

Symmetry beyond groups

Rui Loja Fernandes

May, 2004

Main Reference:

A. Weinstein, Groupoids: Unifying Internal and External Symmetry, *Notices Amer. Math. Soc.* **43** (1996).

http://www.math.ist.utl.pt/~rfern/

1. Introduction

Why groupoids?

Usual Credo:

Symmetry = Group Theory

Usual Credo:

Symmetry = Group Theory

In this talk:

Symmetry \neq Group Theory

Usual Credo:

Symmetry = Group Theory

In this talk:

Symmetry \neq Group Theory

Symmetry = *Groupoid* Theory

Introduction Usual credo... Need for a new credo Symmetry groupoids Other groupoids Home Page Title Page Page 4 of 28 Go Back Full Screen Close

Quit

Basic Remark:

Many objects which we recognize as *symmetric* admit few or no non-trivial symmetries.

Basic Remark:

Many objects which we recognize as *symmetric* admit few or no non-trivial symmetries.

Groupoids allow one to fix this.

2. Usual credo...

symmetries = groups

Introduction A group is a set G together with a multiplication Usual credo... Need for a new credo $G\times G\to G$ Symmetry groupoids $(g_1, g_2) \mapsto g_1 g_2$ Other groupoids Home Page satisfying: Title Page •• Page 6 of 28 Go Back Full Screen Close Quit

A group is a set G together with a multiplication

$$G \times G \to G$$
$$(g_1, g_2) \mapsto g_1 g_2$$

satisfying:

• Associativity. For all $g_1, g_2, g_3 \in G$:

 $(g_1g_2)g_3 = g_1(g_2g_3).$

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
•• ••
Page 6 of 28
Go Back
Full Screen
Close
Quit

A group is a set G together with a multiplication

$$G \times G \to G$$
$$(g_1, g_2) \mapsto g_1 g_2$$

satisfying:

• Associativity. For all $g_1, g_2, g_3 \in G$:

 $(g_1g_2)g_3 = g_1(g_2g_3).$

• Identity. There exists an element $e \in G$:

ge = eg = e.

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
•• ••
•
Page 6 of 28
Go Back
Full Screen
Close
Quit

A group is a set G together with a multiplication

$$G \times G \to G$$
$$(g_1, g_2) \mapsto g_1 g_2$$

satisfying:

• Associativity. For all $g_1, g_2, g_3 \in G$:

 $(g_1g_2)g_3 = g_1(g_2g_3).$

• Identity. There exists an element $e \in G$:

$$ge = eg = e$$
.

• Inverse. For all $g \in G$ there exists $g^{-1} \in G$:

$$gg^{-1} = g^{-1}g = e.$$

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
•• ••
Page 6 of 28
Go Back
Full Screen
Close
Quit

Main example: group of isometries of \mathbb{R}^n

Main example: group of isometries of \mathbb{R}^n If $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$:

$$d(x,y) \equiv ||x-y|| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$

Main example: group of isometries of \mathbb{R}^n If $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$:

$$d(x,y) \equiv ||x-y|| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$

The **Euclidean group** is:

$$E(n) = \{ \phi : \mathbb{R}^n \to \mathbb{R}^n : d(\phi(x), \phi(y)) = d(x, y), \forall x, y \in \mathbb{R}^n \}$$

Main example: group of isometries of \mathbb{R}^n If $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$:

$$d(x,y) \equiv ||x-y|| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$

The **Euclidean group** is:

 $E(n) = \{\phi: \mathbb{R}^n \to \mathbb{R}^n: d(\phi(x), \phi(y)) = d(x, y), \forall x, y \in \mathbb{R}^n\}$

with multiplication *composition* of isometries:

$$E(n) \times E(n) \to E(n)$$

$$(\phi_1, \phi_2) \longmapsto \phi_1 \circ \phi_2.$$

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
44
 ▲ ▶
Page 7 of 28
Go Back
Full Screen
Close
Quit

