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Symmetries of Differential Equations

Sophus Lie, influenced by Felix Klein, proposed:

Definition

The group of symmetries of a differential equation:

∆(x , y , . . . , u, v , . . . , ux , vx , uxx , . . . ) = 0,

is the set of all transformation of the independent variables
(x , y , . . . ) and of the dependent variables (u, v , . . . ) that
transform solutions to solutions.
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Symmetries of Differential Equations

Lie aimed (and achieved) a Galois theory for differential
equations:

he proved that if the group of symmetries is solvable then
the differential equation can be integrated by quadratures.
he found a method to compute the group of symmetries.

Unlike the permutation groups of symmetries of algebraic
equations, Lie’s symmetry groups are continuous.
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Example: The heat equation

The symmetry group of the heat equation:

ut = uxx

is generated by the following transformations:

(x , t , u) 7→ (x + ε, t , u) (x , t , u) 7→ (eεx , e2εt , u)

(x , t , u) 7→ (x , t + ε, u) (x , t , u) 7→ (x + 2εt , t , ueεx−ε2t)

(x , t , u) 7→ (x , t , eεu) (x , t , u) 7→ (x , t , u + εα(x , t))

(x , t , u) 7→
(

x
1−4εt ,

t
1−4εt , u

√
1− 4εte

−εx2
1−4εt

)
where ε ∈ R and α(x , t) is an arbitrary solution of the heat
equation.

Rui Loja Fernandes Lie’s Third Theorem
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From global to infinitesimal

Problem

How can one find the symmetry group G∆ of a given differential
equation ∆ = 0?

Each 1-parameter group of symmetries:

R 3 ε 7→ Tε ∈ G∆,

determines an infinitesimal symmetry, i.e., a vector field:

X (x , y , . . . , u, v . . . ) =
d
dε

∣∣∣∣
ε=0

Tε(x , y , . . . , u, v , . . . )

Lie found that the infinitesimal symmetries of ∆ are the
solutions of a system of first order linear p.d.e.

=⇒ systematic method to compute symmetries

Rui Loja Fernandes Lie’s Third Theorem
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From global to infinitesimal and back

Lie also noted that:
The vector space g∆ of all infinitesimal symmetries is
closed under the commutator of vector fields:

X1, X2 ∈ g∆ =⇒ [X1, X2] ∈ g∆.

Lie claimed that:

Theorem

Any space g of vector fields closed under the commutator is the
set of infinitesimal symmetries of a group of symmetries G.

Is this really true?

Rui Loja Fernandes Lie’s Third Theorem



Classical Lie Theory
Lie Theory beyond finite dimensions

Lie Groupoid Theory
Lie III revisited

Historical Origins
Finite dimensional Lie groups and Lie algebras

From global to infinitesimal and back

Lie also noted that:
The vector space g∆ of all infinitesimal symmetries is
closed under the commutator of vector fields:

X1, X2 ∈ g∆ =⇒ [X1, X2] ∈ g∆.

Lie claimed that:

Theorem

Any space g of vector fields closed under the commutator is the
set of infinitesimal symmetries of a group of symmetries G.

Is this really true?

Rui Loja Fernandes Lie’s Third Theorem



Classical Lie Theory
Lie Theory beyond finite dimensions

Lie Groupoid Theory
Lie III revisited

Historical Origins
Finite dimensional Lie groups and Lie algebras

From global to infinitesimal and back

Lie also noted that:
The vector space g∆ of all infinitesimal symmetries is
closed under the commutator of vector fields:

X1, X2 ∈ g∆ =⇒ [X1, X2] ∈ g∆.

Lie claimed that:

Theorem

Any space g of vector fields closed under the commutator is the
set of infinitesimal symmetries of a group of symmetries G.

Is this really true?

Rui Loja Fernandes Lie’s Third Theorem



Classical Lie Theory
Lie Theory beyond finite dimensions

Lie Groupoid Theory
Lie III revisited

Historical Origins
Finite dimensional Lie groups and Lie algebras

Lie groups and Lie algebras

Definition

A Lie group is a manifold G together with a group structure on
G such that the product and inversion are smooth:

G ×G → G, (g, h) 7→ gh, G → G, g 7→ g−1.

Definition

A Lie algebra is a vector space g together with a bilinear,
skew-symmetric, bracket [·, ·] : g× g → g, which satisfies the
Jacobi identity:

[u, [v , w ]] + [v , [w , u]] + [w , [u, v ]] = 0.

