Background-Disease and Gene

 clogs the lungs and leads to life-threatening lung infections. and
-obstructs the pancreas and stops natural enzymes from helping the body break down and absorb food
 Statistics

- About 1,000 new cases of cystic fibrosis are diagnosed each year
- More than 70% of patients are diagnosed by age two.
- More than 40% of the CF patient population is age 18 or older.
- In 2006, the predicted median age of survival was 37 years. ${ }^{1}$

 channel stays closed. The sodium, whe
thrive in the thick, sticky mucus.

1. Cystic Fibrosis is...

1. A chronic genetic disease that affects the respiratory and digestive systems

2. A sexually transmitted disease that can be cured with medication
3. A sports injury
4. An illness due to lack of fiber in a diet
5. What does the CFTR protein regulate?
6. Where fat is deposited in the body
7. Whether or not someone can see color
8. The transfer of sodium across the cell membrane
9. The transmittance of impulses through nerves

 gene lead to absent or defective CFTR production, causing CF. More than 1,000 different CF mutations have been identified, although some are much more common than others.

 single or a number of base pairs are taken out of the gene sequence. These two may change the entire line of amino acids down the entire gene.

Symptoms of Cystic Fibrosis
People with CF can have a variety of symptoms, including:

- very salty-tasting skin;
- persistent coughing, at times with phlegm;
- frequent lung infections
- wheezing or shortness of breath
- poor growth/weight gain in spite of a good appetite; and
- frequent greasy, bulky stools or difficulty in bowel movements. ${ }^{4}$

Statistics by mutation type: ${ }^{5}$

Mutation Type	Count	Frequency \%
Missense	654	41.71
Frame shift	246	15.69
Splicing	201	12.82
Nonsense	151	9.63
In frame in/del	32	2.04
Large in/del	45	2.87
Promoter	8	0.51
Sequence variation	229	14.60

1. The gene that codes for Cystic Fibrosis is located:
2. On chromosome 5
3. On chromosome 32
4. On chromosome 7
5. On chromosome 61
6. Which one of these is NOT a symptom of CF?
7. Excessive weight gain in spite of poor appetite
8. Poor weight gain in spite of good appetite
9. Frequent lung infections
10. Salty-tasting skin
11. Which is the most common mutation type coding for CF?
12. Sequence variation
13. Frame shift
14. Missense
15. A deletion is
16. an addition of base pairs
17. when one base pair is changed to another
18. when base pairs are removed
19. when you hit the del. button on the keyboard

Exon 10-How to find it
 finding exon 10. To find this gene on the NCBI database ${ }^{-}$search OMIM using the accession number 602421.