Group of isometries of \mathbb{R}^n (cont.) Every isometry $\phi : \mathbb{R}^n \to \mathbb{R}^n$ is of the form:

$$\phi(x) = Ax + b,$$

where $b \in \mathbb{R}^n$ and A is an **orthogonal matrix**:

$$AA^T = A^T A = I.$$

Group of isometries of \mathbb{R}^n (cont.) Every isometry $\phi : \mathbb{R}^n \to \mathbb{R}^n$ is of the form:

$$\phi(x) = Ax + b,$$

where $b \in \mathbb{R}^n$ and A is an **orthogonal matrix**:

$$AA^T = A^T A = I.$$

Group of isometries of \mathbb{R}^n (cont.) Every isometry $\phi : \mathbb{R}^n \to \mathbb{R}^n$ is of the form:

$$\phi(x) = Ax + b,$$

where $b \in \mathbb{R}^n$ and A is an **orthogonal matrix**:

$$AA^T = A^T A = I.$$

Remark:

A **proper isometry** is an isometry which preserves orientation $\Leftrightarrow \phi(x) = Ax + b$ with det A = 1.

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
•• ••
Page 9 of 28
Go Back
Full Screen
Close
Quit

• The group of translations:

$$\mathbb{R}^n = \{ \phi \in E(n) : \phi \text{ is a translation} \},\$$
$$\simeq \{ b \in \mathbb{R}^n \}.$$

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
•• ••
•
Page 9 of 28
Go Back
Full Screen
Close
Quit

• The group of translations:

$$\mathbb{R}^n = \{ \phi \in E(n) : \phi \text{ is a translation} \},\$$
$$\simeq \{ b \in \mathbb{R}^n \}.$$

• The orthogonal group:

$$\begin{split} O(n) &= \left\{ \phi \in E(n) : \phi \text{ is a orth. transf.} \right\}, \\ &\simeq \left\{ A : AA^T = A^T A = I \right\}. \end{split}$$

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
•• >>
Page 9 of 28
Go Back
Full Screen
Close
Quit

• The group of translations:

$$\mathbb{R}^n = \{ \phi \in E(n) : \phi \text{ is a translation} \},\$$
$$\simeq \{ b \in \mathbb{R}^n \}.$$

• The orthogonal group:

$$O(n) = \{ \phi \in E(n) : \phi \text{ is a orth. transf.} \},$$

$$\simeq \{ A : AA^T = A^T A = I \}.$$

• The **special orthogonal group** ("rotations"):

$$SO(n) = \{ \phi \in O(n) : \phi \text{ is proper} \}$$

$$\simeq \{ A : AA^T = A^T A = I, \text{ det } A = 1 \}.$$

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
Page 9 of 28
Go Back
Full Screen
Close
Quit

Introduction
Usual credo
Need for a new crede
Symmetry groupoids
Other groupoids
Home Page
Title Page
•• ••
Page 10 of 28
Go Back
Full Screen
Close
Quit

If $\Omega \subset \mathbb{R}^n$, the group of symmetries of Ω is

 $G_{\Omega} \equiv \{\phi \in E(n) : \phi(\Omega) = \Omega\}.$

If $\Omega \subset \mathbb{R}^n$, the group of symmetries of Ω is $G_\Omega \equiv \{\phi \in E(n) : \phi(\Omega) = \Omega\}.$

Often, one describes only the **group of proper sym**metries

 $\widetilde{G}_{\Omega} \equiv \{\phi \in E(n) : \phi(\Omega) = \Omega, \phi \text{ is proper}\}.$

If $\Omega \subset \mathbb{R}^n$, the group of symmetries of Ω is $G_\Omega \equiv \{\phi \in E(n) : \phi(\Omega) = \Omega\}.$

Often, one describes only the **group of proper sym**metries

$$\widetilde{G}_{\Omega} \equiv \{\phi \in E(n) : \phi(\Omega) = \Omega, \phi \text{ is proper}\}.$$

Philosophic principle:

An object is symmetric if it has *many* symmetries.