Rui Loja Fernandes Lie’s Third Theorem
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From Lie groups to Lie algebras

Let G be a finite dimensional Lie group.
Its Lie algebra g = L(G) is constructed as follows:

As a vector space, g := TeG;
Bracket: given u ∈ g let ũ be the right invariant vector field
with ũ|e = u.The bracket of u, v ∈ g is given by:

[u, v ] := [ũ, ṽ ]|e

G

Rui Loja Fernandes Lie’s Third Theorem
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Examples

LIE GROUP LIE ALGEBRA
General Linear Group:
GL(n) = {A ∈ Mn(R) : det A 6= 0} gl(n) = {A ∈ Mn(R)}

Special Linear Group:
SL(n) = {A ∈ GLn(R) : det A = 1} sl(n) = {A ∈ gl(n) : tr A = 0}

Special Ortogonal Group:
SO(n) = {A ∈ SL(n, R) : AAT = I} so(n) = {A ∈ sl(R) : A + AT = 0}

Special Unitary Group:
SU(n) = {A ∈ SL(n, C) : AA

T
= I}

su(n) = {A ∈ sl(n, C) : A + A
T

= 0}

Symplectic Group:
Sp(n) = {A ∈ GL(2n, R) : AJAT = J} sp(n) = {A ∈ gl(2n, R) : AJ + JAT = 0}

Group of isometries of (M, g):
G = {φ : M → M | φ preserves g} g = {X ∈ X(M) | LX g = 0}

Group of symplectomorphisms of (M, ω):
G = {φ : M → M | φ∗ω = ω} g = {X ∈ X(M) | LX ω = 0}

Rui Loja Fernandes Lie’s Third Theorem
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From Lie algebras to Lie groups

Theorem (Lie I)

Let G be a Lie group with Lie algebra g. There exists a unique (up to
isomorphism) 1-connected Lie group G̃ with Lie algebra g.

Theorem (Lie II)

Let G and H be Lie groups with Lie algebras g and h, where G is
1-connected. Given a Lie algebra homomorphism φ : g → h, there
exists a unique Lie group homomorphism Φ : G → H with (Φ)∗ = φ.

Theorem (Lie III)

For every Lie algebra g there exists a Lie group G with Lie algebra g.

Rui Loja Fernandes Lie’s Third Theorem
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From Lie algebras to Lie groups

Sophus Lie results were only local and in written in terms
of groups of transformations.
The global theory was worked out much later by Élie
Cartan and Herman Weyl.
Lie I and II are not hard to prove. Correct proofs of Lie III
were given only by Cartan in 1936 (algebraic), using
results of Ado, and Van Est in 1953 (geometric).
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Motivation
Examples

Infinite dimensional Lie groups

Symmetry groups of differential equations can be infinite
dimensional (e.g., the heat equation).

More general, infinite dimensional Lie groups appear naturally
in other settings (e.g., groups of diffeomorphisms in differential
geometry/topology, field theories, fluid mechanics, etc.)

Are Lie’s theorems true for infinite dimensional Lie groups?
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Motivation
Examples

Example I [Van Est & Korthagen, 1964]

g0 := {X : [0, 1] → su(2)|
∫ 1

0 X (t)dt = 0} with pointwise bracket;

Take the skew-symmetric bilinear form τ : g0 × g0 :→ R:

τ(X , Y ) :=

∫ 1

0
tr

(∫ t

0
X (s)ds ◦ Y (t)

)
dt .

and form the central extension g = R× g0:

0 // R // g // g0 // 0

relative to τ so that: [(a, X ), (b, Y )]g := (τ(X , Y ), [X , Y ]g0).

Theorem

The extension g is a Banach Lie algebra but there is no Banach
Lie group with Lie algebra g.
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Example II [Hamilton,1982; Milnor, 1983]

M - a compact manifold
The group Diff(M) is a Fréchet Lie group;
Diff(M) has Lie algebra TidM = X(M), with usual Lie
bracket of vector fields;

However, Lie II fails:

Theorem

If a diffeomorphism of the circle without fixed points is the
time-1 flow of vector field then it must be conjugate to a rotation.

There are diffeomorphisms as close to the identity as we wish
which are not the time-1 flow of a vector field!

Rui Loja Fernandes Lie’s Third Theorem
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Dificulties with infinite dimensional Lie groups are
enormous...

