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Goals

Establish stability results for symplectic leaves of Poisson
manifolds;

Understand the relationship between (apparently) distinct
stability results in different geometric settings;
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Background and Classical Results
Stability in Poisson geometry

Universal Stability Theorem
Proofs

Goals

Establish stability results for symplectic leaves of Poisson
manifolds;

Understand the relationship between (apparently) distinct
stability results in different geometric settings;

Based on the paper:
• M. Crainic and RLF, Stability of symplectic leaves, Preprint arXiv:0810.4437
(to appear in Inventiones Mathematicae).
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Stability in Poisson geometry

Universal Stability Theorem
Proofs

Flows
Group actions
Foliations

Flows: Stability of periodic orbits

Definition

A periodic orbit of a vector field X ∈ X(M) is called stable if
every nearby vector field also has a nearby periodic orbit.

Basic Fact: Stability is controled by the Poincaré return
map h : T → T .
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Flows: Stability of periodic orbits

Simple assumptions on dxh lead to stability:
If 1 is not an eigenvalue of dxh then the orbit is stable.

Consider the representation ρ : Z→ GL(ν(O)x ), defined by

n · v := (dxh)nv .

H•(Z, ν(O)x ) ≡ group cohomology with coefficients in ν(O)x .

Theorem

Let O be a periodic orbit of a vector field X and assume that

H1(Z, ν(O)x ) = 0.

Then O is stable: every nearby vector field has a family of
nearby periodic orbits smoothly parametrized by H0(Z, ν(O)x ).
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Group actions: stability of orbits

Fix a manifold M and a Lie group G
Action α : G ×M → M ⇔ homomorphism α : G→ Diff(M)
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Group actions: stability of orbits

Fix a manifold M and a Lie group G
Action α : G ×M → M ⇔ homomorphism α : G→ Diff(M)

Act(G; M) ⊂ Maps(G; Diff(M))

=⇒ Act(G; M) has a natural Cr topology

Definition

An orbit O of α ∈ Act(G; M) is called stable if every nearby
action in Act(G; M) has a nearby orbit diffeomorphic to O.
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Group actions: stability of orbits

The stability of an orbit O is controled by the isotropy
representation:

Gx := {g ∈ G : g · x = x} isotropy group at x ∈ O.
g ∈ Gx induces a map αg : M → M, y 7→ g · y that fixes x
and maps the orbit to the orbit.

O

x

dxαg : TxM → TxM, dxαg(TxO) = TxO.

Rui Loja Fernandes Stability of Symplectic Leaves



Background and Classical Results
Stability in Poisson geometry

Universal Stability Theorem
Proofs

Flows
Group actions
Foliations

Group actions: stability of orbits

The stability of an orbit O is controled by the isotropy
representation:

Gx := {g ∈ G : g · x = x} isotropy group at x ∈ O.
g ∈ Gx induces a map αg : M → M, y 7→ g · y that fixes x
and maps the orbit to the orbit.

O

x

dxαg : TxM → TxM, dxαg(TxO) = TxO.

Rui Loja Fernandes Stability of Symplectic Leaves



Background and Classical Results
Stability in Poisson geometry

Universal Stability Theorem
Proofs

Flows
Group actions
Foliations

Group actions: stability of orbits

The stability of an orbit O is controled by the isotropy
representation:

Gx := {g ∈ G : g · x = x} isotropy group at x ∈ O.
g ∈ Gx induces a map αg : M → M, y 7→ g · y that fixes x
and maps the orbit to the orbit.

O

x

dxαg : TxM → TxM, dxαg(TxO) = TxO.

Rui Loja Fernandes Stability of Symplectic Leaves



Background and Classical Results
Stability in Poisson geometry

Universal Stability Theorem
Proofs

Flows
Group actions
Foliations

Group actions: stability of orbits

The stability of an orbit O is controled by the isotropy
representation:

Gx := {g ∈ G : g · x = x} isotropy group at x ∈ O.
g ∈ Gx induces a map αg : M → M, y 7→ g · y that fixes x
and maps the orbit to the orbit.

O

x

dxαg : TxM → TxM, dxαg(TxO) = TxO.

Rui Loja Fernandes Stability of Symplectic Leaves



Background and Classical Results
Stability in Poisson geometry

Universal Stability Theorem
Proofs

Flows
Group actions
Foliations

Group actions: stability of orbits

The stability of an orbit O is controled by the isotropy
representation:

Gx := {g ∈ G : g · x = x} isotropy group at x ∈ O.
g ∈ Gx induces a map αg : M → M, y 7→ g · y that fixes x
and maps the orbit to the orbit.

O

x

dxαg : TxM → TxM, dxαg(TxO) = TxO.
⇒ ρ(g) : ν(O)x → ν(O)x .
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Group actions: stability of orbits

Linear normal isotropy representation:

ρ : Gx → GL(ν(O)x )

H•(Gx , ν(O)x ) denotes the corresponding group cohomology.

