Singular reduction and integrability

Rui L. Fernandes¹

Joint work with J.P. Ortega and T. Ratiu

¹Departamento de Matemática Instituto Superior Técnico

August 2007

ヘロア 人間 アメヨア 人口 ア

э

Motivation Global problems in Poisson geometry

Ordinary Geometry	Poisson Geometry
 Points are all equal; Basic invariant: fundamental group π₁(M, p); f: (M, p) → (N, q) ⇒ f_*: π₁(M, p) → π₁(N, q); To get rid of base points, use fundamental groupoid; 	 Points are not all equal; Basic invariant: Weinstein groupoid $\Sigma(M)$; $f: M \rightarrow N$ Poisson map $\Rightarrow \Sigma(f) \subset \Sigma(M) \times \overline{\Sigma(N)}$ canonical relation (A. Cattaneo, 2004);

ヘロト 人間 とくほとくほとう

2

Motivation Global problems in Poisson geometry

Ordinary Geometry	Poisson Geometry
 Points are all equal; Basic invariant: fundamental group π₁(M, p); f: (M, p) → (N, q) ⇒ f_*: π₁(M, p) → π₁(N, q); To get rid of base points, use fundamental groupoid; 	 Points are not all equal; Basic invariant: Weinstein groupoid Σ(M); f: M → N Poisson map ⇒ Σ(f) ⊂ Σ(M) × Σ(N) canonical relation (A. Cattaneo, 2004);

<ロト <回 > < 注 > < 注 > 、

Motivation Global problems in Poisson geometry

Ordinary Geometry	Poisson Geometry
 Points are all equal; Basic invariant: fundamental group π₁(M, p); f: (M, p) → (N, q) ⇒ f_*: π₁(M, p) → π₁(N, q); To get rid of base points, use fundamental groupoid; 	 Points are not all equal; Basic invariant: Weinstein groupoid $\Sigma(M)$; $f: M \rightarrow N$ Poisson map $\Rightarrow \Sigma(f) \subset \Sigma(M) \times \overline{\Sigma(N)}$ canonical relation (A. Cattaneo, 2004);

・ロト ・四ト ・ヨト ・ヨト

Motivation Global problems in Poisson geometry

Ordinary Geometry	Poisson Geometry
 Points are all equal; Basic invariant: fundamental group π₁(M, p); f: (M, p) → (N, q) ⇒ f_*: π₁(M, p) → π₁(N, q); To get rid of base points, use fundamental groupoid; 	 Points are not all equal; Basic invariant: Weinstein groupoid $\Sigma(M)$; $f: M \rightarrow N$ Poisson map $\Rightarrow \Sigma(f) \subset \Sigma(M) \times \overline{\Sigma(N)}$ canonical relation (A. Cattaneo, 2004);

◆□ > ◆□ > ◆豆 > ◆豆 > -

Motivation Global problems in Poisson geometry

Ordinary Geometry	Poisson Geometry
 Points are all equal; Basic invariant: fundamental group π₁(M, p); f: (M, p) → (N, q) ⇒ f_*: π₁(M, p) → π₁(N, q); To get rid of base points, use fundamental groupoid; 	 Points are not all equal; Basic invariant: Weinstein groupoid Σ(M); f: M → N Poisson map ⇒ Σ(f) ⊂ Σ(M) × Σ(N) canonical relation (A. Cattaneo, 2004);

ヘロン 人間 とくほど くほとう

Motivation Global problems in Poisson geometry

Ordinary Geometry	Poisson Geometry
 Points are all equal; Basic invariant: fundamental group π₁(M, p); f: (M, p) → (N, q) ⇒ f_*: π₁(M, p) → π₁(N, q); To get rid of base points, use fundamental groupoid; 	 Points are not all equal; Basic invariant: Weinstein groupoid $\Sigma(M)$; $f: M \to N$ Poisson map $\Rightarrow \Sigma(f) \subset \Sigma(M) \times \overline{\Sigma(N)}$ canonical relation (A. Cattaneo, 2004);

◆□ > ◆□ > ◆豆 > ◆豆 > -

Motivation Global problems in Poisson geometry

Ordinary Geometry	Poisson Geometry
 Points are all equal; Basic invariant: fundamental group π₁(M, p); f: (M, p) → (N, q) ⇒ f_*: π₁(M, p) → π₁(N, q); To get rid of base points, use fundamental groupoid; 	 Points are not all equal; Basic invariant: Weinstein groupoid Σ(M); f: M → N Poisson map ⇒ Σ(f) ⊂ Σ(M) × Σ(N) canonical relation (A. Cattaneo, 2004);

<ロト <回 > < 注 > < 注 > 、

Motivation Global problems in Poisson geometry

Ordinary Geometry	Poisson Geometry
 Points are all equal; Basic invariant: fundamental group π₁(M, p); f: (M, p) → (N, q) ⇒ f_*: π₁(M, p) → π₁(N, q); To get rid of base points, use fundamental groupoid; 	 Points are not all equal; Basic invariant: Weinstein groupoid Σ(M); f: M → N Poisson map ⇒ Σ(f) ⊂ Σ(M) × Σ(N) canonical relation (A. Cattaneo, 2004);

<ロト <回 > < 注 > < 注 > 、

Motivation Global problems in Poisson geometry

Ordinary Geometry

- Points are all equal;
- Basic invariant: fundamental group π₁(M, p);
- $f: (M, p) \rightarrow (N, q) \Rightarrow$ $f_*: \pi_1(M, p) \rightarrow \pi_1(N, q);$
- To get rid of base points, use fundamental groupoid;

Poisson Geometry

- Points are not all equal;
- Basic invariant: Weinstein groupoid Σ(M);
- $f: M \to N$ Poisson map \Rightarrow $\Sigma(f) \subset \Sigma(M) \times \overline{\Sigma(N)}$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

canonical relation (A. Cattaneo, 2004);

Smooth quotients Integrability Symplectization vs Reduction

Smooth Poisson quotients

(M, π) is a Poisson manifold;

- Lie group *G* acts on *M* by Poisson diffeomorphisms;
- Action is proper and free;

Fact

M/G carries a unique Poisson structure π_{red} such that $p: M \rightarrow M/G$ is a Poisson map.

Proof.

Smooth quotients Integrability Symplectization vs Reduction

Smooth Poisson quotients

• (M, π) is a Poisson manifold;

■ Lie group *G* acts on *M* by Poisson diffeomorphisms;

Action is proper and free;

Fact

M/G carries a unique Poisson structure π_{red} such that $p: M \rightarrow M/G$ is a Poisson map.

Proof.

Smooth quotients Integrability Symplectization vs Reduction

Smooth Poisson quotients

• (M, π) is a Poisson manifold;

■ Lie group *G* acts on *M* by Poisson diffeomorphisms;

Action is proper and free;

Fact

M/G carries a unique Poisson structure π_{red} such that $p: M \rightarrow M/G$ is a Poisson map.

Proof.

Smooth quotients Integrability Symplectization vs Reduction

Smooth Poisson quotients

- (M, π) is a Poisson manifold;
- Lie group *G* acts on *M* by Poisson diffeomorphisms;
- Action is proper and free;

Fact

M/G carries a unique Poisson structure π_{red} such that $p: M \rightarrow M/G$ is a Poisson map.

Proof.

Smooth quotients Integrability Symplectization vs Reduction

Smooth Poisson quotients

- (M, π) is a Poisson manifold;
- Lie group *G* acts on *M* by Poisson diffeomorphisms;
- Action is proper and free;

Fact

M/G carries a unique Poisson structure π_{red} such that $p: M \rightarrow M/G$ is a Poisson map.

Proof.

Smooth quotients Integrability Symplectization vs Reduction

Smooth Poisson quotients

- (M, π) is a Poisson manifold;
- Lie group *G* acts on *M* by Poisson diffeomorphisms;
- Action is proper and free;

Fact

M/G carries a unique Poisson structure π_{red} such that $p: M \rightarrow M/G$ is a Poisson map.