...but there is a way out, using Lie groupoids.
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Lie Groupoids
Lie Algebroids
Geometric Lie theory

Groupoids

A groupoid is a small category where every morphism is an
isomorphism.

G ≡ set of morphisms M ≡ set of objects.
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Groupoids

A groupoid is a small category where every morphism is an
isomorphism.

G ≡ set of morphisms M ≡ set of objects.

source and target maps:

•
t(g)

•
s(g)

g
uu

G
s

//
t // M

product:

•
t(h)

•
s(h)=t(g)

h
uu

•
s(g)

grr

hg

��

G(2) = {(h, g) ∈ G × G : s(h) = t(g)}

m : G(2) → G

Rg : s−1(t(g)) → s−1(s(g))

Rui Loja Fernandes Lie’s Third Theorem
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Groupoids

A groupoid is a small category where every morphism is an
isomorphism.

G ≡ set of morphisms M ≡ set of objects.

identity:

ε : M ↪→ G •
x

1x

��

inverse: ι : G // G t(g)•

g−1

44
•s(g)

g
tt
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Example: Fundamental groupoid of a space

X any topological space
Look at continuous curves γ : [0, 1] → X

X

0

γ

γ
1

η

[γ] ≡ homotopy class of γ (e.g. [γ0] = [γ1] but [γ0] 6= [η]).

The fundamental groupoid of X is:

Π(X ) = {[γ] | γ : [0, 1] → X} .

Rui Loja Fernandes Lie’s Third Theorem
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Example: Fundamental groupoid of a space

For the fundamental groupoid

Π(X ) = {[γ] | γ : [0, 1] → X}

the structure maps are:

source/target give initial/final points: s([γ]) = γ(0), t([γ]) = γ(1);

product is concatenation of curves: [γ] · [η] = [γ · η];

units are the constant curves: 1x = [γ], where γ(t) = x ;

inverse is the opposite curve: [γ]−1 = [γ], where γ(t) = γ(1− t).
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Lie groupoids

Definition (Charles Ehresmann, 1950’s)

A Lie groupoid is a groupoid where G and M are manifolds
and all structure maps are smooth.

Examples

A Lie group G is a Lie groupoid: G := G ⇒ {∗};
For a manifold M, Π(M) ⇒ M and M ×M ⇒ M are Lie
groupoids;
For a foliation F , Π(F) ⇒ M is a Lie groupoid;
Given a an action of a Lie group G on a manifold M can
form the action groupoid: G := G ×M ⇒ M:

(g, x) · (h, y) = (gh, y), if x = h · y .

Rui Loja Fernandes Lie’s Third Theorem
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Lie groupoids vs (infinite dimensional) Lie groups

Definition

A bisection of a Lie groupoid G ⇒ M is a smooth map
b : M → G such that s ◦ b : M → M and t ◦ b : M → M are
diffeomorphisms.

The group of bissections Γ(G) is a Fréchet Lie group
(usually, infinite dimensional):

If G = G ⇒ {∗}, then Γ(G) = G;
If G = M ×M ⇒ M, then Γ(G) = Diff(M);

Rui Loja Fernandes Lie’s Third Theorem
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Lie algebroids

Definition

A Lie algebroid is a vector bundle A → M with:
(i) a Lie bracket [ , ]A : Γ(A)× Γ(A) → Γ(A);
(ii) a bundle map ρ : A → TM (the anchor);

such that:

[α, fβ]A = f [αβ]A + ρ(α)(f )β, (f ∈ C∞(M), α, β ∈ Γ(A)).

The space of sections Γ(A) is a Fréchet Lie algebra
(usually infinite dimensional).
Im ρ ⊂ TM is integrable ⇒ characteristic foliation of M;

Rui Loja Fernandes Lie’s Third Theorem
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Lie algebroids
Examples

Flows. For X ∈ X(M), the associated Lie algebroid is:
A = M × R, [f , g]A := fX (g)− gX (f ), ρ(f ) = fX .

Leaves of A are the orbits of X .

Actions. For an infinitesimal g-action φ : g → X(M), the
associated Lie algebroid is:

A = M × g, ρ(x , ξ) = φ(ξ)x ,
[f , g]A(x) = [f (x), g(x)]g + Lρ(f (x))g(x)− Lρ(g(x))f (x).

Leaves of A are the orbits of the action.

Rui Loja Fernandes Lie’s Third Theorem
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Lie algebroids
Examples

Foliations. For F ∈ Folk (M), the associated Lie algebroid
is:

A = TF , [X , Y ]A = [X , Y ], ρ =id.
Leaves of A are the leaves of F .