If $\Omega \subset \mathbb{R}^n$, the group of symmetries of Ω is $G_\Omega \equiv \{\phi \in E(n) : \phi(\Omega) = \Omega\}.$

Often, one describes only the **group of proper sym**metries

$$\widetilde{G}_{\Omega} \equiv \{\phi \in E(n) : \phi(\Omega) = \Omega, \phi \text{ is proper}\}.$$

Philosophic principle:

An object is symmetric if it has *many* symmetries.

If $\Omega \subset \mathbb{R}^n$, the group of symmetries of Ω is $G_\Omega \equiv \{\phi \in E(n) : \phi(\Omega) = \Omega\}.$

Often, one describes only the **group of proper sym**metries

$$\widetilde{G}_{\Omega} \equiv \{\phi \in E(n) : \phi(\Omega) = \Omega, \phi \text{ is proper}\}.$$

Philosophic principle:

An object is symmetric if it has *many* symmetries.

$$G_{\Omega} = O(n)$$

$$\widetilde{G}_{\Omega} = SO(n)$$

Example: Tiling by rectangles of \mathbb{R}^2

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
•• ••
Page 11 of 28
Go Back
Full Screen
Close
Quit

Example: Tiling by rectangles of \mathbb{R}^2 Take $\Omega \subset \mathbb{R}^2$ the tiling of \mathbb{R}^2 by 2 : 1 rectangles:

What is the group of symmetries G_{Ω} ?

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
•• ••
• •
Page 11 of 28
Go Back
Full Screen
Close
Quit

• Translations by elements of the lattice $\Lambda = 2\mathbb{Z} \times \mathbb{Z}$:

$$(x,y)\mapsto (x,y)+(2n,m),\qquad n,m\in\mathbb{Z}.$$

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
44
 ▲ ▶
Page 12 of 28
Go Back
Full Screen
Close
Quit

• Translations by elements of the lattice $\Lambda = 2\mathbb{Z} \times \mathbb{Z}$:

$$(x,y)\mapsto (x,y)+(2n,m),\qquad n,m\in\mathbb{Z}.$$

• Reflections through points in $\frac{1}{2}\Lambda = \mathbb{Z} \times \frac{1}{2}\mathbb{Z}$:

$$(x,y)\mapsto (n-x,m/2-y), \qquad n,m\in\mathbb{Z}.$$

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
•• >>
Page 12 of 28
Go Back
Full Screen
Close
Quit

• Translations by elements of the lattice $\Lambda = 2\mathbb{Z} \times \mathbb{Z}$:

$$(x,y)\mapsto (x,y)+(2n,m),\qquad n,m\in\mathbb{Z}.$$

• Reflections through points in $\frac{1}{2}\Lambda = \mathbb{Z} \times \frac{1}{2}\mathbb{Z}$:

$$(x,y)\mapsto (n-x,m/2-y),\qquad n,m\in\mathbb{Z}.$$

• Reflections through horizontal and vertical lines:

$$\begin{array}{ll} (x,y)\mapsto (x,m/2-y)\\ (x,y)\mapsto (n-x,y) \end{array} \qquad n,m\in\mathbb{Z}. \end{array}$$

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
•• ••
Page 12 of 28
Go Back
Full Screen
Close
Quit

• Translations by elements of the lattice $\Lambda = 2\mathbb{Z} \times \mathbb{Z}$:

$$(x,y)\mapsto (x,y)+(2n,m),\qquad n,m\in\mathbb{Z}.$$

• Reflections through points in $\frac{1}{2}\Lambda = \mathbb{Z} \times \frac{1}{2}\mathbb{Z}$:

$$(x,y)\mapsto (n-x,m/2-y), \qquad n,m\in\mathbb{Z}.$$

• Reflections through horizontal and vertical lines:

$$\begin{array}{ll} (x,y)\mapsto (x,m/2-y)\\ (x,y)\mapsto (n-x,y) \end{array} \qquad n,m\in\mathbb{Z}.$$

The tiling has a lot of symmetry!