ENTRY 90421312 \#Type genetic

ITLE 904213126132 bases, NULL checksum
SEquence
51015202530
1AATTGGAAGCAAATGACATCACAGCAGGTC
31 AGAGAAAAAGGGTTGAGCGGCAGGCACCCA
61 G A G TAGTAGGTCTTTGGCATTAGGAGCTTG
1 AGCCCAGACGGCCCTAGCAGGGACCCCAGC
121 GCCCGAGAGACCATGCAGAGGTCGCCTCTG 151 GAAAAGGCCAGCGTTGTCTCCAAACTTTTT 181 T TCAGCTGGACCAGACCAATTTTGAGGAAA 211 G G A T A C A G A C A G C GCCTGGAATTGTCAGAC $241 \mathrm{~A} T \mathrm{~A} T \mathrm{ACCAAATCCCTTCTGTTGATTCTGCT}$ 271 GACAATCTATCTGAAAAATTGGAAAGAGAA 301 TGGGATAGAGAGCTGGCTTCAAAGAAAAAT 331 C C TAAACTCATTAATGCCCTTCGGCGATGT 361 T T T T TC TG GAGATTTATGTTCTATGGAATC 391 T T T T TATATTTAGGGGAAGTCACCAAAGCA 421 GTACAGCCTCTCTTACTGGGAAGAATCATA $451 \mathrm{GCT} T \mathrm{C} C \mathrm{~T} A \mathrm{~T}$ GACCCGGATAACAAGGAGGAA 481 C GCTCTATCGCGATTTATCTAGGCATAGGC 511 T T A T G C C T T C T C T T T A T T G T G A G G A C A C T G 541 C TCCTACACCCAGCCATTTTTGGCCTTCAT 571 CACATTGGAATGCAGATGAGAATAGCTATG 601 T T TAGTTTGATTTATAAGAAGACTTTAAAG 631 C TGTCAAGCCGTGTTCTAGATAAAATAAGT 661 A T TGGACAACTTGTTAGTCTCCTTTCCAAC 691 AACCTGAACAAATTTGATGAAGGACTTGCA 721 T T G G C A C A T T T C G T G T G G A TC G C T C C T T T G 751 CAAGTGGCACTCCTCATGGGGCTAATCTGG 781 G A G T T G T TACAGGCGTCTGCCTTCTGTGGA 811 C T T G G T T T C C TGATAGTCCTTGCCCTTTTT 841 CAGGCTGGGCTAGGGAGAATGATGATGAAG 871 T ACAGAGATCAGAGAGCTGGGAAGATCAGT 901 GAAAGACTTGTGATTACCTCAGAAATGATT 931 GAAAATATCCAATCTGTTAAGGCATACTGC 961 TGGGAAGAAGCAATGGAAAAAATGATTGAA 991 A ACTTAAGACAAACAGAACTGAAACTGACT 1021 C G G A A G G C A G C C TATGTGAGATACTTCAAT 1051 A GCTCAGCCTTCTTCTTCTCAGGGTTCTTT 1081 G TGGTGTTTTTATCTGTGCTTCCCTATGCA

1111 CTAATCAAAGGAATCATCCTCCGGAAAATA 1141 TTCACCACCATCTCATTCTGCATTGTTCTG 1171 C GCATGGCGGTCACTCGGCAATTTCCCTGG 1201 G C TGTACAAACATGGTATGACTCTCTTGGA 1231 GCAATAAACAAAATACAGGATTTCTTACAA 1261 AAGCAAGAATATAAGACATTGGAATATAAC 1291 TTAACGACTACAGAAGTAGTGATGGAGAAT 1321 GTAACAGCCTTCTGGGAGGAGGGATTTGGG 1351 GAATTATTTGAGAAAGCAAAACAAAACAAT 1381 A ACAATAGAAAAACTTCTAATGGTGATGAC 1411 A GCCTCTTCTTCAGTAATTTCTCACTTCTT 1441 GG TACTCCTGTCCTGAAAGATATTAATTTC 1471 AAGATAGAAAGAGGACAGTTGTTGGCGGTT 1501 GCTGGATCCACTGGAGCAGGCAAGACTTCA 1531_ CTCTAATGGTGATTATGGGAGAACTGGAG 1561 CCTTCAGAGGGTAAAATTAAGCACAGTGGA 1591ـAGAATTCATTCTGTTCTCAGTTTTCCTGG 1621ATTATGCCTGGCACCATTAAAGAAAATATC 1651_ATCTTTGGTGTTTCCTATGATGAATATAGA 1681 TACAGAAGCGTCATCAAAGCATGCCAACTA 1711 GAAGAGGACATCTCCAAGTTTGCAGAGAAA 1741 GACAATATAGTTCTTGGAGAAGGTGGAATC 1771 ACACTGAGTGGAGGTCAACGAGCAAGAATT 1801 TCTTTAGCAAGAGCAGTATACAAAGATGCT 1831 G A T T TGTATTTATTAGACTCTCCTTTTGGA 1861 TACCTAGATGTTTTAACAGAAAAAGAAATA 1891 T T TGAAAGCTGTGTCTGTAAACTGATGGCT 1921 AACAAAACTAGGATTTTGGTCACTTCTAAA 1951 ATGGAACATTTAAAGAAAGCTGACAAAATA 1981 T TAATTTTGCATGAAGGTAGCAGCTATTTT 2011 TATGGGACATTTTCAGAACTCCAAAATCTA 2041 CAGCCAGACTTTAGCTCAAAACTCATGGGA 2071 TGTGATTCTTTCGACCAATTTAGTGCAGAA 2101 A GAAGAAATTCAATCCTAACTGAGACCTTA 2131 CACCGTTTCTCATTAGAAGGAGATGCTCCT 2161 GTCTCCTGGACAGAAACAAAAAAACAATCT 2191 TTTAAACAGACTGGAGAGTTTGGGGAAAAA $2221 \mathrm{~A} G \mathrm{GA} A \mathrm{GA}$ ATTCTATTCTCAATCCAATCAAC 2251 TCTATACGAAAATTTTCCATTGTGCAAAAG 2281 A C TCCCTTACAAATGAATGGCATCGAAGAG 2311 GATTCTGATGAGCCTTTAGAGAGAAGGCTG 2341 TCCTTAGTACCAGATTCTGAGCAGGGAGAG 2371 GCGATACTGCCTCGCATCAGCGTGATCAGC 2401 ACTGGCCCCACGCTTCAGGCACGAAGGAGG 2431 C AGTCTGTCCTGAACCTGATGACACACTCA