Theorem (Hirsch,Stowe)

Let O be a compact orbit and assume that

H1(Gx , ν(O)x ) = 0.

Then O is stable: every nearby action has a family of nearby
diffeomorphic orbits smoothly parametrized by H0(Gx , ν(O)x ).
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Foliations: stability of leaves

Fix a manifold M and denote by Folq(M) the set of codimension
q foliations. Frobenius says:

Folq(M) oo // {D : M → Grq(TM)|D is involutive}

=⇒ Folq(M) has a natural Cr -topology

Definition

A leaf L of a foliation F ∈ Folk (M) is called stable if every
nearby foliation in Folk (M) has a nearby leaf diffeomorphic to L.
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The stability of a leaf L is controled by the holonomy of L.
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Fix x ∈ L so that we have the holonomy homomorphism:

Hol := HolT ,T : π1(L, x)→ Diffx (T ).
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Fix x ∈ L so that we have the holonomy homomorphism:

Hol := HolT ,T : π1(L, x)→ Diffx (T ).

Note: The Poincaré return map is a special case of this.
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Foliations: stability of leaves

Differentiating gives the linear holonomy representation:

ρ : π1(L, x)→ GL(ν(L)x ), ρ := dx ◦ Hol

H•(π1(L, x), ν(L)x ) denotes corresponding group cohomology.

Theorem (Reeb, Thurston, Langevin & Rosenberg)

Let L be a compact leaf and assume that

H1(π1(L, x), ν(L)x ) = 0.

Then L is stable: every nearby foliation has a family of nearby
diffeomorphic leaves smoothly parametrized by H0(π1(L, x), ν(L)x ).
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Stability of leaves versus stability of orbits

In general, the two theorems are quite different (e.g., dimension
of orbits of actions can vary).

However:
if Gx is discrete, dimension of orbits is locally constant;
if, additionally, G is 1-connected, then π1(O, x) = Gx ;
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Stability of leaves versus stability of orbits

In general, the two theorems are quite different (e.g., dimension
of orbits of actions can vary).

However:
if Gx is discrete, dimension of orbits is locally constant;
if, additionally, G is 1-connected, then π1(O, x) = Gx ;

Then the linear holonomy coincides with the linear isotropy
representation, and the theorem for actions follows from the
theorem for foliations.
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Cohomology
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Poisson structures
For Poisson bracket { , } we denote by π the associated Poisson
bivector:

π(df , dg) := {f ,g}.

Poiss(M) ←→ {π : M → ∧2(TM)| [π, π] = 0}.

=⇒ Poiss(M) has a natural Cr topology

Definition

A symplectic leaf S of π ∈ Poiss(M) is called:

stable if every nearby Poisson structure in Poiss(M) has a
nearby leaf diffeomorphic to S.

strongly stable if every nearby Poisson structure in Poiss(M) has
a nearby leaf symplectomorphic to S.
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Examples (Constant and linear Poisson structures)

M = R2 with π = 0 −→ πε = ε ∂∂x ∧
∂
∂y
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M = R2 with π = 0 −→ πε = ε ∂∂x ∧
∂
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=⇒ no leaves are stable.
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Examples (Constant and linear Poisson structures)

M = sl∗(2,R) ' R3

=⇒ some leaves are stable.
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Examples (Constant and linear Poisson structures)

M = su∗(2) ' R3

=⇒ all leaves are stable.
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Poisson cohomologies

Stability of a symplectic leaf S of a Poisson manifod (M, π) is
controled by certain cohomologies:

Poisson cohomology: H•
π(M) is the cohomology of (Xk (M), dπ),

the complex of multivector fields with dπ := [π, ].

Restricted Poisson cohomology: H•
π,S(M) is the cohomology of

(X•S(M), dπ|S), the complex of multivector fields along S.

Relative Poisson cohomology: H•
π(M,S) is the cohomology of

the quotient complex:

X•(M,S) := X•S(M)/Ω•(S)

(the inclusion Ω•(S) ↪→ X•S(M) is obtained by dualizing the
anchor π] : T ∗S M −→ TS).
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Stability

Theorem (Crainic & RLF)

Let S be a compact symplectic leaf and assume that

H2
π(M,S) = 0.

Then S is stable: every nearby Poisson structure has a family of
nearby diffeomorphic leaves smoothly parametrized by H1

π(M,S).

The relative Poisson cohomology H•
π(M,S) is typically finite

dimensional.

H1
π(M,S) coincides with the space of leaves of the first jet

approximation j1
Sπ which project diffeomorphically to S.

Again, this result is quite different from the previous ones.
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Strong stability

Theorem (Crainic & RLF)

Let S be a compact symplectic leaf and assume that

H2
π,S(M) = 0.