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
44
 ▲ ▶
Page 12 of 28
Go Back
Full Screen
Close
Quit
This gives a very successful theory:
--
• symmetry groups of tilings;
• symmetry groups of crystals;
\bullet symmetry groups of differential equations;
• symmetry groups of geometric structures;

÷

	Introduction
	Usual credo
	Need for a new credo
	Symmetry groupoids
This gives a very successful theory:	Other groupoids
• symmetry groups of tilings;	Home Page
• symmetry groups of crystals;	Title Page
\bullet symmetry groups of differential equations;	44
• symmetry groups of geometric structures;	
:	Page 13 of 28
But	Go Back

Full Screen

Close

3. Need for a new credo

Instead of tiling, take B a **real** bathroom floor:

Instead of tiling, take B a **real** bathroom floor:

The group of symmetries shrinks drastically:

$$G_B = \mathbb{Z}_2 \times \mathbb{Z}_2$$

It contains only 4 elements!

Instead of tiling, take B a **real** bathroom floor:

The group of symmetries shrinks drastically:

$$G_B = \mathbb{Z}_2 \times \mathbb{Z}_2$$

It contains only 4 elements!

However, we can still recognize a repetitive pattern...

Theorem 3.1. The possible finite proper symmetry groups of a bounded region $\Omega \subset \mathbb{R}^3$ are:

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
•• ••
• •
Page 16 of 28
Go Back
Full Screen
Close
Quit

Theorem 3.1. The possible finite proper symmetry groups of a bounded region $\Omega \subset \mathbb{R}^3$ are:

• The group C_n of rotations by $\frac{2\pi}{n}$ around an axis:

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
44 >>
Page 16 of 28
Go Back
Full Screen
Close
Quit

Theorem 3.1. The possible finite proper symmetry groups of a bounded region $\Omega \subset \mathbb{R}^3$ are:

• The group C_n of rotations by $\frac{2\pi}{n}$ around an axis:

• The group D_n of symmetries of a regular n-side polyhedron:

Theorem 3.1. The possible finite proper symmetry groups of a bounded region $\Omega \subset \mathbb{R}^3$ are:

• The group C_n of rotations by $\frac{2\pi}{n}$ around an axis:

• The group D_n of symmetries of a regular n-side polyhedron:

• The 3 groups of symmetries of the platonic solids.

For example, the molecule of the fullerene C_{60} :

has the same symmetry group as the icosahedron:

For example, the molecule of the fullerene C_{60} :

has the same symmetry group as the icosahedron:

(just truncate the vertexes of the icosahedron).

4. Symmetry groupoids

To distinguish the soccer ball from the icosahedron, to describe the symmetry of a bathroom floor, and in many other problems, we need *groupoids*.

Look again at the tiling Ω .

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
~
•
Page 19 of 28
Go Back
Full Screen
Close
Quit

$$\mathcal{G}_{\Omega} = \left\{ (x, \phi, y) : x, y \in \mathbb{R}^2, \phi \in G_{\Omega} \text{ and } x = \phi(y) \right\}$$

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
•• ••
• •
Page 19 of 28
Go Back
Full Screen
Close
Quit

$$\mathcal{G}_{\Omega} = \left\{ (x, \phi, y) : x, y \in \mathbb{R}^2, \phi \in G_{\Omega} \text{ and } x = \phi(y) \right\}$$

with the partially defined multiplication:

$$(x,\phi,y)(y,\psi,z)=(x,\phi\circ\psi,z).$$

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
•• ••
Page 19 of 28
Go Back
Full Screen
Close
Quit

$$\mathcal{G}_{\Omega} = \left\{ (x, \phi, y) : x, y \in \mathbb{R}^2, \phi \in G_{\Omega} \text{ and } x = \phi(y) \right\}$$

with the partially defined multiplication:

$$(x,\phi,y)(y,\psi,z) = (x,\phi\circ\psi,z).$$

We can view each $g = (x, \phi, y) \in \mathcal{G}$ as an arrow:

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
•• ••
Page 19 of 28
Go Back
Full Screen
Close
Quit

$$\mathcal{G}_{\Omega} = \left\{ (x, \phi, y) : x, y \in \mathbb{R}^2, \phi \in G_{\Omega} \text{ and } x = \phi(y) \right\}$$

with the partially defined multiplication:

$$(x,\phi,y)(y,\psi,z)=(x,\phi\circ\psi,z).$$

We can view each $g = (x, \phi, y) \in \mathcal{G}$ as an arrow:

• source and target maps $\mathbf{s}, \mathbf{t} : \mathcal{G} \to \mathbb{R}^2$:

 $\mathbf{s}(x,\phi,y)=y,\qquad \mathbf{t}(x,\phi,y)=x.$

$$\mathcal{G}_{\Omega} = \left\{ (x, \phi, y) : x, y \in \mathbb{R}^2, \phi \in G_{\Omega} \text{ and } x = \phi(y) \right\}$$

with the partially defined multiplication:

$$(x,\phi,y)(y,\psi,z) = (x,\phi\circ\psi,z).$$

We can view each $g = (x, \phi, y) \in \mathcal{G}$ as an arrow:

Now, we have:

• source and target maps $\mathbf{s}, \mathbf{t} : \mathcal{G} \to \mathbb{R}^2$:

 $\mathbf{s}(x,\phi,y)=y,\qquad \mathbf{t}(x,\phi,y)=x.$

• identity arrows
$$1_x = (x, I, x)$$
:

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
••
Page 19 of 28
Go Back
Full Screen
Close
Quit

$$\mathcal{G}_{\Omega} = \left\{ (x, \phi, y) : x, y \in \mathbb{R}^2, \phi \in G_{\Omega} \text{ and } x = \phi(y) \right\}$$

with the partially defined multiplication:

$$(x,\phi,y)(y,\psi,z) = (x,\phi\circ\psi,z).$$

We can view each $g = (x, \phi, y) \in \mathcal{G}$ as an arrow:

Now, we have:

• source and target maps $\mathbf{s}, \mathbf{t} : \mathcal{G} \to \mathbb{R}^2$:

 $\mathbf{s}(x,\phi,y) = y, \qquad \mathbf{t}(x,\phi,y) = x.$

• *identity arrows* $1_x = (x, I, x)$:

• inverse arrows $g^{-1} = (y, \phi^{-1}, x)$:

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
4
•
Page 20 of 28
Go Back
Full Screen
Close
Quit

Introduction Usual credo... Need for a new credo Symmetry groupoids They satisfy group like properties: Other groupoids 1. Multipl: $(g, h) \mapsto gh$, defined iff $\mathbf{s}(g) = \mathbf{t}(h)$; Home Page Title Page •• 44 Page 20 of 28 Go Back Full Screen Close

Quit

1. Multipl: $(g, h) \mapsto gh$, defined iff $\mathbf{s}(g) = \mathbf{t}(h)$;

2. Associativity: (gh)k = g(hk) whenever defined;

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
•• ••
Page 20 of 28
Go Back
Full Screen
Close
Quit

1. Multipl: $(g, h) \mapsto gh$, defined iff $\mathbf{s}(g) = \mathbf{t}(h)$;

- 2. Associativity: (gh)k = g(hk) whenever defined;
- 3. Identities: $1_x g = g = g 1_y$, if $\mathbf{t}(g) = x$, $\mathbf{s}(g) = y$;

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
•• ••
• •
Page 20 of 28
Go Back
Full Screen
Close
Quit

1. Multipl: $(g, h) \mapsto gh$, defined iff $\mathbf{s}(g) = \mathbf{t}(h)$;

2. Associativity: (gh)k = g(hk) whenever defined;

3. Identities:
$$1_x g = g = g 1_y$$
, if $\mathbf{t}(g) = x$, $\mathbf{s}(g) = y$;

4. **Inverse**:
$$g g^{-1} = 1_x$$
 and $g^{-1}g = 1_y$

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
••
• •
Page 20 of 28
Go Back
Full Screen
Close
Quit

