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1 Introduction

Lie theory originates from the pioneer work of Sophus Lie. Underlying the

theory there are three basic results known as Lie’s theorems. These theo-

rems indicate that there is a one-to-one correspondence between isomorphism

classes of finite-dimensional Lie algebras and isomorphism classes of simply

connected Lie groups. Formal statements and a simple proofs of the first two

theorems can be found in Warner ([1]). Lie’s third theorem, stating that ev-

ery finite-dimensional Lie algebra integrates to a Lie group, is a much deeper

result. There are various proofs of this theorem. An algebraic proof can be

given using the result of Ado ([2]), which states that every finite-dimensional

Lie algebra has a faithful representation in gl(n,R) for some n. A geometric

proof was given by Van Est ([3],[4]) in 1962. Another geometric proof can

be found in Duistermaat and Kolk ([5]).

This paper will focus on and interpret the proof given by Van Est. We first

show that the second Lie algebra cohomology classifies the abelian exten-

sion of Lie algebras. Then we introduce the Van Est theorem, which relates

Lie group cohomology and Lie algebra cohomology. Finally, we identify any

given finite-dimensional Lie algebra with the semi-direct product of its center

and its adjoint Lie algebra and use the previous results to prove Lie’s third

theorem.

2 Lie Algebra Cohomology and Lie Group Cohomology

In this section, we will discuss Lie algebra cohomology and Lie group coho-

mology. In §2.1, we give the definition of Lie algebra cohomology and Lie

group cohomology ([6]). We have a closer look at the second cohomology

group of Lie algebras in §2.2 and show how it classifies the abelian extension

of Lie algebras in §2.3. Finally we look at a similar assertion for Lie groups

in §2.4.
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2.1 Lie Algebra Cohomology And Lie Group Cohomology

Given a Lie algebra h with a representation ρ : h→ gl(V ). Let

Ωk(h;V ) = {ω : hn → V |multilinear and skew-symmetric}.

We can define δ : Ck(h;V )→ Ck+1(h;V ) by

(δω)(h0, h1, ..., hk) =
k∑
i=0

(−1)iρ(hi)(ω(h0, ..., ĥi, ..., hk))

+
∑

0≤i<j≤k

(−1)i+jω([hi, hj], h0, ..., ĥi, ..., ĥj, ..., hk).

We can check that δ2 = 0. This allows us define the Lie algebra cohomology.

Definition (Lie Algebra Cohomology). Given a Lie algebra h with a repre-

sentation ρ : h→ gl(V ), define Ωk(h;V ) and δ as above, its k-th cohomology

group with coefficients in V is

Hk(h;V ) =
Ker(δ : Ωk(h;V )→ Ωk+1(h;V ))

Im(δ : Ωk−1(h;V )→ Ωk(h;V ))
.

It’s easy to check this is a group under addition. When V = R and ρ is

the trivial representation, we write Ωk(g) = Ωk(g;R) and Hk(g) = Hk(g;R).

The construction of Lie group cohomology is similar to Lie algebra cohomol-

ogy. Given a Lie group H with a representation ρ : H → Gl(V ), let

Ck(H;V ) = {c : Hn → V |smooth}.

Define θ : Ck(H;V )→ Ck+1(H;V ) by

(θc)(g0, g1, ..., gk) = ρ(g0)c(g1, ..., gk) +
k−1∑
i=0

(−1)i+1c(g0, ..., gigi+1, ..., gk)

+ (−1)k+1c(g0, ..., gk−1).

We can also check that θ2 = 0, thus we can define the Lie group cohomology.
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Definition (Lie Group Cohomology). Given a Lie group H with a represen-

tation ρ : H → Gl(V ), define Ck(H;V ) and θ as above, its k-th cohomology

group with coefficients in V is

Hk(H;V ) =
Ker(θ : Ck(H;V )→ Ck+1(H;V ))

Im(θ : Ck−1(H;V )→ Ck(H;V ))
.

It’s easy to check this is also a group under addition. When V = R and

ρ is the trivial representation, we write Ck(G) = Ck(G;R) and Hk(G) =

Hk(G;R).