Then S is strongly stable: every nearby Poisson structure has a
family of nearby symplectomorphic leaves smoothly parametrized by
by the image of Φ : H1

π,S(M)→ H1
π(M,S).

The parameter space of strongly stable leaves is a subspace of the
parameter space for stable leaves.

It coincides with the space of leaves of j1
Sπ which project

diffeomorphically to S and which have symplectic form isotopic to ωS .
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Stability versus strong stability

The condition for strong stability (i.e., H2
π,S(M) = 0) does not imply

the condition for stability (H2
π(M,S) = 0).

Conjecture

If S is a compact symplectic leaf and the map

Φ : H2
π,S(M)→ H2

π(M,S)

vanishes, then any Poisson structure close enough to π admits
at least one nearby symplectic leaf diffeomorphic to S.

There is a similar conjecture for group actions due to Stowe (still
open?).
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Necessary conditions for stability

A Poisson structure π is said to be of first order around a symplectic
leaf S if π is Poisson diffeomorphic to j1Sπ in some neighborhood of S.

Theorem (Crainic & RLF)

Let π be a Poisson structure which is of first order around a
compact symplectic leaf S. Then:

(i) If S is stable, then the map Φ : H2
π,S(M)→ H2

π(M,S)
vanishes.

(ii) If S is strongly stable, then H2
π,S(M) = 0.
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Example: dual of a Lie algebra

M = g∗ where g is a compact semi-simple Lie algebra:

Symplectic leaves are the coadjoint orbits: S = Oξ;

All leaves satisfy criteria for stability and strong stability:
H2
π,S(M) = H2

π(M,S) = 0.

We have H1
π,S(M) = H2(S) and H1(M,S) = 0;
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Example: dual of a Lie algebra

M = g∗ where g is a compact semi-simple Lie algebra:

Symplectic leaves are the coadjoint orbits: S = Oξ;

All leaves satisfy criteria for stability and strong stability:
H2
π,S(M) = H2

π(M,S) = 0.

We have H1
π,S(M) = H2(S) and H1(M,S) = 0;

Conclusion: Every nearby Poisson structure has a one nearby
symplectic leaf symplectomorphic to S and a dim Z (gξ)-family of
symplectic leaves diffeomorphic to S.
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Basic problem

Is there a general setup to deal with stability problems?

To answer this question one requires a setup where geometric
objects such as flows, actions, foliations, Poisson structures,
etc., are all on equal footing.

=⇒ Lie groupoids/algebroids
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Lie algebroids

Definition

A Lie algebroid is a vector bundle A→ M with:
(i) a Lie bracket [ , ]A : Γ(A)× Γ(A)→ Γ(A);
(ii) a bundle map ρ : A→ TM (the anchor);

such that:

[α, fβ]A = f [αβ]A + ρ(α)(f )β, (f ∈ C∞(M), α, β ∈ Γ(A)).

Im ρ ⊂ TM is a integrable (singular) distribution
⇓

Lie algebroids have a characteristic foliation
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Lie algebroids
Examples

Flows. For X ∈ X(M), the associated Lie algebroid is:
A = M × R, [f ,g]A := fX (g)− gX (f ), ρ(f ) = fX .

Leaves of A are the orbits of X .

Actions. For α ∈ Act(G; M), the associated Lie algebroid is:
A = M × g, ρ =infinitesimal action,
[f ,g]A(x) = [f (x),g(x)]g + Lρ(f (x))g(x)− Lρ(g(x))f (x).

Leaves of A are the orbits of α (for G connected).
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Lie algebroids
Examples

Foliations. For F ∈ Folk (M), the associated Lie algebroid
is:

A = TF , [X ,Y ]A = [X ,Y ], ρ =id.
Leaves of A are the leaves of F .

Poisson structures. For π ∈ Poiss(M), the associated Lie
algebroid is:

A = T ∗M, ρ = π],
[df , dg]A = d{f ,g}, (f ,g ∈ C∞(M)).

Leaves of A are the symplectic leaves of π.
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Universal Stability Theorem

For a fixed vector bundle A there is a natural Cr topology
on the set Algbrd(A) of Lie algebroid structures on A.

A leaf L of A is called stable if every nearby Lie algebroid
structure in Algbrd(A) has a nearby leaf diffeomorphic to L.

The normal bundle ν(L) carries a canonical Bott type
A|L-connection.

One can define the restricted A-cohomology with
coefficients in ν(L), denoted H•(A|L; ν(L)).
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Universal Stability Theorem

Theorem (Crainic & RLF)

Let L be a compact leaf of A, and assume that H1(A|L; ν(L)) = 0.
Then L is stable: every nearby Lie algebroid has a family of nearby
leaves smoothly parametrized by H0(A|L; νL).