1. Multipl: $(g, h) \mapsto gh$, defined iff $\mathbf{s}(g) = \mathbf{t}(h)$;

2. Associativity: (gh)k = g(hk) whenever defined;

3. Identities:
$$1_x g = g = g 1_y$$
, if $\mathbf{t}(g) = x$, $\mathbf{s}(g) = y$;

4. **Inverse**:
$$g g^{-1} = 1_x$$
 and $g^{-1}g = 1_y$

Definition 4.1. A groupoid with base *B* is a set \mathcal{G} with maps $\mathbf{s}, \mathbf{t} : \mathcal{G} \to B$ and operation satisfying 1–4.

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
•• ••
Page 20 of 28
Go Back
Full Screen
Close
Quit

 $\mathcal{G}_B = \{(x, \phi, y) : x, y \in B, \phi \in G_\Omega \text{ and } x = \phi(y)\}.$

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
• •
Page 21 of 28
Go Back
Full Screen
Close
Quit

$$\mathcal{G}_B = \{(x, \phi, y) : x, y \in B, \phi \in G_\Omega \text{ and } x = \phi(y)\}.$$

The groupoid \mathcal{G}_B captures the symmetry of the real bathroom floor.

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
44
• •
Page 21 of 28
Go Back
Full Screen
Close
Quit

$$\mathcal{G}_B = \{(x, \phi, y) : x, y \in B, \phi \in G_\Omega \text{ and } x = \phi(y)\}.$$

The groupoid \mathcal{G}_B captures the symmetry of the real bathroom floor.

We need two elementary concepts from groupoid theory:

```
Introduction
Usual credo...
Need for a new credo
Symmetry groupoids
Other groupoids
      Home Page
       Title Page
     Page 21 of 28
       Go Back
      Full Screen
         Close
         Quit
```

$$\mathcal{G}_B = \{(x, \phi, y) : x, y \in B, \phi \in G_\Omega \text{ and } x = \phi(y)\}.$$

The groupoid \mathcal{G}_B captures the symmetry of the real bathroom floor.

We need two elementary concepts from groupoid theory:

• Two elements $x, y \in B$ belong to the same **orbit** of \mathcal{G} if they can be connected by an arrow:

$$\mathcal{G}_B = \{(x, \phi, y) : x, y \in B, \phi \in G_\Omega \text{ and } x = \phi(y)\}.$$

The groupoid \mathcal{G}_B captures the symmetry of the real bathroom floor.

We need two elementary concepts from groupoid theory:

• Two elements $x, y \in B$ belong to the same **orbit** of \mathcal{G} if they can be connected by an arrow:

• The **isotropy group** of $x \in B$ is the set of arrows $g \in \mathcal{G}$ from x to x:

• The orbits consist of points similarly placed within their tiles, or within the grout:

• The orbits consist of points similarly placed within their tiles, or within the grout:

•		

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
•• ••
• •
Page 22 of 28
Go Back
Full Screen
Close
Quit

• The orbits consist of points similarly placed within their tiles, or within the grout:

•		
•		

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
••
• •
Page 22 of 28
Go Back
Full Screen
Close
Quit
•

•

•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•

•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•

•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
•• ••
Page 22 of 28
Go Back
Full Screen
Close
Quit

•	• •	•	•	•	•	•	•	•	•
•	• 🖕	•	•	•	•	•	•	•	•
•	• •	•	•	•	•	•	•	•	•
•	• 🖕	•	•	•	•	•	•	•	•
•	• •	•	•	•	•	•	•	•	•
•	• 🖕	•	•	•	•	•	•	•	•
•	• •	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•

• •	•••	•••	• •	• •
• •	• •	•••	• • •	• •
• •	• • •	• • •	• •	• •
• •		•••	• • •	• •
• •	• • •	• • •	• •	• •
• •		••	• •	• •
• •	• •	• • •	• •	• •
• •	• •	• •	• •	• •