2.2 The Second Cohomology Group of Lie Algebras

Given a Lie algebra h with a representation ρ : h → gl(V ), for each ω ∈
Ω2(h;V ) such that δω = 0, we can construct gω = h×V with a bracket[ , ]ω:

[(Y1, v1), (Y2, v2)]ω = ([Y1, Y2]h, ρ(Y1)(v2)− ρ(Y2)(v1) + ω(Y1, Y2)).

Claim 1. gω is a Lie algebra.

Proof. Clearly [ , ]ω is bilinear. And it is also skew-symmetric by construction

and noticing that both [ , ]h and ω are skew-symmetric. We only need to

check the Jacobi identity:

[[(Y1, v1), (Y2, v2)]ω, (Y3, v3)]ω + [[(Y2, v2), (Y3, v3)]ω, (Y1, v1)]ω + [[(Y3, v3), (Y1, v1)]ω, (Y2, v2)]ω

=[([Y1, Y2]h, ρ(Y1)(v2)− ρ(Y2)(v1) + ω(Y1, Y2)), (Y3, v3)]ω

+ [([Y2, Y3]h, ρ(Y2)(v3)− ρ(Y3)(v2) + ω(Y2, Y3)), (Y1, v1)]ω

+ [([Y3, Y1]h, ρ(Y3)(v1)− ρ(Y1)(v3) + ω(Y3, Y1)), (Y2, v2)]ω

=([[(Y1, v1), (Y2, v2)]h, (Y3, v3)]h + [[(Y2, v2), (Y3, v3)]h, (Y1, v1)]h + [[(Y3, v3), (Y1, v1)]h, (Y2, v2)]h,

+ (ρ([Y1, Y2])− ρ(Y1)ρ(Y2) + (ρ(Y2)ρ(Y1))(v3) + (ρ([Y2, Y3]) + ρ(Y3)ρ(Y2)− ρ(Y2)ρ(Y3))(v1)

+ (ρ([Y3, Y1])− ρ(Y3)ρ(Y1) + (ρ(Y1)ρ(Y3))(v2)− ρ(Y3)ω(Y1, Y2)− ρ(Y1)ω(Y2, Y3)− ρ(Y2)ω(Y3, Y1)

+ ω(ω(Y1, Y2), Y3) + ω(ω(Y2, Y3), Y1) + ω(ω(Y3, Y1), Y2))

=(0, 0− (δω)(Y1, Y2, Y3)) = 0.

Claim 2. If [ω1]=[ω2] in H2(h;V ), then g1 ∼= g2 as Lie algebra.
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Proof. If [ω1] = [ω2], then ∃ν ∈ Ω1(h;V ) such that ω1 − ω2 = δν. Define:

Φ : gω1 → gω2 ,

(y, v) 7→ (y, v + ν(y)).

Clearly it’s a linear bijection, we only need to check whether it is a homo-

morphism:

[Φ(Y1, v1),Φ(Y2, v2)]ω2 =[(Y1, v1 + ν(Y1))), (Y2, v2 + ν(Y2))]ω2

=([Y1, Y2]h, ρ(Y1)(v2 + ν(Y2))− ρ(Y2)(v1 + ν(Y1)) + ω2(Y1, Y2))

=([Y1, Y2]h, ρ(Y1)(v2 + ν(Y2))− ρ(Y2)(v1 + ν(Y1)) + (ω1 − (δν))(Y1, Y2))

=([Y1, Y2]h, ρ(Y1)(v2)− ρ(Y2)(v1) + ω1(Y1, Y2)− ρ(Y1) + ν([Y1, Y2]))

=Φ([(Y1, v1), (Y2, v2)]ω1).

2.3 Abelian extension of Lie Algebras

Given any short exact sequence of Lie algebras:

0→ V
i−→ g

φ−→ h→ 0,

where V ∈ g is abelian, let σ : h→ g be any linear map such that φ ◦σ = id.

We can define:

Φ : g→ h× V,

X 7→ (φ(X), X − σ(φ(X)).
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It’s easy to see that Φ is a linear isomorphism with Φ−1(Y, v) = σ(Y ) + v as

its inverse. To make this a Lie algebra isomorphism, we define:

ρσ : h→ gl(V ),

Y 7→ ρσ,Y ,

ρσ,Y (v) = [σ(Y ), v]g,

ωσ : h× h→ V,

(Y1, Y2) 7→ [σ(Y1), σ(Y2)]g − σ([Y1, Y2]h).