Tutor on Cystic Fibrosis

2461 G T TAACCAAGGTCAGAACATTCACCGAAAG 2491 ACAACAGCATCCACACGAAAAGTGTCACTG 2521 GCCCCTCAGGCAAACTTGACTGAACTGGAT 2551 ATATATTCAAGAAGGTTATCTCAAGAAACT 2581 G G C T T G GAAATAAGTGAAGAAATTAACGAA 2611 GAAGACTTAAAGGAGTGCTTTTTTGATGAT 2641 ATGGAGAGCATACCAGCAGTGACTACATGG 2671 A ACACATACCTTCGATATATTACTGTCCAC 2701 A A G A G C T TAATTTTTGTGCTAATTTGGTGC 2731 TTAGTAATTTTTCTGGCAGAGGTGGCTGCT 2761 TCTTTGGTTGTGCTGTGGCTCCTTGGAAAC 2791 ACTCCTCTTCAAGACAAAGGGAATAGTACT 2821 CATAGTAGAAATAACAGCTATGCAGTGATT 2851 ATCACCAGCACCAGTTCGTATTATGTGTTT 2881 TACATTTACGTGGGAGTAGCCGACACTTTG 2911 C T T G C TATGGGATTCTTCAGAGGTCTACCA 2941 CTGGTGCATACTCTAATCACAGTGTCGAAA 2971 A T T T TACACCACAAAATGTTACATTCTGTT 3001 C TTCAAGCACCTATGTCAACCCTCAACACG 3031 TTGAAAGCAGGTGGGATTCTTAATAGATTC 3061 T C C A A A G A TATAGCAATTTTGGATGACCTT 3091 C TGCCTCTTACCATATTTGACTTCATCCAG 3121 T T G T TATTAATTGTGATTGGAGCTATAGCA 3151 GTTGTCGCAGTTTTACAACCCTACATCTTT 3181 GTTGCAACAGTGCCAGTGATAGTGGCTTTT 3211 A T TATGTTGAGAGCATATTTCCTCCAAACC 3241 TCACAGCAACTCAAACAACTGGAATCTGAA 3271 G G C A G G A G TCCAATTTTCACTCATCTTGTT 3301 ACAAGCTTAAAAGGACTATGGACACTTCGT 3331 GCCTTCGGACGGCAGCCTTACTTTGAAACT 3361 C T GTTCCACAAAGCTCTGAATTTACATACT 3391 GCCAACTGGTTCTTGTACCTGTCAACACTG 3421 C G C T G G T TC CAAATGAGAATAGAAATGATT 3451 TTTGTCATCTTCTTCATTGCTGTTACCTTC 3481 ATTTCCATTTTAACAACAGGAGAAGGAGAA 3511 G GAAGAGTTGGTATTATCCTGACTTTAGCC 3541 ATGAATATCATGAGTACATTGCAGTGGGCT 3571 G TAAACTCCAGCATAGATGTGGATAGCTTG 3601 ATGCGATCTGTGAGCCGAGTCTTTAAGTTC 3631 ATTGACATGCCAACAGAAGGTAAACCTACC 3661 A AGTCAACCAAACCATACAAGAATGGCCAA 3691 C TCTCGAAAGTTATGATTATTGAGAATTCA 3721 CACGTGAAGAAAGATGACATCTGGCCCTCA 3751 GGGGGCCAAATGACTGTCAAAGATCTCACA