Proof.

$$C^{\infty}(M/G)\simeq C^{\infty}(M)^G.$$

Smooth quotients Integrability Symplectization vs Reduction

Integration of smooth quotients

Theorem

If (M, π) is an integrable Poisson manifold, then $(M/G, \pi_{red})$ is also an integrable Poisson manifold.

- This theorem is essentially due to K. Mikami and A. Weinstein;
- There are different proofs. We will give a constructive proof, describing the integration of M/G;

イロト イポト イヨト イヨト

Smooth quotients Integrability Symplectization vs Reduction

Integration of smooth quotients

Theorem

If (M, π) is an integrable Poisson manifold, then $(M/G, \pi_{red})$ is also an integrable Poisson manifold.

- This theorem is essentially due to K. Mikami and A. Weinstein;
- There are different proofs. We will give a constructive proof, describing the integration of M/G;

ヘロト ヘ戸ト ヘヨト ヘヨト

Smooth quotients Integrability Symplectization vs Reduction

Integration of smooth quotients

Theorem

If (M, π) is an integrable Poisson manifold, then $(M/G, \pi_{red})$ is also an integrable Poisson manifold.

This theorem is essentially due to K. Mikami and A. Weinstein;

There are different proofs. We will give a constructive proof, describing the integration of M/G;

くロト (過) (目) (日)

Smooth quotients Integrability Symplectization vs Reduction

Integration of smooth quotients

Theorem

If (M, π) is an integrable Poisson manifold, then $(M/G, \pi_{red})$ is also an integrable Poisson manifold.

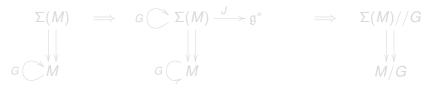
- This theorem is essentially due to K. Mikami and A. Weinstein;
- There are different proofs. We will give a constructive proof, describing the integration of M/G;

ヘロト ヘアト ヘビト ヘビト

Smooth quotients Integrability Symplectization vs Reduction

The symplectic groupoid of M/G

 $\Sigma(M) := \frac{\{\text{cotangent paths}\}}{\{\text{cotangent homotopies}\}}$



<ロ> (四) (四) (三) (三) (三) (三)

Smooth quotients Integrability Symplectization vs Reduction

The symplectic groupoid of M/G

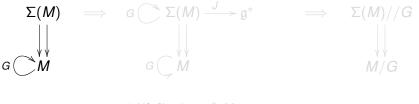
 $\Sigma(M) := \frac{\{\text{cotangent paths}\}}{\{\text{cotangent homotopies}\}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Smooth quotients Integrability Symplectization vs Reduction

The symplectic groupoid of M/G

 $\Sigma(M) := \frac{\{\text{cotangent paths}\}}{\{\text{cotangent homotopies}\}}$

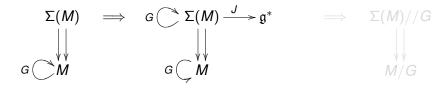


(ロ) (四) (注) (注) (注) (注)

Smooth quotients Integrability Symplectization vs Reduction

The symplectic groupoid of M/G

 $\Sigma(M) := \frac{\{\text{cotangent paths}\}}{\{\text{cotangent homotopies}\}}$



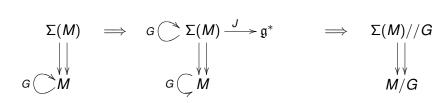
$$\langle J([a]),\xi\rangle = \int_a X_{\xi}$$

イロト 不得 とくほ とくほ とうほ

Smooth quotients Integrability Symplectization vs Reduction

The symplectic groupoid of M/G

 $\Sigma(M) := \frac{\{\text{cotangent paths}\}}{\{\text{cotangent homotopies}\}}$



$$\langle J([a]),\xi\rangle = \int_a X_{\xi}$$

ヘロト 人間 とくほとく ほとう

ъ

Smooth quotients Integrability Symplectization vs Reduction

Symplectization vs Reduction

For general Poisson actions: $\Sigma(M)//G \neq \Sigma(M/G)$.

Theorem

Symplectization and reduction commute if and only if the following groups

 $K_p := \frac{\{a : I \to j^{-1}(0) \mid a \text{ is a cotangent loop such that } a \sim 0_p\}}{\{\text{cotangent homotopies with values in } j^{-1}(0)\}}$

are trivial, for all $p \in M$.

ヘロン ヘアン ヘビン ヘビン

Smooth quotients Integrability Symplectization vs Reduction

Symplectization vs Reduction

For general Poisson actions: $\Sigma(M)//G \neq \Sigma(M/G)$.

Theorem

Symplectization and reduction commute if and only if the following groups

 $K_{\rho} := \frac{\{a : I \to j^{-1}(0) \mid a \text{ is a cotangent loop such that } a \sim 0_{\rho}\}}{\{\text{cotangent homotopies with values in } j^{-1}(0)\}}$

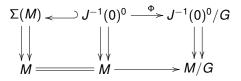
are trivial, for all $p \in M$.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

1

Smooth quotients Integrability Symplectization vs Reduction

At the Lie groupoid level, $J : \Sigma(M) \to \mathfrak{g}^*$ gives:



At the Lie algebroid level, $j : T^*M \rightarrow \mathfrak{g}^*$ gives:

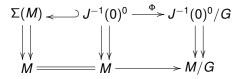
• ϕ integrates to a Lie groupoid morphism $\widehat{\Phi} : \mathcal{G}(j^{-1}(0)) \to \Sigma(M)$.

Rui L Fernandes Singular reduction and integrability

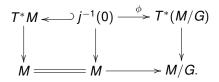
・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Smooth quotients Integrability Symplectization vs Reduction

At the Lie groupoid level, $J : \Sigma(M) \to \mathfrak{g}^*$ gives:



• At the Lie algebroid level, $j : T^*M \rightarrow \mathfrak{g}^*$ gives:

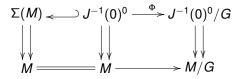


• ϕ integrates to a Lie groupoid morphism $\widehat{\Phi} : \mathcal{G}(j^{-1}(0)) \to \Sigma(M)$.

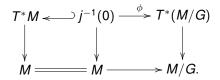
ロトス開入ス度とス度と、度い

Smooth quotients Integrability Symplectization vs Reduction

• At the Lie groupoid level, $J : \overline{\Sigma}(M) \to \mathfrak{g}^*$ gives:



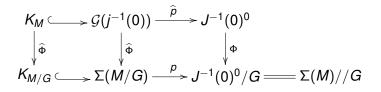
• At the Lie algebroid level, $j : T^*M \rightarrow \mathfrak{g}^*$ gives:



• ϕ integrates to a Lie groupoid morphism $\widehat{\Phi} : \mathcal{G}(j^{-1}(0)) \to \Sigma(M)$.

Smooth quotients Integrability Symplectization vs Reduction

Putting it all together:



・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Smooth quotients Integrability Symplectization vs Reduction

Hamiltonian actions

Corollary

For $G \times M \to M$ a Hamiltonian action on a symplectic manifold (M, ω) with momentum map $\mu : M \to g^*$:

$$K_{\mathcal{P}} := \operatorname{Ker} i_* \subset \pi_1(\mu^{-1}(\mathcal{C}), \mathcal{P})$$

where $c = \mu(p)$ and $i : \mu^{-1}(c) \hookrightarrow M$ is the inclusion.

Homotopy long exact sequence of the pair $(M, \mu^{-1}(c))$ gives:

$$\pi_2(M,\mu^{-1}(\mathcal{C}),m) \xrightarrow{\partial} \pi_1(\mu^{-1}(\mathcal{C}),m) \xrightarrow{i_*} \pi_1(M,m) \xrightarrow{j_*} \pi_1(M,\mu^{-1}(\mathcal{C}),m) .$$

So groups vanish if the fibers of the momentum map are simply connected, or if its second relative homotopy groups vanish.

