)(Ω[(X1)|M ,Ω[(X2)|M) = X1X2φ−X2X1φ− dα(X1, X2)

= −ds(X1)(α(X̃2)) + ds(X2)(α(X̃1)) + α([X̃1, X̃2])

= −ds(X1)(α(X2)) + ds(X2)(α(X1)) + α([X1, X2]).

where X̃1, X̃2 are the left invariant vector fields on G corresponding to X1, X2.

Here, the term α([X1, X2]) is viewed as a function on M . We claim that the

right-hand side coincides with:

dπX(Ω[(X1)|M ,Ω[(X2)|M),

where X is the vector field corresponding to −α under the isomorphism

σΩ : A→ T ∗M :

X = −(σ∗Ω)−1(α).

In other words, that we have:

VE(φ)− π = dπX,

and this clearly implies the statement of the theorem.

To prove the claim, notice that from the definition of the Poisson differen-
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tial one has:

dπX(Ω[(X1)|M ,Ω[(X2)|M) =

=π#(Ω[(X1)|M)(X(Ω[(X2)|M))− π#(Ω[(X2)|M)(X(Ω[(X1)|M))

− d(X([Ω[(X1)|M ,Ω[(X2)|M))

=ds(X1)(X(Ω[(X2)|M)− ds(X2)(X(Ω[(X1)|M)

− d(X([Ω[(X1)|M ,Ω[(X2)|M)]).

By the definition of σΩ : A→ T ∗M , we have

X(Ω[(Y )|M) = −α(Y ), (4.3)

for every section Y of the Lie algebroid of G. Therefore

dπX(Ω[(X1)|M ,Ω[(X2)|M) =− ds(X1)(α(X2)) + ds(X2)(α(X1))

− dX(Ω[([X1, X2])|M)

=− ds(X1)(α(X2)) + ds(X2)(α(X1))

− dα([X1, X2]).

This proves the claim.
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APPENDIX A

DERIVATION OF SGA EQUATION FOR
THE EUCLIDEAN EXPONENTIAL MAP

In this appendix, we derive the SGA equation with respect to the Euclidean

exponential map:

φ : ((p1, x1), (p2, x2), (p, x)) 7→

((p1 − 1
3(p1 + p2 − p), x− x1),(p2 − 1

3(p1 + p2 − p), x− x2), (1
3(x1 + x2 + x), p1 + p2 − p)).

As in section 4.2, if S is a generating function for a local symplectic

groupoid structure on T ∗Rn, associativity implies that

((p1 − 1
3(p1 + p2 − p), x− x1), (p2 − 1

3(p1 + p2 − p), x− x2), (1
3(x1 + x2 + x), p1 + p2 − p)))

=((p1 − 1
3(p1 + p2 − p),∇1S(p1 − 1

3(p1 + p2 − p), p2 − 1
3(p1 + p2 − p), 1

3(x1 + x2 + x))),

(p2 − 1
3(p1 + p2 − p),∇2S(p1 − 1

3(p1 + p2 − p), p2 − 1
3(p1 + pp2 − p), 1

3(x1 + x2 + x))),

(1
3(x1 + x2 + x),∇xS(p1 − 1

3(p1 + p2 − p), p2 − 1
3(p1 + p2 − p), 1

3(x1 + x2 + x)))),

((p2 − 1
3(p2 + p3 − p̃), x̃− x2), (p3 − 1

3(p2 + p3 − p̃), x̃− x3), (1
3(x2 + x3 + x̃), p2 + p3 − p̃)))

=((p2 − 1
3(p2 + p3 − p̃),∇1S(p2 − 1

3(p2 + p3 − p̃), p3 − 1
3(p2 + p3 − p̃), 1

3(x2 + x3 + x̃))),

(p3 − 1
3(p2 + p3 − p̃),∇2S(p2 − 1

3(p2 + p3 − p̃), p3 − 1
3(p2 + p3 − p̃), 1

3(x2 + x3 + x̃))),

(1
3(x2 + x3 + x̃),∇xS(p2 − 1

3(p2 + p3 − p̃), p3 − 1
3(p2 + p3 − p̃), 1

3(x2 + x3 + x̃)))),

((p1 − 1
3(p1 + p̃− p), x− x1), (p̃− 1

3(p1 + p̃− p), x− x̃), (1
3(x1 + x̃+ x), p1 + p̃− p)))

=((p1 − 1
3(p1 + p̃− p),∇1S(p1 − 1

3(p1 + p̃− p), p̃− 1
3(p1 + p̃− p), 1

3(x1 + x̃+ x))),

(p̃− 1
3(p1 + p̃− p),∇2S(p1 − 1

3(p1 + p̃− p), p̃− 1
3(p1 + p̃− p), 1

3(x1 + x̃+ x))),

(1
3(x2 + x3 + x̃),∇xS(p1 − 1

3(p1 + p̃− p), p̃− 1
3(p1 + p̃− p), 1

3(x1 + x̃+ x)))),
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((p− 1
3(p+ p3 − p), x− x), (p3 − 1

3(p+ p3 − p), x− x3), (1
3(x+ x3 + x), p+ p3 − p)))

=((p− 1
3(p+ p3 − p),∇1S(p− 1

3(p+ p3 − p), p3 − 1
3(p+ p3 − p), 1

3(x+ x3 + x))),

(p3 − 1
3(p+ p3 − p),∇2S(p− 1

3(p+ p3 − p), p3 − 1
3(p+ p3 − p), 1

3(x+ x3 + x))),

(1
3(x+ x3 + x),∇xS(p− 1

3(p+ p3 − p), p3 − 1
3(p+ p3 − p), 1

3(x+ x3 + x)))).