3781 G CAAAATACACAGAAGGTGGAAATGCCATA 3811 TTAGAGAACATTTCCTTCTCAATAAGTCCT 3841 GGCCAGAGGGTGGGCCTCTTGGGAAGAACT 3871 G G A TCAGGGAAGAGTACTTTGTTATCAGCT 3901 T T T TTGAGACTACTGAACACTGAAGGAGAA 3931 ATCCAGATCGATGGTGTGTCTTGGGATTCA 3961 ATAACTTTGCAACAGTGGAGGAAAGCCTTT 3991 G GAGTGATACCACAGAAAGTATTTATTTTT 4021 T C TGGAACATTTAGAAAAAACTTGGATCCC 4051 TATGAACAGTGGAGTGATCAAGAAATATGG 4081 A AAGTTGCAGATGAGGTTGGGCTCAGATCT 4111 GT GATAGAACAGTTTCCTGGGAAGCTTGAC 4141 T TTGTCCTTGTGGATGGGGGCTGTGTCCTA 4171 A GCCATGGCCACAAGCAGTTGATGTGCTTG 4201 GCTAGATCTGTTCTCAGTAAGGCGAAGATC 4231 T TGCTGCTTGATGAACCCAGTGCTCATTTG 4261 GATCCAGTAACATACCAAATAATTAGAAGA 4291 A C TCTAAAACAAGCATTTGCTGATTGCACA 4321 G T A A T TC TC TGTGAACACAGGATAGAAGCA 4351 ATGCTGGAATGCCAACAATTTTTGGTCATA 4381 GAAGAGAACAAAGTGCGGCAGTACGATTCC 4411 ATCCAGAAACTGCTGAACGAGAGGAGCCTC 4441 TTCCGGCAAGCCATCAGCCCCTCCGACAGG 4471 GTGAAGCTCTTTCCCCACCGGAACTCAAGC 4501 AAGTGCAAGTCTAAGCCCCAGATTGCTGCT 4531 C T GAAAGAGGAGACAGAAGAAGAGGTGCAA 4561 GATACAAGGCTTTAGAGAGCAGCATAAATG 4591 T TGACATGGGACATTTGCTCATGGAATTGG 4621 A GCTCGTGGGACAGTCACCTCATGGAATTG 4651 GAGCTCGTGGAACAGTTACCTCTGCCTCAG 4681 A A A ACAAGGATGAATTAAGTTTTTTTTTAA 4711 AAAAGAAACATTTGGTAAGGGGAATTGAGG 4741 ACACTGATATGGGTCTTGATAAATGGCTTC $4771 \mathrm{C} T \mathrm{G}$ GCAATAGTCAAATTGTGTGAAAGGTAC 4801 TTCAAATCCTTGAAGATTTACCACTTGTGT 4831 T T T GCAAGCCAGATTTTCCTGAAAACCCTT 4861 GCCATGTGCTAGTAATTGGAAAGGCAGCTC 4891 TAAATGTCAATCAGCCTAGTTGATCAGCTT $4921 \mathrm{~A} T \mathrm{~T}$ G TCTAGTGAAACTCGTTAATTTGTAGT 4951 GTTGGAGAAGAACTGAAATCATACTTCTTA 4981 G G G T TATGATTAAGTAATGATAACTGGAAA 5011 C TTCAGCGGTTTATATAAGCTTGTATTCCT 5041 T T TTCTCTCCTCTCCCCATGATGTTTAGAA 5071 A C A C A A C TATATTGTTTGCTAAGCATTCCA 5101 A C TATCTCATTTCCAAGCAAGTATTAGAAT