Then define the bracket [ , ]σ on h× V by:

[(Y1, v1), (Y2, v2)]σ = ([Y1, Y2]h, ρσ,Y1(v2)− ρσ,Y2(v1) + ω(Y1, Y2)).

We can check that:

[Φ(X1),Φ(X2)]σ =[(φ(X1), X1 − σ(φ(X1)), (φ(X2), X2 − σ(φ(X2))]σ

=([φ(X1), φ(X2)]h, ρσ,φ(X1)(X2 − σ(φ(X2))− ρσ,φ(X2)(X1 − σ(φ(X1))

+ ωσ(φ(X1), φ(X2)))

=(φ([X1, X2]g), [σ(φ(X1), X2 − σ(φ(X2)]g − [σ(φ(X2), X1 − σ(φ(X1)]g

+ [σ(φ(X1)), σ(φ(X2))]g)− σ([φ(X1), φ(X2)]h))

=(φ([X1, X2]g),−[X1 − σ(φ(X1), X2 − σ(φ(X2)]g + [X1, X2]g − σ([φ(X1), φ(X2)]h))

=(φ([X1, X2]g), [X1, X2]g − σ([φ(X1), φ(X2)]h))

=Φ([X1, X2]g).

Thus Φ is a Lie algebra isomorphism.

The following statements show that for fixed φ, our choice of σ does not

affect the result. First, ∀σ′ such that φ ◦ σ′ = id, we have

(ρσ−ρσ′)(Y )(v) = (ρσ,Y−ρσ′,Y )(v) = ([σ(Y ), v]−[σ(Y ), v]) = ([(σ(Y )−σ′(Y )), v]).

Recall that φ(σ − σ′) = 0, we have (σ − σ′)(Y ) ∈ Ker(φ) = V , thus ρσ = ρ′σ,

we can denote ρσ as ρ.
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Then can check that:

δ(ωσ))(Y1, Y2, Y3) =ρ(Y1)ωσ([Y2, Y3]h)− ρ(Y2)ωσ([Y1, Y3]h) + ρ(Y3)ωσ([Y1, Y3]h)

− ωσ([[Y1, Y2]h, Y3) + σ([[Y2, Y3]h, Y1)− σ([[Y1, Y3]h, Y2)

=2([[σ(Y2), σ(Y3)]g, σ(Y1)]g − [[σ(Y1), σ(Y3)]g, σ(Y2)]g + [[σ(Y1), σ(Y2)]g, σ(Y3)]g)

=0.

Thus ωσ ∈ Ker(Ω2(h;V )→ Ω3(h;V )).

Finally, ∀σ′ such that φ ◦ σ′ = id, we have:

(ωσ − ωσ′)(Y1, Y2) =[σ(Y1), σ(Y2)]g − σ([Y1, Y2]h)− ([σ′(Y1), σ
′(Y2)]g − σ′([Y1, Y2]h))

=(σ′ − σ)([Y1, Y2]h) + [σ(Y1), σ(Y2)]g − [σ′(Y1), σ
′(Y2)]g

− [σ(Y1), σ
′(Y2)]g + [σ′(Y2), σ(Y1)]g

=[σ(Y1), (σ − σ′(Y2))]− [σ′(Y2), (σ − σ′)(Y1)]− (σ − σ′)([Y1, Y2]h)

=ρ(Y1)(σ − σ′)(Y2)− ρ(Y2)(σ − σ′)(Y1)− (σ − σ′)([Y1, Y2]h)

=δ(σ − σ′)(Y1, Y2).

Thus [ωσ] = [ωσ′ ] in H2(h, V ).

Then by §2.2, we can conclude that H2(h, V ) classifies the isomorphism

classes of abelian extensions of h by V .

2.4 The Second Cohomology Group of Lie Groups

Similarly, for a given Lie group H and its representation ρ : H → Gl(V ), we

can construct Gc = H × V for each c ∈ C2(H;V ) with a multiplication·c:

(h1, v1) ·c (h2, v2) = (h1h2, v1 + ρ(h1)(v2) + c(h1, h2)).