Smooth quotients Integrability Symplectization vs Reduction

Hamiltonian actions

Corollary

For $G \times M \to M$ a Hamiltonian action on a symplectic manifold (M, ω) with momentum map $\mu : M \to g^*$:

$$\mathcal{K}_{\mathcal{P}} := \operatorname{\mathsf{Ker}} i_* \subset \pi_1(\mu^{-1}(\boldsymbol{c}), \boldsymbol{p})$$

where $c = \mu(p)$ and $i : \mu^{-1}(c) \hookrightarrow M$ is the inclusion.

Homotopy long exact sequence of the pair $(M, \mu^{-1}(c))$ gives:

$$\pi_2(M,\mu^{-1}(\mathcal{C}),m) \xrightarrow{\partial} \pi_1(\mu^{-1}(\mathcal{C}),m) \xrightarrow{i_*} \pi_1(M,m) \xrightarrow{j_*} \pi_1(M,\mu^{-1}(\mathcal{C}),m) .$$

So groups vanish if the fibers of the momentum map are simply connected, or if its second relative homotopy groups vanish.

Smooth quotients Integrability Symplectization vs Reduction

Hamiltonian actions

Corollary

For $G \times M \to M$ a Hamiltonian action on a symplectic manifold (M, ω) with momentum map $\mu : M \to g^*$:

$$K_{oldsymbol{
ho}}:=\operatorname{\mathsf{Ker}} i_*\subset \pi_1(\mu^{-1}({oldsymbol{c}}),{oldsymbol{
ho}})$$

where $c = \mu(p)$ and $i : \mu^{-1}(c) \hookrightarrow M$ is the inclusion.

Homotopy long exact sequence of the pair $(M, \mu^{-1}(c))$ gives:

$$\pi_2(M,\mu^{-1}(c),m) \xrightarrow{\partial} \pi_1(\mu^{-1}(c),m) \xrightarrow{i_*} \pi_1(M,m) \xrightarrow{j_*} \pi_1(M,\mu^{-1}(c),m) \ .$$

So groups vanish if the fibers of the momentum map are simply connected, or if its second relative homotopy groups vanish.

Smooth quotients Integrability Symplectization vs Reduction

Example

For the anti-diagonal action of $G = \mathbb{S}^1$ on $M = \mathbb{C}^2 - \{0\}$, which has momentum map $\mu(z, w) = ||z||^2 - ||w||^2$:

$$\mu^{-1}({m{c}})\simeq egin{cases} \mathbb{C} imes \mathbb{S}^1, ext{ if } {m{c}
eq 0}, \ (\mathbb{C}\setminus\{0\}) imes \mathbb{S}^1, ext{ if } {m{c}}=0. \end{cases}$$

so that:

$$\mathcal{K}_{\mathcal{P}}\simeq \pi_1(\mu^{-1}(\boldsymbol{c})) = egin{cases} \mathbb{Z}, ext{ if } \boldsymbol{c}
eq \mathbf{0}, \ \mathbb{Z} imes \mathbb{Z}, ext{ if } \boldsymbol{c}=\mathbf{0}, \end{cases}$$

and we see that:

 $\Sigma(M)//G \neq \Sigma(M/G).$

Proper actions Poisson stratifications Proper Poisson actions

Singular quotients Orbit type stratification

For a proper action $G \times M \rightarrow M$ and $H \subset G$:

- $\blacksquare M^{H} := \{m \in M : gm = m, \forall g \in H\} (H-fixed point set);$
- $M_H := \{m \in M : G_m = H\}$ (*H*-isotropy type);
- $M_{(H)} := \{m \in M : G_m \in (H)\}$ (*H*-orbit type);

Theorem

The (connected components of the) orbit types determine a smooth stratification of the orbit space:

$$M/G = \bigcup_{(H)} M_{(H)}/G.$$

Proper actions Poisson stratifications Proper Poisson actions

Singular quotients Orbit type stratification

For a proper action $G \times M \rightarrow M$ and $H \subset G$:

■ $M^H := \{m \in M : gm = m, \forall g \in H\}$ (*H*-fixed point set); ■ $M_H := \{m \in M : G_m = H\}$ (*H*-isotropy type);

■ $M_{(H)} := \{m \in M : G_m \in (H)\}$ (*H*-orbit type);

Theorem

$$M/G = \bigcup_{(H)} M_{(H)}/G.$$

Proper actions Poisson stratifications Proper Poisson actions

Singular quotients Orbit type stratification

For a proper action $G \times M \to M$ and $H \subset G$:

• $M^H := \{m \in M : gm = m, \forall g \in H\}$ (*H*-fixed point set);

 $\blacksquare M_H := \{m \in M : G_m = H\} (H\text{-isotropy type});$

■ $M_{(H)} := \{m \in M : G_m \in (H)\}$ (*H*-orbit type);

Theorem

$$M/G = \bigcup_{(H)} M_{(H)}/G.$$

Proper actions Poisson stratifications Proper Poisson actions

Singular quotients Orbit type stratification

For a proper action $G \times M \rightarrow M$ and $H \subset G$:

$$\blacksquare M^{H} := \{m \in M : gm = m, \forall g \in H\} (H\text{-fixed point set});$$

$$\blacksquare M_H := \{m \in M : G_m = H\} (H\text{-isotropy type});$$

■ $M_{(H)} := \{m \in M : G_m \in (H)\}$ (*H*-orbit type);

Theorem

$$M/G = \bigcup_{(H)} M_{(H)}/G.$$

Proper actions Poisson stratifications Proper Poisson actions

Singular quotients Orbit type stratification

For a proper action $G \times M \rightarrow M$ and $H \subset G$:

$$\blacksquare M^{H} := \{m \in M : gm = m, \forall g \in H\} (H\text{-fixed point set});$$

•
$$M_H := \{m \in M : G_m = H\}$$
 (*H*-isotropy type);

■
$$M_{(H)} := \{m \in M : G_m \in (H)\}$$
 (*H*-orbit type);

Theorem

$$M/G = \bigcup_{(H)} M_{(H)}/G.$$

Proper actions Poisson stratifications Proper Poisson actions

Singular quotients Orbit type stratification

For a proper action $G \times M \rightarrow M$ and $H \subset G$:

$$\blacksquare M^{H} := \{m \in M : gm = m, \forall g \in H\} \text{ (H-fixed point set)};$$

$$\blacksquare M_H := \{m \in M : G_m = H\} (H-isotropy type);$$

■
$$M_{(H)} := \{m \in M : G_m \in (H)\}$$
 (*H*-orbit type);

Theorem

$$M/G = \bigcup_{(H)} M_{(H)}/G.$$

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratifications

What happens if in addition one has Poisson geometry?

Definition

A Poisson stratified space is a smooth stratified space $X = \bigcup_{\alpha \in A} X_{\alpha}$ such that: (i) $(C^{\infty}(X), \{, \})$ is a Poisson algebra; (ii) Each stratum is a Poisson manifold $(X_{\alpha}, \{, \}_{\alpha})$;

(iii) The inclusion $i: X_{\alpha} \hookrightarrow X$ is a Poisson map.

If every strata is symplectic, then X is called a symplectic stratified space.

イロト イポト イヨト イヨト

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratifications

What happens if in addition one has Poisson geometry?

Definition

A Poisson stratified space is a smooth stratified space $X = \bigcup_{\alpha \in A} X_{\alpha}$ such that:

- (i) $(C^{\infty}(X), \{, \})$ is a Poisson algebra;
- (ii) Each stratum is a Poisson manifold $(X_{\alpha}, \{,\}_{\alpha})$;
- (iii) The inclusion $i: X_{\alpha} \hookrightarrow X$ is a Poisson map.

If every strata is symplectic, then X is called a symplectic stratified space.

イロト 不得 とくほと くほとう

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratifications

What happens if in addition one has Poisson geometry?