5131 ACCACAGGAACCACAAGACTGCACATCAAA 5161 ATATGCCCCATTCAACATCTAGTGAGCAGT 5191 CAGGAAAGAGAACTTCCAGATCCTGGAAAT 5221 CAGGGTTAGTATTGTCCAGGTCTACCAAAA 5251 A TC TCAATATTTCAGATAATCACAATACAT 5281 C C C TTACCTGGGAAAGGGCTGTTATAATCT 5311 T TCACAGGGGACAGGATGGTTCCCTTGATG 5341 A A GAAGTTGATATGCCTTTTCCCAACTCCA 5371 GAAAGTGACAAGCTCACAGACCTTTGAACT $5401 \mathrm{~A} G \mathrm{~A}$ GTTTAGCTGGAAAAGTATGTTAGTGCA 5431 AATTGTCACAGGACAGCCCTTCTTTCCACA 5461 GAAGCTCCAGGTAGAGGGTGTGTAAGTAGA 5491 TAGGCCATGGGCACTGTGGGTAGACACACA $5521 \mathrm{~T} G A A G T C C A A G C A T T T A G A T G T A T A G G T T G$ 5551 ATGGTGGTATGTTTTCAGGCTAGATGTATG 5581 TACTTCATGCTGTCTACACTAAGAGAGAAT 5611 GAGAGACACACTGAAGAAGCACCAATCATG 5641 A A T TAGTTTTATATGCTTCTGTTTTATAAT 5671 TTTGTGAAGCAAAATTTTTTCTCTAGGAAA 5701 TATTTATTTTAATAATGTTTCAAACATATA 5731 TAACAATGCTGTATTTTAAAAGAATGATTA 5761 TGAATTACATTTGTATAAAATAATTTTTAT 5791 A T T T G A A A TATTGACTTTTTATGGCACTAG 5821 TATTTCTATGAAATATTATGTTAAAACTGG 5851 GACAGGGGAGAACCTAGGGTGATATTAACC 5881 A GGGGCCATGAATCACCTTTTGGTCTGGAG 5911 G GAAGCCTTGGGGCTGATGCAGTTGTTGCC 5941 CACAGCTGTATGATTCCCAGCCAGCACAGC 5971 C TCTTAGATGCAGTTCTGAAGAAGATGGTA 6001 C CACCAGTCTGACTGTTTCCATCAAGGGTA 6031 CACTGCCTTCTCAACTCCAAACTGACTCTT 6061 A A GAAGACTGCATTATATTTATTACTGTAA 6091 GAAAATATCACTTGTCAATAAAATCCATAC 6121 A T T T G T G T G A A A

1. What is the sequence for Exon 10?

2. GACATCTCCAAGTTTGCAGAGAAAGACAATATAGTTCTTGGAGAAGGTGGAATCACACTGAGTGGAGGTCAACGAGCAAGAATTTCTTTAGCAAG
3. What is the accession number of Exon 10 on the NCBI database?
4. 1525
5. 602421
6. 1716
7. 10

eletion of TTT

Location: Amino Acid 508 and Base Pairs 1653-1655

This deletion mutation is the most common cause of Cystic Fibrosis. It deletes three base pairs, or a single amino acid, Phe, changing the nature of the protein