Claim 3. Gc is a Lie group.

Proof. Clearly we have (1, 0) as the identity and (h−1,−v) as the inverse of
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(h, v). It remains for us to check ·c is associative:

((h1, v1) ·c (h2, v2)) ·c (h3, v3) = (h1h2, v1 + ρ(h1)(v2) + c(h1, h2)) ·c (h3, v3)

= (h1h2h3, v1 + ρ(h1)(v2) + c(h1, h2) + ρ(h1h2)(v3) + c(h1h2, h3)).

(h1, v1) ·c ((h2, v2) ·c (h3, v3)) = (h1, v1) ·c (h2h3, v2 + ρ(h2)(v3) + c(h2, h3))

= (h1h2h3, v1 + ρ(h1)(v2 + ρ(h2)(v3) + c(h2, h3)) + c(h1, h2h3)).

((h1, v1) ·c (h2, v2)) ·c (h3, v3)− (h1, v1) ·c ((h2, v2) ·c (h3, v3))

= (0, c(h1h2) + c(h1h2, h3) + ρ(h1)c(h1, h2)− c(h1, h2h3)− ρ(h1)c(h2, h3))

= (0,−(δc)(h1, h2, h3)) = 0.

Claim 4. If [c1] = [c2] in H2(H;V ), then Gc1
∼= Gc2 is a Lie group isomor-

phism.

Proof. If [c1] = [c2], then ∃f ∈ H2(H;V ) such that c1 − c2 = δf . Define:

Φ : Gc1 → Gc2 ,

(h, v) 7→ (h, v + f(h)).

Clearly this is a diffeomorphism, we only need to check whether it’s also a

homomorphism:

Φ(h1, v1) ·c2 Φ(h2, v2) = (h1, v1 + f(h1)) ·c2 (h2, v2 + f(h2))

= (h1h2, v1 + f(h1) + ρ(h1)(v2 + f(h2)) + c2(h1, h2))

= (h1h2, v1 + f(h1) + ρ(h1)(v2 + f(h2)) + (c1 − (δf))(h1, h2))

= (h1h2, v1 + ρ(h1)(v2) + c1(h1, h2) + f(h1h2)

= Φ((h1, v1) ·c1 (h2, v2)).

A claim similar to what we saw above for abelian extensions of Lie algebras

can be made for Lie groups. Its second cohomology group H2(H;V ) classifies

the isomorphism classes of abelian extensions of H by V .
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3 The Van Est Theorem

In this section, we will introduce the Van Est Theorem and its corollary

regarding simply connected Lie groups ([7],[8]). Then we will give some

examples to illustrate it.

Theorem (Van Est). Let G be an m-connected Lie group with Lie algebra g,

ρ : G→ V a representation of G, then H i(G;V ) is isomorphic with H i(g;V )

for i = 0, 1, ...,m

By a result from Hopf ([9]), every simply connected Lie group is 2-connected,

so we have the following corollary.

Corollary 1. Let G be a simply connected Lie group with Lie algebra g, then

H i(G;V ) is isomorphic with H i(g;V ) for i = 0, 1, 2.

The following examples illustrate these results.

Example 1. SU(2).

Let G = SU(2), then g = su(2).

Since SU(2) ∼= S3 and the cohomology group of a compact Lie group is

always trivial, we have H∗(SU(2)) ≡ 0.

Since ∀ω ∈ Ω1(su(2)), (δω)(X0, X1) = 0 implies −ω([X0, X1]) = 0, [g, g] = g

then implies ω = 0. Thus we have H1(su(2)) = 0.

To compute the cohomology group of higher degree, we use the following

basis for su(2):

u1 =

(
0 i

i 0

)
, u2 =

(
0 −1

1 0

)
, u3 =

(
i 0

0 −i

)
.

Notice that [u1, u2] = 2u3, [u2, u3] = 2u1, [u3, u1] = 2u2.

Let

σi(uj) =

1, if j = i

0, if j 6= i
.