These form the same as the following system of equations:

x− x1 = ∇1S(p1 − 1
3(p1 + p2 − p), p2 − 1

3(p1 + p2 − p), 1
3(x1 + x2 + x)),

x− x2 = ∇2S(p1 − 1
3(p1 + p2 − p), p2 − 1

3(p1 + p2 − p), 1
3(x1 + x2 + x)),

p1 + p2 − p = ∇xS(p1 − 1
3(p1 + p2 − p), p2 − 1

3(p1 + p2 − p), 1
3(x1 + x2 + x)),

x̃− x2 = ∇1S(p2 − 1
3(p2 + p3 − p̃), p3 − 1

3(p2 + p3 − p̃), 1
3(x2 + x3 + x̃)),

x̃− x3 = ∇2S(p2 − 1
3(p2 + p3 − p̃), p3 − 1

3(p2 + p3 − p̃), 1
3(x2 + x3 + x̃)),

p2 + p3 − p̃ = ∇xS(p2 − 1
3(p2 + p3 − p̃), p3 − 1

3(p2 + p3 − p̃), 1
3(x2 + x3 + x̃)),

x− x1 = ∇1S(p1 − 1
3(p1 + p̃− p), p̃− 1

3(p1 + p̃− p), 1
3(x1 + x̃+ x)),

x− x̃ = ∇2S(p1 − 1
3(p1 + p̃− p), p̃− 1

3(p1 + p̃− p), 1
3(x1 + x̃+ x)),

p1 + p̃− p = ∇xS(p1 − 1
3(p1 + p̃− p), p̃− 1

3(p1 + p̃− p), 1
3(x1 + x̃+ x)),

x− x = ∇1S(p− 1
3(p+ p3 − p), p3 − 1

3(p+ p3 − p), 1
3(x+ x3 + x)),

x− x3 = ∇2S(p− 1
3(p+ p3 − p), p3 − 1

3(p+ p3 − p), 1
3(x+ x3 + x)),

p+ p3 − p = ∇xS(p− 1
3(p+ p3 − p), p3 − 1

3(p+ p3 − p), 1
3(x+ x3 + x)).

Consider the function:

∆S(p1, p2, p3, x) =S(p1 − 1
3(p1 + p2 − p), p2 − 1

3(p1 + p2 − p), 1
3(x1 + x2 + x))

+ S(p2 − 1
3(p2 + p3 − p̃), p3 − 1

3(p2 + p3 − p̃), 1
3(x2 + x3 + x̃))

− S(p1 − 1
3(p1 + p̃− p), p̃− 1

3(p1 + p̃− p), 1
3(x1 + x̃+ x))

− S(p− 1
3(p+ p3 − p), p3 − 1

3(p+ p3 − p), 1
3(x+ x3 + x)),

and define also:

F (p1, p2, p3, x) = 1
3((p2 + p− p− p̃)x1 + (p1 − p3 − p+ p̃)x2

+ (−p2 − p+ p+ p̃)x3 + (p1 + p2 + p3 − p)x

+ (−p1 − p2 − p3 + p)x̃+ (−p1 + p− p̃+ p3)x).
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We have that
∂∆S

∂pi
=
∂F

∂pi
(1 ≤ i ≤ 3),

∂∆S

∂x
=
∂F

∂x
.

By our assumption that S(0, 0, x) = 0 for all x ∈ M , we have ∆S = F . So we

obtain the desired equation:

S12− + S23 − 1
3((p2 + p− p− p̃)x1 + (p1 − p3 − p+ p̃)x2 + (p1 + p2 + p3 − p)x)

=S1∼ + S−3 + 1
3((−p2 − p+ p+ p̃)x3 + (−p1 − p2 − p3 + p)x̃+ (−p1 + p− p̃+ p3)x),

where

S12− = S(p1 − 1
3(p1 + p2 − p), p2 − 1

3(p1 + p2 − p), 1
3(x1 + x2 + x)),

S23 = S(p2 − 1
3(p2 + p3 − p̃), p3 − 1

3(p2 + p3 − p̃), 1
3(x2 + x3 + x̃)),

S1∼ = S(p1 − 1
3(p1 + p̃− p), p̃− 1

3(p1 + p̃− p), 1
3(x1 + x̃+ x)),

S−3 = S(p− 1
3(p+ p3 − p), p3 − 1

3(p+ p3 − p), 1
3(x+ x3 + x)),

and

p1 + p2 − p = ∇xS(p1 − 1
3(p1 + p2 − p), p2 − 1

3(p1 + p2 − p), 1
3(x1 + x2 + x))

p2 + p3 − p̃ = ∇xS(p2 − 1
3(p2 + p3 − p̃), p3 − 1

3(p2 + p3 − p̃), 1
3(x2 + x3 + x̃)),

p1 + p̃− p = ∇xS(p1 − 1
3(p1 + p̃− p), p̃− 1

3(p1 + p̃− p), 1
3(x1 + x̃+ x)),

p+ p3 − p = ∇xS(p− 1
3(p+ p3 − p), p3 − 1

3(p+ p3 − p), 1
3(x+ x3 + x)),

x− x1 = ∇1S(p1 − 1
3(p1 + p2 − p), p2 − 1

3(p1 + p2 − p), 1
3(x1 + x2 + x)),

x̃− x2 = ∇1S(p2 − 1
3(p2 + p3 − p̃), p3 − 1

3(p2 + p3 − p̃), 1
3(x2 + x3 + x̃)),

x− x1 = ∇1S(p1 − 1
3(p1 + p̃− p), p̃− 1

3(p1 + p̃− p), 1
3(x1 + x̃+ x)),

x− x = ∇1S(p− 1
3(p+ p3 − p), p3 − 1

3(p+ p3 − p), 1
3(x+ x3 + x)).
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