Normal Exon 10
ACTTCACTTCTAATGGTGATTATGGGAGAACTGGAGCCTTCAGAGGGTAAAATTAAGCACAGTGGAAGA
TTCATTCTGTTCTCAGTTTTCCTGGATTATGCCTGGCACCATTAAAGAAAATATCATCTTTGGTGTTTC
TATGATGAATATAGATACAGAAGCGTCATCAAAGCATGCCAACTAGAAGAG

Deletion of TTT
ACTTCACTTCTAATGGTGATTATGGGAGAACTGGAGCCTTCAGAGGGTAAAATTAAGCACAGTGGAAGAA
TTTCATTCTGTTCTCAGTTTTCCTGGATTATGCCTGGCACCATTAAAGAAAATATCATCGGTGTTTCCTA
TGATGAATATAGATACAGAAGCGTCATCAAAGCATGCCAACTAGAAGAG

Frame Translation
 we want.

Normal Exon 10
Frame 1, 0 stop codons
T S L L M V I M G E L E P S E G K I K
1 acttcacttctaatggtgattatgggagaactggagccttcagagggtaaaattaagcac 60
G R I S F C S Q F S W I M P G T I K
61 agtggaagaatttcattctgttctcagttttcctggattatgcctggcaccattaaagaa 120
N I I F G V S Y D E Y R Y R S V I K A C
121 aatatcatctttggtgtttcctatgatgaatatagatacagaagcgtcatcaaagcatgc 180
L L E
181 caactagaagag 192

Frame 2, 3 stop codons

LHF *W * LWENWSLQRVKLST
2 cttcacttctaatggtgattatgggagaactggagccttcagagggtaaaattaagcaca 61
VEEFHSVLSFPGLCLAPLKK
62 gtggaagaatttcattctgttctcagttttcctggattatgcctggcaccattaaagaaa 121
I S SLVFPMMNIDTEASSKHA
122 atatcatctttggtgtttcctatgatgaatatagatacagaagcgtcatcaaagcatgcc 181
N * K
182 aactagaagag 192

Frame 3, 6 stop codons
FTSNGDYGRTGAFRG*N*AQ
ttcacttctaatggtgattatgggagaactggagccttcagagggtaaaattaagcacag 62
WKNFILFSVFLDYAWHH*RK

63 tggaagaatttcattctgttctcagttttcctggattatgcctggcaccattaaagaaaa 122
Y H L W C F L * * I * I Q K R H Q S M P
123 tatcatctttggtgtttcctatgatgaatatagatacagaagcgtcatcaaagcatgcca 182 T R R
183 actagaagag 192
Frame 4, 5 stop codons
LF*LACFDDASVSIFIIGNT
-1 ctcttctagttggcatgctttgatgacgcttctgtatctatattcatcataggaaacacc -60
K DDIFFNGARHNPGKLRTE *
-61 aaagatgatattttctttaatggtgccaggcataatccaggaaaactgagaacagaatga -120
NS STVLNFTL*RLQFSHNHH
-121 aattcttccactgtgcttaattttaccctctgaaggctccagttctcccataatcaccat -180
K * S
-181 tagaagtgaagt -192

Frame 5, 2 stop codons
S S SWHALMTLLYLYSS *ETP
-2 tcttctagttggcatgctttgatgacgcttctgtatctatattcatcataggaaacacca -61
K M I F S L M V P G I I Q EN * E Q NE
-62 aagatgatattttctttaatggtgccaggcataatccaggaaaactgagaacagaatgaa -121
I LPLCLILPSEGSSSPIITI
122 attcttccactgtgcttaattttaccctctgaaggctccagttctcccataatcaccatt -181
R S E
-182 agaagtgaagt -192