Definition

A Poisson stratified space is a smooth stratified space $X = \bigcup_{\alpha \in A} X_{\alpha}$ such that:

- (i) $(C^{\infty}(X), \{,\})$ is a Poisson algebra;
- (ii) Each stratum is a Poisson manifold $(X_{\alpha}, \{,\}_{\alpha})$;
- (iii) The inclusion $i: X_{\alpha} \hookrightarrow X$ is a Poisson map.

If every strata is symplectic, then X is called a symplectic stratified space.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratifications

What happens if in addition one has Poisson geometry?

Definition

A Poisson stratified space is a smooth stratified space $X = \bigcup_{\alpha \in A} X_{\alpha}$ such that:

- (i) $(C^{\infty}(X), \{, \})$ is a Poisson algebra;
- (ii) Each stratum is a Poisson manifold (X_{α} , { , } $_{\alpha}$);
- (iii) The inclusion $i: X_{\alpha} \hookrightarrow X$ is a Poisson map.

If every strata is symplectic, then X is called a symplectic stratified space.

◆□ > ◆□ > ◆豆 > ◆豆 > -

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratifications

What happens if in addition one has Poisson geometry?

Definition

A Poisson stratified space is a smooth stratified space $X = \bigcup_{\alpha \in A} X_{\alpha}$ such that:

- (i) $(C^{\infty}(X), \{, \})$ is a Poisson algebra;
- (ii) Each stratum is a Poisson manifold (X_{α} , { , } $_{\alpha}$);
- (iii) The inclusion $i: X_{\alpha} \hookrightarrow X$ is a Poisson map.

If every strata is symplectic, then X is called a symplectic stratified space.

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratifications

What happens if in addition one has Poisson geometry?

Definition

A Poisson stratified space is a smooth stratified space $X = \bigcup_{\alpha \in A} X_{\alpha}$ such that:

- (i) $(C^{\infty}(X), \{, \})$ is a Poisson algebra;
- (ii) Each stratum is a Poisson manifold (X_{α} , { , } $_{\alpha}$);
- (iii) The inclusion $i: X_{\alpha} \hookrightarrow X$ is a Poisson map.

If every strata is symplectic, then *X* is called a symplectic stratified space.

ヘロト 人間 ト ヘヨト ヘヨト

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratifications

$M = \mathfrak{sl}^*(2) \simeq \mathbb{R}^3: \{x, z\} = y; \quad \{x, y\} = z; \quad \{z, y\} = x.$ Symplectic foliation: $\{(x, y, z) | x^2 + y^2 - z^2 = c\}.$

⇒ Cone $x^2 + y^2 = z^2$ is a Poisson stratified space.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratifications

 $M = \mathfrak{sl}^*(2) \simeq \mathbb{R}^3: \{x, z\} = y; \quad \{x, y\} = z; \quad \{z, y\} = x.$ Symplectic foliation: $\{(x, y, z) | x^2 + y^2 - z^2 = c\}.$

⇒ Cone $x^2 + y^2 = z^2$ is a Poisson stratified space.

<ロ> (四) (四) (三) (三) (三)

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratifications

 $M = \mathfrak{sl}^*(2) \simeq \mathbb{R}^3: \{x, z\} = y; \quad \{x, y\} = z; \quad \{z, y\} = x.$ $Symplectic foliation: \{(x, y, z) | x^2 + y^2 - z^2 = c\}.$

⇒ Cone $x^2 + y^2 = z^2$ is a Poisson stratified space.

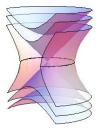
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratifications

$$M = \mathfrak{sl}^*(2) \simeq \mathbb{R}^3: \{x, z\} = y; \quad \{x, y\} = z; \quad \{z, y\} = x.$$

Symplectic foliation: $\{(x, y, z) | x^2 + y^2 - z^2 = c\}.$



Cone $x^2 \perp y^2 - z^2$ is a Poisson stratified solution

Rui L Fernandes Singular reduction and integrability

< 注→

ъ

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratifications

$$M = \mathfrak{sl}^*(2) \simeq \mathbb{R}^3: \{x, z\} = y; \quad \{x, y\} = z; \quad \{z, y\} = x.$$

Symplectic foliation: $\{(x, y, z) | x^2 + y^2 - z^2 = c\}.$

 \Rightarrow Cone $x^2 + y^2 = z^2$ is a Poisson stratified space.

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

Theorem

If $G \times M \to M$ is a proper Poisson action then the orbit type stratification is a Poisson stratification.

Remarks:

- Symplectic leaves of the strata are the orbit reduced spaces obtained from the optimal momentum map.
- G-invariant hamiltonians $H: M \to \mathbb{R}$ give rise to reduced hamiltonian dynamics.
- There is an alternative approach due to J. Śniatycki (2003) using differential spaces (in the sense of Sikorski).

(日本) (日本) (日本)

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

Theorem

If $G \times M \to M$ is a proper Poisson action then the orbit type stratification is a Poisson stratification.

Remarks:

- Symplectic leaves of the strata are the orbit reduced spaces obtained from the optimal momentum map.
- G-invariant hamiltonians $H: M \to \mathbb{R}$ give rise to reduced hamiltonian dynamics.
- There is an alternative approach due to J. Śniatycki (2003) using differential spaces (in the sense of Sikorski).

→ E > < E >

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

Theorem

If $G \times M \to M$ is a proper Poisson action then the orbit type stratification is a Poisson stratification.

Remarks:

- Symplectic leaves of the strata are the orbit reduced spaces obtained from the optimal momentum map.
- G-invariant hamiltonians $H: M \to \mathbb{R}$ give rise to reduced hamiltonian dynamics.

There is an alternative approach due to J. Śniatycki (2003) using differential spaces (in the sense of Sikorski).

→ Ξ → < Ξ →</p>

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

Theorem

If $G \times M \to M$ is a proper Poisson action then the orbit type stratification is a Poisson stratification.

Remarks:

- Symplectic leaves of the strata are the orbit reduced spaces obtained from the optimal momentum map.
- G-invariant hamiltonians $H: M \to \mathbb{R}$ give rise to reduced hamiltonian dynamics.
- There is an alternative approach due to J. Śniatycki (2003) using differential spaces (in the sense of Sikorski).

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

Theorem

If $G \times M \to M$ is a proper Poisson action then the orbit type stratification is a Poisson stratification.

Remarks:

- Symplectic leaves of the strata are the orbit reduced spaces obtained from the optimal momentum map.
- *G*-invariant hamiltonians $H : M \to \mathbb{R}$ give rise to reduced hamiltonian dynamics.
- There is an alternative approach due to J. Śniatycki (2003) using differential spaces (in the sense of Sikorski).

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

Theorem

If $G \times M \to M$ is a proper Poisson action then the orbit type stratification is a Poisson stratification.

Remarks:

- Symplectic leaves of the strata are the orbit reduced spaces obtained from the optimal momentum map.
- *G*-invariant hamiltonians $H : M \to \mathbb{R}$ give rise to reduced hamiltonian dynamics.
- There is an alternative approach due to J. Śniatycki (2003) using differential spaces (in the sense of Sikorski).

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

 CP(n) = (Cⁿ⁺¹ \ {0}) /C*, {z_i, z_j} = a_{ij}z_iz_j. (for a fixed skew-symmetric matrix (a_{ij}))
 Tⁿ × CP(n) → CP(n), (θ₁,...,θ_n) · [z₀ : z₁ : · · · : z_n] = [z₀, e^{iθ₁}z₁, · · · , e^{iθ_n}z_n] is a proper Poisson action.

Conclusion

 $\mathbb{C}P(n)/\mathbb{T}^n$ is a Poisson stratified space.