Prequantization. For ω ∈ Ω2(M), closed, the associated
Lie algebroid is: A = TM ⊗ R, ρ(X , a) = X ,

[(X , f ), (Y , g)]A = ([X , Y ], X (g)− Y (f )− ω(X , Y )).
There is only leaf of A, which is M itself.

Rui Loja Fernandes Lie’s Third Theorem
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From Lie groupoids to Lie algebroids

Theorem

Every Lie groupoid G ⇒ M determines a Lie algebroid A → M.

s-fibers

h
G

Ms(g)s(h)=t(g)t(h)

g

hg

t-fibers

A=Ker d s
M

ρ

A

ρ

= dt

R g

[X , X ]
β

[α,β]=
α

Rui Loja Fernandes Lie’s Third Theorem
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From Lie algebroids to Lie groupoids

Theorem (Lie I)

Let G be a Lie groupoid with Lie algebroid A. There exists a unique
(up to isomorphism) source 1-connected Lie groupoid G̃ with Lie
algebroid A.

Theorem (Lie II)

Let G and H be Lie groupoids with Lie algebroids A and B, where G is
source 1-connected. Given a Lie algebroid homomorphism
φ : A → B, there exists a unique Lie groupoid homomorphism
Φ : G → H with (Φ)∗ = φ.

. . . but Lie III does not hold!

Rui Loja Fernandes Lie’s Third Theorem
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A non-integrable Lie algebroid

Fix ω ∈ Ω2(M), closed, and take the associated Lie
algebroid A = TM ⊕ R.

Theorem

The Lie algebroid A integrates to a Lie groupoid G iff the group
of spherical periods of ω:

Nx := {
∫

γ
ω | γ ∈ π2(M, x)} ⊂ R

is discrete.

Example

If M = S2 × S2 and ω = dA⊕ λdA, then Nx is discrete iff λ ∈ Q.

Rui Loja Fernandes Lie’s Third Theorem
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The proof

Obstructions to integrability
The obstructions to integrability are completely described by:

Theorem (Crainic & RLF, 2003)

For a Lie algebroid A, there exist monodromy groups Nx ⊂ Ax such
that A is integrable iff the groups Nx are uniformly discrete for x ∈ M.

Each Nx is the image of a monodromy map:

∂ : π2(L, x) → G̃(gx)

with L the leaf through x and gx := Ker ρx the isotropy Lie algebra.

Corollary

A Lie algebroid A is integrable provided either of the following hold:

(i) All leaves have finite π2;

(ii) The isotropy Lie algebras have trivial center.

Rui Loja Fernandes Lie’s Third Theorem
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Proof: The Weinstein groupoid

Notations
An A-path is a Lie algebroid map TI → A;
An A-homotopy is a Lie algebroid map T (I × I) → A;

Definition

For a Lie algebroid π : A → M, the Weinstein Groupoid of A is:

G(A) = P(A)/ ∼ where

∣∣∣∣∣∣∣∣∣∣
s : G(A) → M, [a] 7→ π(a(0))

t : G(A) → M, [a] 7→ π(a(1))

M ↪→ G(A), x 7→ [0x ]

Rui Loja Fernandes Lie’s Third Theorem
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Proof: The Weinstein groupoid and monodromy

Lemma

G(A) is a topological groupoid with source 1-connected
fibers;
A is integrable iff G(A) is smooth (for the quotient topology);

Fix leaf L ⊂ M and x ∈ L:

0 −→ gL −→AL
#−→ TL −→ 0

⇓

· · · → π2(L, x)
∂−→ G(gL)x →G(A)x −→ π1(L, x) −→ 1

The monodromy group at x is: Nx(A) := Im ∂ ⊂ Z (gL).
Rui Loja Fernandes Lie’s Third Theorem
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Proof: The obstructions

To measure the discreteness of Nx(A) we set:

r(x) := d(Nx − {0} , {0}) (with d(∅, {0}) = +∞).

Theorem (Crainic & RLF, 2003)

A Lie algebroid is integrable iff both the following conditions
hold:

(i) Each monodromy group is discrete, i.e., r(x) > 0,
(ii) The monodromy groups are uniformly discrete, i.e.,

lim infy→x r(y) > 0,
for all x ∈ M.

...in many examples it is possible to compute the monodromy...
Rui Loja Fernandes Lie’s Third Theorem
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