Fame 6, 7 stop codons

LLVGML**RFCIYIHHRKHQ
-3 cttctagttggcatgctttgatgacgcttctgtatctatattcatcataggaaacaccaa -62
R * Y FL * WCQA * SRKTENRMK
-63 agatgatattttctttaatggtgccaggcataatccaggaaaactgagaacagaatgaaa -122
FFHCA*FYPLKAPVLP *SPL
-123 ttcttccactgtgcttaattttaccctctgaaggctccagttctcccataatcaccatta -182
E V K
183 gaagtgaagt -192
Frame 1 [Longest ORF], 0 stop codons
… MVIMGELEPSEGKIKH
1-----------atggtgattatgggagaactggagccttcagagggtaaaattaagcac 60
SGRISFCSQFSWIMPGTIKE
61 agtggaagaatttcattctgttctcagttttcctggattatgcctggcaccattaaagaa 120
NIIFGVSYDEYRYRSVIKAC
121 aatatcatctttggtgtttcctatgatgaatatagatacagaagcgtcatcaaagcatgc 180
Q LE E
181 caactagaagag 192

eletion of TTT 6 Frame Translation

Frame 1, 0 stop codons
TSLLMVIMGELEPSEGKIKH
1 acttcacttctaatggtgattatgggagaactggagccttcagagggtaaaattaagcac 60
S GRISFCSQFSWIMPGTIKE
61 agtggaagaatttcattctgttctcagttttcctggattatgcctggcaccattaaagaa 120
NIIGVSYDEYRYRSVIKACQ
121 aatatcatcggtgtttcctatgatgaatatagatacagaagcgtcatcaaagcatgccaa 180
LE E
181 ctagaagag 189

Frame 2, 3 stop codons
LHF*W * LWENWSLQRVKLST
2 cttcacttctaatggtgattatgggagaactggagccttcagagggtaaaattaagcaca 61
VEEFHSVLSFPGLCLAPLKK
62 gtggaagaatttcattctgttctcagttttcctggattatgcctggcaccattaaagaaa 121 I S S V F P M M N I D T EAS S K H A N

122 atatcatcggtgtttcctatgatgaatatagatacagaagcgtcatcaaagcatgccaac 181 * K

182 tagaagag 189

Frame 3, 6 stop codons

FTSNGDYGRTGAFRG*N * AQ
ttcacttctaatggtgattatgggagaactggagccttcagagggtaaaattaagcacag 62
WKNFILFSVFLDYAWHH*RK
63 tggaagaatttcattctgttctcagttttcctggattatgcctggcaccattaaagaaaa 122 Y H R C F L * * I * I Q K R H Q S M P T
123 tatcatcggtgtttcctatgatgaatatagatacagaagcgtcatcaaagcatgccaact 182 R R
183 agaagag 189

Frame 4, 5 stop codons
LF * LACFDDASVSIFIIGNT
1 ctcttctagttggcatgctttgatgacgcttctgtatctatattcatcataggaaacacc
D DIFFNGARHNPGKLRTE*N
-61 gatgatattttctttaatggtgccaggcataatccaggaaaactgagaacagaatgaaat -120
S S TVLNFTL*RLQFSHNHH*
-121 tcttccactgtgcttaattttaccctctgaaggctccagttctcccataatcaccattag -
k * s
-181 aagtgaagt -189

Frame 5, 2 stop codons

S S S WHALMTLLYLYSS *ETP
-2 tcttctagttggcatgctttgatgacgcttctgtatctatattcatcataggaaacaccg -61

MIFSLMVPGIIQEN*EQNEI
-62 atgatattttctttaatggtgccaggcataatccaggaaaactgagaacagaatgaaatt -121
L P L C L I L P S G S S S P I I T I R
-122 cttccactgtgcttaattttaccctctgaaggctccagttctcccataatcaccattaga -18
S E
182 agtgaagt -189
Frame 6, 7 stop codons
LLVGML**RFCIYIHHRKHR
-3 cttctagttggcatgctttgatgacgcttctgtatctatattcatcataggaaacaccga -62

* YFL*WCQA*SRKTENRMKF

63 tgatattttctttaatggtgccaggcataatccaggaaaactgagaacagaatgaaattc -122
FHCA *FYPLKAPVLP *SPLE
-123 ttccactgtgcttaattttaccctctgaaggctccagttctcccataatcaccattagaa -182
v K
-183 gtgaagt -189