<ロ> (四) (四) (三) (三) (三)

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

■ $\mathbb{C}P(n) = (\mathbb{C}^{n+1} \setminus \{0\}) / \mathbb{C}^*, \quad \{z_i, z_j\} = a_{ij}z_iz_j.$ (for a fixed skew-symmetric matrix (a_{ij})) ■ $\mathbb{T}^n \times \mathbb{C}P(n) \to \mathbb{C}P(n),$ $(\theta_1, \dots, \theta_n) \cdot [z_0 : z_1 : \dots : z_n] = [z_0, e^{i\theta_1}z_1, \dots, e^{i\theta_n}]$ is a proper Poisson action

Conclusion

 $\mathbb{C}P(n)/\mathbb{T}^n$ is a Poisson stratified space.

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

■ $\mathbb{C}P(n) = (\mathbb{C}^{n+1} \setminus \{0\}) / \mathbb{C}^*, \quad \{z_i, z_j\} = a_{ij}z_iz_j.$ (for a fixed skew-symmetric matrix (a_{ij})) ■ $\mathbb{T}^n \times \mathbb{C}P(n) \to \mathbb{C}P(n),$ $(\theta_1, \dots, \theta_n) \cdot [z_0 : z_1 : \dots : z_n] = [z_0, e^{i\theta_1}z_1, \dots, e^{i\theta_n}z_n]$ is a proper Poisson action.

Conclusion

 $\mathbb{C}P(n)/\mathbb{T}^n$ is a Poisson stratified space.

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

$$\square \mathbb{C}P(n) = (\mathbb{C}^{n+1} \setminus \{0\}) / \mathbb{C}^*, \quad \{z_i, z_j\} = a_{ij} z_i z_j.$$

(for a fixed skew-symmetric matrix (a_{ij}))

■
$$\mathbb{T}^n \times \mathbb{C}P(n) \to \mathbb{C}P(n),$$

 $(\theta_1, \dots, \theta_n) \cdot [z_0 : z_1 : \dots : z_n] = [z_0, e^{i\theta_1}z_1, \dots, e^{i\theta_n}z_n]$
is a proper Poisson action.

Conclusion

 $\mathbb{C}P(n)/\mathbb{T}^n$ is a Poisson stratified space.

ヘロト ヘ戸ト ヘヨト ヘヨト

ъ

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

The map $\mu : \mathbb{C}P(n) \to \Delta^n$, $\mu([z_0 : \dots : z_n]) = \left(\frac{|z_0|^2}{|z_0|^2 + \dots + |z_n|^2}, \dots, \frac{|z_n|^2}{|z_0|^2 + \dots + |z_n|^2}\right)$

gives identification:

$$\mathbb{C}P(n)/\mathbb{T}^n = \Delta^n := \left\{ (\mu_0, \dots, \mu_n) \in \mathbb{R}^{n+1} \mid \sum_{i=0}^n \mu_i = 1, \mu_i \ge 0 \right\}.$$

Poisson bracket on Δ^n :

$$\{\mu_{i},\mu_{j}\}_{\Delta} = \left(a_{ij} - \sum_{l=0}^{n} (a_{il} + a_{lj})\mu_{l}\right)\mu_{l}\mu_{j}.$$

э

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

The map
$$\mu : \mathbb{C}P(n) \to \Delta^n$$
,
 $\mu([z_0 : \cdots : z_n]) = \left(\frac{|z_0|^2}{|z_0|^2 + \cdots + |z_n|^2}, \cdots, \frac{|z_n|^2}{|z_0|^2 + \cdots + |z_n|^2}\right)$

gives identification:

$$\mathbb{C}P(n)/\mathbb{T}^n = \Delta^n := \left\{ (\mu_0, \dots, \mu_n) \in \mathbb{R}^{n+1} \mid \sum_{i=0}^n \mu_i = 1, \mu_i \ge 0 \right\}$$

Poisson bracket on Δ^n :

$$\{\mu_i,\mu_j\}_{\Delta} = \left(a_{ij} - \sum_{l=0}^n (a_{il} + a_{lj})\mu_l\right)\mu_i\mu_j.$$

Rui L Fernandes Singular reduction and integrability

ъ

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

The map
$$\mu : \mathbb{C}P(n) \to \Delta^n$$
,
 $\mu([z_0 : \cdots : z_n]) = \left(\frac{|z_0|^2}{|z_0|^2 + \cdots + |z_n|^2}, \cdots, \frac{|z_n|^2}{|z_0|^2 + \cdots + |z_n|^2}\right)$

gives identification:

$$\mathbb{C}P(n)/\mathbb{T}^n = \Delta^n := \left\{ (\mu_0, \dots, \mu_n) \in \mathbb{R}^{n+1} \mid \sum_{i=0}^n \mu_i = 1, \mu_i \ge 0 \right\}$$

Poisson bracket on Δ^n :

$$\{\mu_i,\mu_j\}_{\Delta} = \left(a_{ij} - \sum_{l=0}^n (a_{il} + a_{lj})\mu_l\right) \mu_i \mu_j.$$

Rui L Fernandes

Singular reduction and integrability

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

The stratification is formed by the open faces (of every dimension) of the simplex:

Rui L Fernandes Singular reduction and integrability

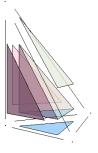
ヘロア 人間 アメヨア 人口 ア

ъ

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

The stratification is formed by the open faces (of every dimension) of the simplex:



프 🖌 🛪 프 🕨

э

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

Proposition (Vanhaecke, RLF)

If $G \times M \to M$ is a Poisson action of a compact Lie group G, then M^G is a Poisson-Dirac submnifold of M:

$$\{f,h\}_{M^G} = \{\widetilde{f},\widetilde{h}\}\Big|_{M^G},$$

where $\tilde{f}, \tilde{h} \in C^{\infty}(M)$ are G-invariant extensions of f and h.

Remarks:

- $\blacksquare M^G \hookrightarrow M \text{ is a backward Dirac map.}$
- $\blacksquare M^G \text{ is not a Poisson submanifold.}$

・ロ と ・ 「 日 と ・ 「 日 と ・ 「 日 と ・ 」

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

Proposition (Vanhaecke, RLF)

If $G \times M \to M$ is a Poisson action of a compact Lie group G, then M^G is a Poisson-Dirac submnifold of M:

$$\{f,h\}_{M^G} = \{\widetilde{f},\widetilde{h}\}\Big|_{M^G},$$

where $\tilde{f}, \tilde{h} \in C^{\infty}(M)$ are G-invariant extensions of f and h.

Remarks:

- $\blacksquare M^G \hookrightarrow M \text{ is a backward Dirac map.}$
- \blacksquare *M^G* is **not** a Poisson submanifold.

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

Proposition (Vanhaecke, RLF)

If $G \times M \to M$ is a Poisson action of a compact Lie group G, then M^G is a Poisson-Dirac submnifold of M:

$$\{f,h\}_{M^G} = \{\widetilde{f},\widetilde{h}\}\Big|_{M^G},$$

where $\tilde{f}, \tilde{h} \in C^{\infty}(M)$ are G-invariant extensions of f and h.

Remarks:

■ $M^G \hookrightarrow M$ is a backward Dirac map. ■ M^G is not a Poisson submanifold.

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

Proposition (Vanhaecke, RLF)

If $G \times M \to M$ is a Poisson action of a compact Lie group G, then M^G is a Poisson-Dirac submnifold of M:

$$\{f,h\}_{M^G} = \{\widetilde{f},\widetilde{h}\}\Big|_{M^G},$$

where $\tilde{f}, \tilde{h} \in C^{\infty}(M)$ are G-invariant extensions of f and h.

Remarks:

• $M^G \hookrightarrow M$ is a backward Dirac map.

M^G is not a Poisson submanifold.

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

Proposition (Vanhaecke, RLF)

If $G \times M \to M$ is a Poisson action of a compact Lie group G, then M^G is a Poisson-Dirac submnifold of M:

$$\{f,h\}_{M^G} = \{\widetilde{f},\widetilde{h}\}\Big|_{M^G},$$

where $\tilde{f}, \tilde{h} \in C^{\infty}(M)$ are G-invariant extensions of f and h.

Remarks:

- $M^G \hookrightarrow M$ is a backward Dirac map.
- *M^G* is not a Poisson submanifold.