Then the basis for Ω1(su(2)) is {σ1, σ2, σ3}.
Since

(δσ1)(ui, uj) = −σ1([ui, uj]) =


−2, if i = 2, j = 3

2, if i = 3, j = 2

0, else

,
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the basis of the image of Ωk−1(su(2)) under δ is {σ1 ∧ σ2, σ2 ∧ σ3, σ3 ∧ σ1} by

symmetricity, which is also a basis of Ω2(su(2)), thus the map δ is surjective.

Thus we have H2(su(2)) = 0.

For H3(su(2)), consider ω = Tr([X1, X2]X3), it’s easy to check that δω = 0.

Now suppose ∃ω′ ∈ Ω2(su(2)) such that δω′ = ω, then we must have

ω(u1, u2, u3) = −ω′([u1, u2], u3) + ω′([u1, u3], u2)− ω′([u2, u3], u1)

= −2(ω′(u3, u3) + ω′(u2, u2) + ω′(u1, u1))

= 0.

However, ω(u1, u2, u3) = Tr(2u23) = −2 6= 0. Thus such ω′ does not exist, i.e.

[ω] 6= 0 in H3(su). So H3(su(2)) is not isomorphic with H3(SU(2)), which

agrees with the fact that π3(SU(2)) = π3(S
3) = R 6= 0.

Example 2. Tn

Let G = Tn, g = Rn. then π1(Tn) 6= 0.

By compactness of Tn, we still have H∗(Tn) ≡ 0.

Since ω is multilinear and Rn is abelian, ∀ω′ ∈ Ωk−1(Tn):

(δω′)(X0, X1, ..., Xk) =
∑

0≤i<j≤k

(−1)i+jω([Xi, Xj], X0, ..., X̂i, ..., X̂j, ..., Xk) = 0.

However, let {ei}i=1,...,n be the basis of Rn, define σi by

σi(ej) =

1, if j = i

0, if j 6= i
.

We have ω = σ1 ∧σ2 ∧ ...∧σk+1 ∈ Ωk+1(Rn) nontrivial for (k+ 1) ≤ n. Thus

Hm(Rn) is not isomorphic with Hm(Tn) for m ≤ n. This does not contradict

Van Est since π1(Tn) 6= 0.

4 Proof of Lie’s Third Theorem

In this section, we will prove the main theorem. First, for any given finite-

dimensional Lie algebra g, using the results in §2, we can identify it with the

semi-direct product of its center and its adjoint Lie algebra, both of which
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can be integrated into simply connected Lie groups. Then we use the Van

Est Theorem to conclude that there is a semi-direct product of these two Lie

groups which has a Lie group structure making g its Lie algebra.

Theorem (Lie’s Third Theorem). Given any finite-dimensional Lie algebra

g, there is a Lie group G such that g is the Lie algebra of G.

Proof. Let g be an arbitary finite-dimensional Lie algebra. Consider the

adjoint representation:

ad : g→ End(g),

X 7→ adX ,

adX(Y ) = [X, Y ].

The kernel of ad is the center of g, denoted as Z(g). Thus we have the

following short exact sequence:

0→ Z(g)
i−→ g

ad−→ ad(g)→ 0.

Using the results of §2.3, let σ : ad(g) → g be any linear map such that

ad ◦σ = id, and define:

ω : ad(g)× ad(g)→ Z(g),

(Y1, Y2) 7→ σ([Y1, Y2]ad(g))− [σ(Y1), σ(Y2)]ad(g).

we have the following isomorphism:

Φ : g→ ad(g)× Z(g),

X 7→ (ad(X), X − σ(adX)).

The Lie bracket [ , ]h on ad(g)× Z(g) is

[(Y1, z1), (Y2, z2)]h = ([Y1, Y2]ad(g), ω(Y1, Y2)).

There exists a simply connected Lie group Âd(g) whose Lie algebra is ad(g).

Let ρ : H → Gl(Z(g)) ≡ e. Then by corollary 1, ∃c ∈ C2(Âd(g); Z(g)) and
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[dc] = [ωσ]. Now let G = Âd(g)× Z(g) with the multiplication:

(h1, v1) · (h2, v2) = (h1h2, v1 + v2 + c(h1, h2)).

Then G is a Lie group with Lie algebra g.
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