• • •	• • •	• • •	• • •	• • •
• • •	• •	• • •	• •	• •
• •	• •	• • •	• •	• •
• •	• • •	• • •	• •	• •
• •	• •	• •	• •	• •
• •	• •	• •	• •	• •
• •	• •	• •	• •	• •
• •	• •	• •	• •	• •

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
•• ••
• •
Page 22 of 28
Go Back
Full Screen
Close
Quit

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
•• ••
• •
Page 22 of 28
Go Back
Full Screen
Close
Quit

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
~
Page 22 of 28
Go Back
Full Screen
Close
Quit

• The orbits consist of points similarly placed within their tiles, or within the grout:

 The only points with non-trivial isotropy are those in (Z × ¹/₂Z) ∩ B. For these, the isotropy group is:

$$G = \mathbb{Z}_2 \times \mathbb{Z}_2$$

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
•• ••
Page 22 of 28
Go Back
Full Screen
Close
Quit

5. Other groupoids

Groupoids play an important role in many other contexts, not related with symmetry.

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
4
• •
Page 24 of 28
Go Back
Full Screen
Close
Quit

Introduction Usual credo... Need for a new credo Symmetry groupoids Other groupoids Home Page Title Page •• Page 24 of 28 Go Back Full Screen Close Quit

Fundamental Groupoid of a space

X any topological space Look at continuous curves $\gamma:[0,1]\to X$

X any topological space Look at continuous curves $\gamma:[0,1]\to X$

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
•• ••
Page 24 of 28
Go Back
Full Screen
Close
Quit

X any topological space Look at continuous curves $\gamma : [0, 1] \to X$

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
Page 24 of 28
Go Back
Full Screen
Close
Quit

X any topological space Look at continuous curves $\gamma:[0,1]\to X$

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
•• ••
Page 24 of 28
Go Back
Full Screen
Close
Quit

X any topological space Look at continuous curves $\gamma : [0, 1] \to X$

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
~
•
Page 24 of 28
Go Back
Full Screen
Close
Quit

X any topological space Look at continuous curves $\gamma : [0, 1] \to X$

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
44 >>
Page 24 of 28
Go Back
Full Screen
Close
Quit

X any topological space Look at continuous curves $\gamma : [0, 1] \to X$

 $[\gamma] \equiv$ homotopy class of γ

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
•• ••
Page 24 of 28
Go Back
Full Screen
Close
Quit

Fundamental Groupoid of a space Introduction X any topological space Usual credo... Look at *continuous* curves $\gamma : [0, 1] \to X$ Need for a new credo Symmetry groupoids Other groupoids η Home Page γ Title Page 0 XPage 24 of 28 $[\gamma] \equiv \text{homotopy class of } \gamma \quad (\text{e.g. } [\gamma_0] = [\gamma_1] \text{ but } [\gamma_0] \neq [\eta]).$ Go Back Full Screen Close Quit

Fundamental Groupoid of a space Introduction X any topological space Usual credo... Look at *continuous* curves $\gamma : [0, 1] \to X$ Need for a new credo Symmetry groupoids Other groupoids η Home Page γ Title Page 0 XPage 24 of 28 $[\gamma] \equiv \text{homotopy class of } \gamma \quad (\text{e.g. } [\gamma_0] = [\gamma_1] \text{ but } [\gamma_0] \neq [\eta]).$ Go Back Full Screen The fundamental groupoid of X is: Close $\Pi(X) = \{ [\gamma] \mid \gamma : [0,1] \to X \}.$ Quit

$$\Pi(X) = \{ [\gamma] \mid \gamma : [0,1] \to X \}$$

the structure maps are:

$$\Pi(X) = \{ [\gamma] \mid \gamma : [0,1] \to X \}$$

the structure maps are:

• *source* and *target* give initial and final points:

 $\mathbf{s}([\gamma]) = \gamma(0), \qquad \mathbf{t}([\gamma]) = \gamma(1);$

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
~
• •
Page 25 of 28
Go Back
Full Screen
Close
Quit

$$\Pi(X) = \{ [\gamma] \mid \gamma : [0,1] \to X \}$$

the structure maps are:

• *source* and *target* give initial and final points:

 $\mathbf{s}([\gamma]) = \gamma(0), \qquad \mathbf{t}([\gamma]) = \gamma(1);$

• *product* is concatenation of curves:

$$[\gamma] \cdot [\eta] = [\gamma \cdot \eta];$$

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
•• ••
Page 25 of 28
Go Back
Full Screen
Close
Quit

$$\Pi(X) = \{ [\gamma] \mid \gamma : [0,1] \to X \}$$

the structure maps are:

• *source* and *target* give initial and final points:

 $\mathbf{s}([\gamma]) = \gamma(0), \qquad \mathbf{t}([\gamma]) = \gamma(1);$

• *product* is concatenation of curves:

$$[\gamma] \cdot [\eta] = [\gamma \cdot \eta];$$

• *units* are the constant curves:

$$1_x = [\gamma], \quad \text{where } \gamma(t) = x_1$$

$$\Pi(X) = \{ [\gamma] \mid \gamma : [0,1] \to X \}$$

the structure maps are:

• *source* and *target* give initial and final points:

 $\mathbf{s}([\gamma]) = \gamma(0), \qquad \mathbf{t}([\gamma]) = \gamma(1);$

• *product* is concatenation of curves:

$$[\gamma] \cdot [\eta] = [\gamma \cdot \eta];$$

• *units* are the constant curves:

$$1_x = [\gamma], \quad \text{where } \gamma(t) = x_1$$

• *inverse* is the opposite curve:

$$[\gamma]^{-1} = [\overline{\gamma}], \quad \text{where } \overline{\gamma}(t) = \gamma(1-t).$$

$$\Pi(X) = \{ [\gamma] \mid \gamma : [0,1] \to X \}$$

one has:

$$\Pi(X) = \{ [\gamma] \mid \gamma : [0,1] \to X \}$$

one has:

• One orbit for each connected component of X;

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
4
Page 26 of 28
Go Back
Full Screen
Close
Quit

 $\Pi(X) = \{ [\gamma] \mid \gamma : [0,1] \to X \}$

one has:

- One orbit for each connected component of X;
- Isotropy group of $x \in X$ is the *fundamental group*:

 $\pi(X, x) = \{ [\gamma] \mid \gamma \text{ is a loop based at } x \}.$

 $\Pi(X) = \{ [\gamma] \mid \gamma : [0,1] \to X \}$

one has:

- One orbit for each connected component of X;
- Isotropy group of $x \in X$ is the fundamental group:

 $\pi(X, x) = \{ [\gamma] \mid \gamma \text{ is a loop based at } x \}.$

This is by no means trivial!

 $\Pi(X) = \{[\gamma] \mid \gamma : [0,1] \to X\}$

one has:

- One orbit for each connected component of X;
- Isotropy group of $x \in X$ is the fundamental group:

 $\pi(X, x) = \{ [\gamma] \mid \gamma \text{ is a loop based at } x \}.$

This is by no means trivial!

Examples:

- If X = SO(2) one has $\pi(X, x) = \mathbb{Z}$.
- If X = SO(n) one has $\pi(X, x) = \mathbb{Z}_2 = \{+1, -1\}.$

Groupoids and control theory

X a foliated space:

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
•• ••
Page 27 of 28
Go Back
Full Screen
Close
Quit

...

In control theory:

ORBITS = ACCESSIBLE SETS

Introduction
Usual credo
Need for a new credo
Symmetry groupoids
Other groupoids
Home Page
Title Page
4
Page 28 of 28
Go Back
Full Screen
Close
Quit

In control theory:

ORBITS = ACCESSIBLE SETS

Typical problem:(*stability*)

Fix an orbit L_0 . Is there a nearby orbit L diffeomorphic to L_0 ?

In control theory:

ORBITS = ACCESSIBLE SETS

Typical problem:(*stability*)

Fix an orbit L_0 . Is there a nearby orbit L diffeomorphic to L_0 ?

This is where the *real math* starts and where this talk stops...