ヘロン ヘアン ヘビン ヘビン

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

Poisson structure on orbit type $M_{(H)}/G$:

Fix isotropy type $H \subset G$;

• M_H is an open subset of M^H ;

Proposition

Each M_H carries a Poisson structure such that:

$$\{f,h\}_{M_H} = \{\widetilde{f},\widetilde{h}\}\Big|_{M_H},$$

so $M_H \subset M$ is a Poisson-Dirac submanifold.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

Poisson structure on orbit type $M_{(H)}/G$:

- Fix isotropy type $H \subset G$;
- M_H is an open subset of M^H ;

Proposition

Each M_H carries a Poisson structure such that:

$$\{f,h\}_{M_H} = \{\widetilde{f},\widetilde{h}\}\Big|_{M_H},$$

so $M_H \subset M$ is a Poisson-Dirac submanifold.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

Poisson structure on orbit type $M_{(H)}/G$:

- Fix isotropy type $H \subset G$;
- M_H is an open subset of M^H ;

Proposition

Each M_H carries a Poisson structure such that:

$$\{f,h\}_{M_H} = \{\widetilde{f},\widetilde{h}\}\Big|_{M_H},$$

so $M_H \subset M$ is a Poisson-Dirac submanifold.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

Poisson structure on orbit type $M_{(H)}/G$:

- Fix isotropy type $H \subset G$;
- M_H is an open subset of M^H ;

Proposition

Each M_H carries a Poisson structure such that:

$$\{f,h\}_{M_H} = \{\widetilde{f},\widetilde{h}\}\Big|_{M_H},$$

so $M_H \subset M$ is a Poisson-Dirac submanifold.

ヘロト ヘワト ヘビト ヘビト

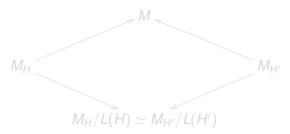
Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

• Set L(H) := N(H)/H;

■ $L(H) \times M_H \rightarrow M_H$ is proper, free and Poisson;

Given conjugate isotropy types (H) = (H'):



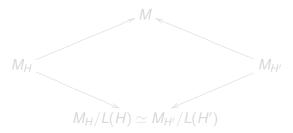
< **∰** ▶ <

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

Set L(H) := N(H)/H; $L(H) \times M_H \rightarrow M_H$ is proper, free and Poisson;

Given conjugate isotropy types (H) = (H'):



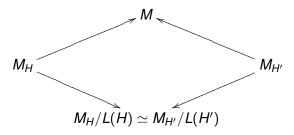
Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

Set
$$L(H) := N(H)/H$$
;

■ $L(H) \times M_H \rightarrow M_H$ is proper, free and Poisson;

Given conjugate isotropy types (H) = (H'):



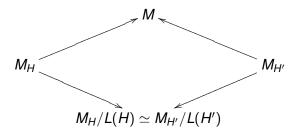
Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

• Set
$$L(H) := N(H)/H$$
;

■ $L(H) \times M_H \rightarrow M_H$ is proper, free and Poisson;

Given conjugate isotropy types (H) = (H'):



Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

■ $M_{(H)}/G \simeq M_H/L(H)$ carries natural Poisson structure; ■ Inclusion $M_{(H)}/G \hookrightarrow M/G$ is a Poisson map;

Conclusion

$$M/G = \bigcup_{(H)} M_{(H)}/G$$
 is a Poisson stratification.

ヘロア 人間 アメヨア 人口 ア

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

*M*_(*H*)/*G* ≃ *M*_{*H*}/*L*(*H*) carries natural Poisson structure;
 Inclusion *M*_(*H*)/*G* → *M*/*G* is a Poisson map;

Conclusion

$$M/G = \bigcup_{(H)} M_{(H)}/G$$
 is a Poisson stratification.

ヘロン ヘアン ヘビン ヘビン

ъ

Proper actions Poisson stratifications Proper Poisson actions

Poisson stratification theorem

*M*_(*H*)/*G* ≃ *M*_{*H*}/*L*(*H*) carries natural Poisson structure;
 Inclusion *M*_(*H*)/*G* → *M*/*G* is a Poisson map;

Conclusion

$$M/G = \bigcup_{(H)} M_{(H)}/G$$
 is a Poisson stratification.

・ロト ・ 理 ト ・ ヨ ト ・

Main Result Basic idea of Proof

Integrability of M/G

Theorem

If $G \times M \to M$ is a proper Poisson action, and M is an integrable Poisson manifold, then M/G is an integrable Poisson stratified space.

Remarks:

- There exists a stratified Lie (algebroid/groupoid) theory;
- \blacksquare *M*/*G* integrates to a stratified Lie groupoid;

イロト イポト イヨト イヨト

Main Result Basic idea of Proof

Integrability of M/G

Theorem

If $G \times M \to M$ is a proper Poisson action, and M is an integrable Poisson manifold, then M/G is an integrable Poisson stratified space.

Remarks:

There exists a stratified Lie (algebroid/groupoid) theory;

 \blacksquare *M*/*G* integrates to a stratified Lie groupoid;

ヘロト 人間 ト ヘヨト ヘヨト

Main Result Basic idea of Proof

Integrability of M/G

Theorem

If $G \times M \to M$ is a proper Poisson action, and M is an integrable Poisson manifold, then M/G is an integrable Poisson stratified space.

Remarks:

There exists a stratified Lie (algebroid/groupoid) theory;

 \blacksquare *M*/*G* integrates to a stratified Lie groupoid;

<ロト <回 > < 注 > < 注 > 、

Main Result Basic idea of Proof

Integrability of M/G

Theorem

If $G \times M \to M$ is a proper Poisson action, and M is an integrable Poisson manifold, then M/G is an integrable Poisson stratified space.

Remarks:

There exists a stratified Lie (algebroid/groupoid) theory;

 \blacksquare *M*/*G* integrates to a stratified Lie groupoid;

ヘロト 人間 とくほとくほとう

Main Result Basic idea of Proof

Integrability of M/G

Theorem

If $G \times M \to M$ is a proper Poisson action, and M is an integrable Poisson manifold, then M/G is an integrable Poisson stratified space.

Remarks:

- There exists a stratified Lie (algebroid/groupoid) theory;
- M/G integrates to a stratified Lie groupoid;

ヘロト 人間 ト ヘヨト ヘヨト

Main Result Basic idea of Proof

The stratified groupoid of M/G

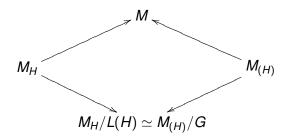
Commutative diagram of Dirac structures:

■ $M = \bigcup_{(H)} M_{(H)}$ is a Dirac stratified space; ■ $G(M, L) \Rightarrow M$ is a stratified pre-symplectic groupoid;

Main Result Basic idea of Proof

The stratified groupoid of M/G

Commutative diagram of Dirac structures:

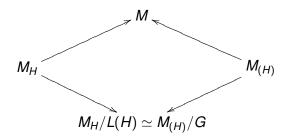


M = ∪_(H) *M*_(H) is a Dirac stratified space;
 G(*M*, *L*) ⇒ *M* is a stratified pre-symplectic groupoid;

Main Result Basic idea of Proof

The stratified groupoid of M/G

Commutative diagram of Dirac structures:

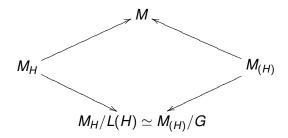


M = ∪_(H) *M*_(H) is a Dirac stratified space;
 G(*M*, *L*) ⇒ *M* is a stratified pre-symplectic groupoid;

Main Result Basic idea of Proof

The stratified groupoid of M/G

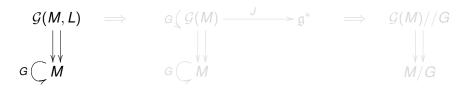
Commutative diagram of Dirac structures:



■ $M = \bigcup_{(H)} M_{(H)}$ is a Dirac stratified space; ■ $\mathcal{G}(M, L) \Rightarrow M$ is a stratified pre-symplectic groupoid;

Main Result Basic idea of Proof

The stratified groupoid of M/G



$$\langle J([a]),\xi\rangle = \int_a X_{\xi}$$

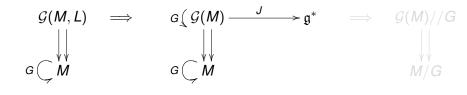
Conclusion

 $\mathcal{G}(M)//G \Rightarrow M/G$ is a stratified symplectic groupoid integrating the Poisson stratified space M/G.