The parameter space be characterized as the space of leaves of
the first jet approximation to the Lie algebroid A along L.

For Lie algebroid structures of first order type around L the
condition in the theorem is also a necessary condition for
stability.
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From Lie algebr(oids) to Lie group(oids)
The fundamental group of A based at x :

Gx (A) =
{A-loops based at x}

A-homotopies
.

Gx (A) need not be smooth. If it is smooth, then it is a Lie group
integrating the isotropy Lie algebra gx (A).

Parell transport along A-paths applied to the Bott representation
of A|L gives the linear holonomy representation:

hol : Gx (A) −→ GL(ν(L)x ).

Proposition

If Gx (A) is smooth, then for any x ∈ L:

H1(A|L; ν(L)) ∼= H1(Gx (A); ν(L)x ).
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Recovering the stability theorems:

Foliations: If A = TF , then Gx (A) = π1(L, x), the Bott representation
becomes the usual one on ν(L), and we have:

H1(A|L; ν(L)) ∼= H1(π1(L, x); ν(L)x ).

We recover the classical result.

Actions: If A = g n M is associated with a 1-connected Lie group G, then
Gx (A) = Gx , the Bott representation becomes the linear isotropy
Lie algebra on ν(O)x and we have:

H1(A; ν(O)) ∼= H1(Gx ; ν(O)x ).

We recover the classical result under the assumption that G is
1-connected.

Rui Loja Fernandes Stability of Symplectic Leaves



Background and Classical Results
Stability in Poisson geometry

Universal Stability Theorem
Proofs

Lie theory
Universal Stability Theorem
From Lie algebr(oids) to Lie group(oids)
Recovering the stability theorems
Poisson vs algebroid stability

Recovering the stability theorems:

Foliations: If A = TF , then Gx (A) = π1(L, x), the Bott representation
becomes the usual one on ν(L), and we have:

H1(A|L; ν(L)) ∼= H1(π1(L, x); ν(L)x ).

We recover the classical result.

Actions: If A = g n M is associated with a 1-connected Lie group G, then
Gx (A) = Gx , the Bott representation becomes the linear isotropy
Lie algebra on ν(O)x and we have:

H1(A; ν(O)) ∼= H1(Gx ; ν(O)x ).

We recover the classical result under the assumption that G is
1-connected.

Rui Loja Fernandes Stability of Symplectic Leaves



Background and Classical Results
Stability in Poisson geometry

Universal Stability Theorem
Proofs

Lie theory
Universal Stability Theorem
From Lie algebr(oids) to Lie group(oids)
Recovering the stability theorems
Poisson vs algebroid stability

Poisson vs algebroid stability
Examples

M = g∗ with g the non-abelian 2-dimensional Lie algebra:

π = x
∂

∂x
∧ ∂

∂y

so that A = T ∗R2 and

[dx , dy ] = dx , ρ(dx) = x
∂

∂y
, ρ(dy) = −x

∂

∂x
.

H2
π,0(g∗) = H2(g) = 0, so the origin is Poisson stable;

H1(A|0, ν({0})) = H1(g, g) = R;

The origin is not algebroid stable: take Aε = T ∗R2 with

[dx , dy ]ε = dx , ρε(dx) = x
∂

∂y
, ρε(dy) = −x

∂

∂x
+ ε

∂

∂y
.
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Poisson vs algebroid stability
Examples

M = S × R with leaves (S × {t}, ωt ). Look at stability of S = S × {0}.

• Set σ := d
dtωt

∣∣
t=0 and define:

C•
σ(S) = Ω•(S)⊕ Ω•−1(S), dσ(ω, η) = (dω + σ ∧ η, dη)

• One finds that:

X•π(M,S) ∼= Ω•−1(S), X•π,S(M) ∼= C•
σ(S) ∼= X•(T ∗S M; ν(S))

• This leads to:

H2
π(M,S) = 0⇔ H1(S) = 0.

H2
π,S(M) = 0⇔ H2(S) = Rσ and ∪σ : H1(S)→ H3(S) is 1:1.

H1(T ∗S M; ν(S)) = 0⇔ H1(S) = 0 and [σ] 6= 0.
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Conclusion: the criteria for stability of symplectic leaves in the
Poisson setting is stronger than the criteria arising from the
general algebroid setting.

There are Poisson structures π such that A = T ∗M has many
closeby Lie algebroids which are not associated with a Poisson
structure.

There is a chain map i : X•(M,S)→ X•−1(T ∗S M; ν(S)) inducing
an injection in degree 2:

H2
π(M,S) ↪→ H1(T ∗S M; ν(S)).

The Universal Stability Theorem is not so universal...
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Some non-sense about the proofs

All the stability theorems above say:
infinitesimal stability⇒ stability.

Likewise, the proof of each such stability theorem is a
“infinite dimensional transversality argument”.
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