Rui L Fernandes Singular reduction and integrability

Main Result Basic idea of Proof

The stratified groupoid of M/G



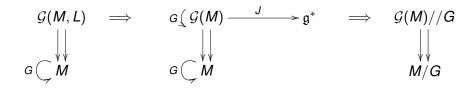
$$\langle J([a]),\xi\rangle = \int_a X_{\xi}$$

Conclusion

 $\mathcal{G}(M)//G \Rightarrow M/G$ is a stratified symplectic groupoid integrating the Poisson stratified space M/G.

Main Result Basic idea of Proof

The stratified groupoid of M/G



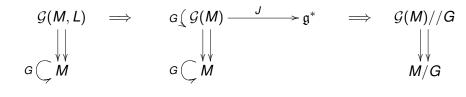
$$\langle J([a]),\xi\rangle = \int_a X_{\xi}$$

Conclusion

 $\mathcal{G}(M)//G \Rightarrow M/G$ is a stratified symplectic groupoid integrating the Poisson stratified space M/G.

Main Result Basic idea of Proof

The stratified groupoid of M/G



$$\langle J([a]),\xi\rangle = \int_a X_{\xi}$$

Conclusion

 $\mathcal{G}(M)//G \Rightarrow M/G$ is a stratified symplectic groupoid integrating the Poisson stratified space M/G.

Rui L Fernandes

Singular reduction and integrability

Summary and Outlook

Summary

- Proper Poisson actions yield Poisson stratified spaces.
- Singular quotients integrate to stratified Lie groupoids.

Outlook

- The stratified approach is not that good...
- One should look into Poisson orbispaces;
 - (This should be Morita equivalence classes of proper Lie groupoids with an invariant Poisson structure on the units.)
- One should look at more general Poisson actions (Poisson-Lie groups,...);

ヘロア 人間 アメヨア 人口 ア

Summary and Outlook

Summary

- Proper Poisson actions yield Poisson stratified spaces.
- Singular quotients integrate to stratified Lie groupoids.

Outlook

- The stratified approach is not that good...
- One should look into Poisson orbispaces;
 - (This should be Morita equivalence classes of proper Lie groupoids with an invariant Poisson structure on the units.)
- One should look at more general Poisson actions (Poisson-Lie groups,...);

Summary and Outlook

Summary

- Proper Poisson actions yield Poisson stratified spaces.
- Singular quotients integrate to stratified Lie groupoids.

Outlook

- The stratified approach is not that good...
- One should look into Poisson orbispaces;
 - (This should be Morita equivalence classes of proper Lie groupoids with an invariant Poisson structure on the units.)
- One should look at more general Poisson actions (Poisson-Lie groups,...);

Summary and Outlook

- Summary
 - Proper Poisson actions yield Poisson stratified spaces.
 - Singular quotients integrate to stratified Lie groupoids.

Outlook

- The stratified approach is not that good...
- One should look into Poisson orbispaces;
 - (This should be Morita equivalence classes of proper Lie groupoids with an invariant Poisson structure on the units.)
- One should look at more general Poisson actions (Poisson-Lie groups,...);

Summary and Outlook

- Summary
 - Proper Poisson actions yield Poisson stratified spaces.
 - Singular quotients integrate to stratified Lie groupoids.
- Outlook
 - The stratified approach is not that good...
 - One should look into Poisson orbispaces;
 - (This should be Morita equivalence classes of proper Lie groupoids with an invariant Poisson structure on the units.)
 One should look at more general Poisson actions
 - (Poisson-Lie groups,...);

Summary and Outlook

- Summary
 - Proper Poisson actions yield Poisson stratified spaces.
 - Singular quotients integrate to stratified Lie groupoids.
- Outlook
 - The stratified approach is not that good...
 - One should look into Poisson orbispaces;
 (This should be Morita equivalence classes of proper Lie groupoids with an invariant Poisson structure on the units.)
 - One should look at more general Poisson actions (Poisson-Lie groups,...);

ヘロト 人間 ト ヘヨト ヘヨト

References

- R.L. Fernandes, J.-P. Ortega and T.S. Ratiu, The Momentum Map in Poisson geometry Preprint arXiv:0705.0693
- R.L. Fernandes, D. Iglesias Ponte, Symmetries and Reduction of Poisson Lie Groupoids in preparation

J.-P. Ortega and T.S. Ratiu, Momentum Maps and Hamiltonian Reduction, Progress in Mathematics, volume 222. Birkhaüser Verlag, 2004.

くロト (過) (目) (日)

The fundamental groupoid of a manifold The Weinstein groupoid

The fundamental groupoid of a manifold

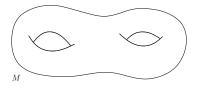
M a manifold. Take *continuous* curves $\gamma : [0, 1] \rightarrow M$

イロト 不得 とくほ とくほとう

The fundamental groupoid of a manifold The Weinstein groupoid

The fundamental groupoid of a manifold

M a manifold. Take *continuous* curves $\gamma : [0, 1] \rightarrow M$



The fundamental groupoid of a manifold The Weinstein groupoid

The fundamental groupoid of a manifold

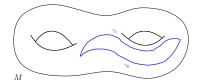
M a manifold. Take *continuous* curves $\gamma : [0, 1] \rightarrow M$

 $[\gamma_0] \equiv$ homotopy class of γ_0

The fundamental groupoid of a manifold The Weinstein groupoid

The fundamental groupoid of a manifold

M a manifold. Take *continuous* curves $\gamma : [0, 1] \rightarrow M$

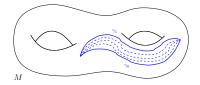


 $[\gamma_0] \equiv$ homotopy class of γ_0

The fundamental groupoid of a manifold The Weinstein groupoid

The fundamental groupoid of a manifold

M a manifold. Take *continuous* curves $\gamma : [0, 1] \rightarrow M$

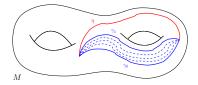


 $[\gamma_0] \equiv$ homotopy class of γ_0 ($[\gamma_0] = [\gamma_1]$

The fundamental groupoid of a manifold The Weinstein groupoid

The fundamental groupoid of a manifold

M a manifold. Take *continuous* curves $\gamma : [0, 1] \rightarrow M$



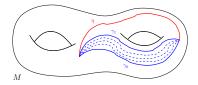
 $[\gamma_0] \equiv$ homotopy class of γ_0 $([\gamma_0] = [\gamma_1] \neq [\eta])$.

くロト (過) (目) (日)

The fundamental groupoid of a manifold The Weinstein groupoid

The fundamental groupoid of a manifold

M a manifold. Take *continuous* curves $\gamma : [0, 1] \rightarrow M$



The fundamental groupoid of *M* is:

 $\Pi_1(M) := \{ \text{paths } \gamma \} / \{ \text{homotopies} \} = \{ [\gamma] \mid \gamma : [0, 1] \to M \} \,.$

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

The fundamental groupoid of a manifold The Weinstein groupoid

The fundamental groupoid of a manifold

The fundamental groupoid

$$\Pi_1(M) = \{ [\gamma] \mid \gamma : [0,1] \to M \}$$

has the following structure:

- source and target: $s([\gamma]) = \gamma(0), t([\gamma]) = \gamma(1);$
- **product:** $[\gamma] \cdot [\eta] = [\gamma \cdot \eta];$
- units: $1_x = [\gamma]$, where $\gamma(t) = x$;
- inverses: $[\gamma]^{-1} = [\overline{\gamma}]$, where $\overline{\gamma}(t) = \gamma(1 t)$.

・ロト ・同ト ・ヨト ・ヨトー

The fundamental groupoid of a manifold The Weinstein groupoid

The fundamental groupoid of a manifold

The fundamental groupoid

$$\Pi_1(M) = \{ [\gamma] \mid \gamma : [0,1] \to M \}$$

has the following structure:

- **source** and target: $s([\gamma]) = \gamma(0), t([\gamma]) = \gamma(1);$
- **product:** $[\gamma] \cdot [\eta] = [\gamma \cdot \eta];$
- units: $1_x = [\gamma]$, where $\gamma(t) = x$;
- inverses: $[\gamma]^{-1} = [\overline{\gamma}]$, where $\overline{\gamma}(t) = \gamma(1 t)$.

・ロト ・同ト ・ヨト ・ヨトー

The fundamental groupoid of a manifold The Weinstein groupoid

The fundamental groupoid of a manifold

The fundamental groupoid

$$\Pi_1(M) = \{ [\gamma] \mid \gamma : [0,1] \to M \}$$

has the following structure:

- **source** and target: $s([\gamma]) = \gamma(0), t([\gamma]) = \gamma(1);$
- **product**: $[\gamma] \cdot [\eta] = [\gamma \cdot \eta];$
- **units:** $1_x = [\gamma]$, where $\gamma(t) = x$;
- inverses: $[\gamma]^{-1} = [\overline{\gamma}]$, where $\overline{\gamma}(t) = \gamma(1 t)$.

ヘロト ヘアト ヘビト ヘビト

3

The fundamental groupoid of a manifold The Weinstein groupoid

The fundamental groupoid of a manifold

The fundamental groupoid

$$\Pi_1(M) = \{ [\gamma] \mid \gamma : [0,1] \to M \}$$

has the following structure:

- **source** and target: $s([\gamma]) = \gamma(0), t([\gamma]) = \gamma(1);$
- **product**: $[\gamma] \cdot [\eta] = [\gamma \cdot \eta];$
- units: $1_x = [\gamma]$, where $\gamma(t) = x$;

inverses: $[\gamma]^{-1} = [\overline{\gamma}]$, where $\overline{\gamma}(t) = \gamma(1 - t)$.

イロト 不得 とくほ とくほとう

The fundamental groupoid of a manifold The Weinstein groupoid

The fundamental groupoid of a manifold

The fundamental groupoid

$$\Pi_1(M) = \{ [\gamma] \mid \gamma : [0,1] \to M \}$$

has the following structure:

- **source** and target: $s([\gamma]) = \gamma(0), t([\gamma]) = \gamma(1);$
- **product**: $[\gamma] \cdot [\eta] = [\gamma \cdot \eta];$
- units: $1_x = [\gamma]$, where $\gamma(t) = x$;
- inverses: $[\gamma]^{-1} = [\overline{\gamma}]$, where $\overline{\gamma}(t) = \gamma(1 t)$.

イロト 不得 トイヨト イヨト

The fundamental groupoid of a manifold The Weinstein groupoid

The Weinstein groupoid

Take any Poisson manifold (M, π) :

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

$\Sigma(M) := \frac{\{\text{cotangent paths}\}}{\{\text{cotangent homotopies}\}}$

The fundamental groupoid of a manifold The Weinstein groupoid

The Weinstein groupoid

Take any Poisson manifold (M, π) :

ヘロン ヘアン ヘビン ヘビン

э

$\Sigma(M) := \frac{\{\text{cotangent paths}\}}{\{\text{cotangent homotopies}\}}$

The fundamental groupoid of a manifold The Weinstein groupoid

The Weinstein groupoid

A cotagent path is a path $a(t) \in T_{\gamma(t)}M$ such that:

$$\frac{\mathrm{d}}{\mathrm{d}t}\gamma(t)=\pi^{\sharp}(a(t));$$

■ A cotangent homotopy is a family of cotangent paths $a_{\varepsilon}(t)$, such that the solution $b = b(\varepsilon, t)$ of:(*)

$$\partial_t b - \partial_\varepsilon a = T_{\nabla}(a, b), \qquad b(\varepsilon, 0) = 0,$$

satisfies $b(\varepsilon, 1) = 0$.

(*) After some choice of ∇ ; *T* denotes the torsion.

イロト 不得 とくほ とくほ とう

3

The fundamental groupoid of a manifold The Weinstein groupoid

The Weinstein groupoid

A cotagent path is a path $a(t) \in T_{\gamma(t)}M$ such that:

$$\frac{\mathrm{d}}{\mathrm{d}t}\gamma(t)=\pi^{\sharp}(a(t));$$

A cotangent homotopy is a family of cotangent paths $a_{\varepsilon}(t)$, such that the solution $b = b(\varepsilon, t)$ of:(*)

$$\partial_t b - \partial_\varepsilon a = T_\nabla(a, b), \qquad b(\varepsilon, 0) = 0,$$

satisfies $b(\varepsilon, 1) = 0$.

(*) After some choice of ∇ ; *T* denotes the torsion.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

1

The fundamental groupoid of a manifold The Weinstein groupoid

The Weinstein groupoid

$\Sigma(M) \rightrightarrows M$ is a topological groupoid.

Definition

A Poisson manifold (M, π) is called integrable if $\Sigma(M)$ is smooth, i.e., it is a Lie groupoid.

In this case, $\Sigma(M)$ carries a natural symplectic structure Ω which is compatible with multiplication:

 $m^*\Omega = \pi_1^*\Omega + \pi_2^*\Omega,$

where $m, \pi_1, \pi_2 : \Sigma(M) \times \Sigma(M) \rightarrow \Sigma(M)$.

・ロト ・回ト ・ヨト ・ヨト

The fundamental groupoid of a manifold The Weinstein groupoid

The Weinstein groupoid

 $\Sigma(M) \rightrightarrows M$ is a topological groupoid.

Definition

A Poisson manifold (M, π) is called integrable if $\Sigma(M)$ is smooth, i.e., it is a Lie groupoid.

In this case, $\Sigma(M)$ carries a natural symplectic structure Ω which is compatible with multiplication:

 $m^*\Omega = \pi_1^*\Omega + \pi_2^*\Omega,$

where $m, \pi_1, \pi_2 : \Sigma(M) \times \Sigma(M) \rightarrow \Sigma(M)$.

・ロト ・回ト ・ヨト ・ヨト

The fundamental groupoid of a manifold The Weinstein groupoid

The Weinstein groupoid

 $\Sigma(M) \rightrightarrows M$ is a topological groupoid.

Definition

A Poisson manifold (M, π) is called integrable if $\Sigma(M)$ is smooth, i.e., it is a Lie groupoid.

In this case, $\Sigma(M)$ carries a natural symplectic structure Ω which is compatible with multiplication:

 $\boldsymbol{m}^*\boldsymbol{\Omega}=\pi_1^*\boldsymbol{\Omega}+\pi_2^*\boldsymbol{\Omega},$

where $m, \pi_1, \pi_2 : \Sigma(M) \times \Sigma(M) \rightarrow \Sigma(M)$.

・ロト ・同ト ・ヨト ・ヨト

The fundamental groupoid of a manifold The Weinstein groupoid

The Weinstein groupoid

 $\Sigma(M) \rightrightarrows M$ is a topological groupoid.

Definition

A Poisson manifold (M, π) is called integrable if $\Sigma(M)$ is smooth, i.e., it is a Lie groupoid.

In this case, $\Sigma(M)$ carries a natural symplectic structure Ω which is compatible with multiplication:

$$m^*\Omega = \pi_1^*\Omega + \pi_2^*\Omega,$$

where $m, \pi_1, \pi_2 : \Sigma(M) \times \Sigma(M) \rightarrow \Sigma(M)$.

A B > A B >