Frame 1 [Longest ORF], 0 stop codons

- - MVIMGELEPSEGKIK

1------------atggtgattatgggagaactggagccttcagagggtaaaattaagcac 60
S G R I S F C S Q F S W I M P G T I K
61 agtggaagaatttcattctgttctcagttttcctggattatgcctggcaccattaaagaa 120
N I I G V S Y D E Y R Y R S V I K A C Q
121 aatatcatcggtgtttcctatgatgaatatagatacagaagcgtcatcaaagcatgccaa 180
LE E
181 ctagaagag 189

 could code for the start of translation (M).

Alignment of Normal and Deletion of Phe
Normal TSLLMVIMGE LEPSEGKIKH SGRISFCSQF SWIMPGTIKE NIIFGVSYDE YRYRSVIKAC QLEE
Mutate TSLLMVIMGE LEPSEGKIKH SGRISFCSQF SWIMPGTIKE NII-GVSYDE YRYRSVIKAC QLEE

Deletion of Phe Amino Acid Sequence

1. Which frame of the normal Exon 10 has the highest number of stop codons?
2. Frame 1
3. Frame 6
4. Frame 3
5. Which frame of the mutated Exon 10 is the closest match to our sequence?
6. Frame 1
7. Frame 6
8. Frame 3
9. Frame 1 [Longest ORF]

This mutation replaces one amino acid with an amino acid with very different properties, therefore the protein translated will not be effective.

Normal Exon 10

Sequence Variation (different)
ACTTCACTTCTAATGGTGATTATGGGAGAACTGGAGCCTTCAGAGGGTAAAATTAAGCACAGTGGAAGAA
TTTCATTCTGTTCTCAGTTTTCCTGGATTATGCCTGGCACCATTAAAGAAAATATCATCTTTGGTGTTTC
CTATGGTGAATATAGATACAGAAGCGTCATCAAAGCATGCCAACTAGAAGAG

6 Frame Translation \rightarrow

Alignment
Normal ----MVIMGE LEPSEGKIKH SGRISFCSQF SWIMPGTIKE NIIFGVSYGE YRYRSVIKAC QLEE
Exon10 TSLLMVIMGE LEPSE-KIKH SGRISFCSQF SWIMPGTIKE NIIFGVSYDE YRYRSVIKAC QLE-

Sequence Variation G to T (similar)
Location: Amino Acid 480 and Base Pair 1570

This mutation replaces an amino acid with one that is similar in properties. The protein that gets coded from this sequence may function properly.

Normal Exon 10

Sequence Variation (similar)
ACTTCACTTCTAATGGTGATTATGGGAGAACTGGAGCCTTCAGAGGTTAAAATTAAGCACAGTGGAAGAA
tTCATTCTGTTCTCAGTTTTCCTGGATTATGCCTGGCACCATTAAAGAAAATATCATCTTTGGTGTTTC
CTATGATGAATATAGATACAGAAGCGTCATCAAAGCATGCCAACTAGAAGAG

6 Frame Translation \rightarrow

Alignment

Normal TSLLMVIMGE LEPSEGKIKH SGRISFCSQF SWIMPGTIKE NIIFGVSYDE YRYRSVIKAC QLEE
Mutate TSLLMVIMGE LEPSEVKIKH SGRISFCSQF SWIMPGTIKE NIIFGVSYDE YRYRSVIKAC QLE

Sequence Variation G to A

Location: Amino Acid 551 and Base Pairs 1784

Normal Exon 11

Sequence Variation
GACATCTCCAAGTTTGCAGAGAAAGACAATATAGTTCTTGGAGAAGGTGGAATCACACTGAGTGGAGATC
AACGAGCAAGAATTTCTTTAGCAAG

6 Frame Translation \rightarrow

Alignment
Normal DISKFAEKDN IVLGEGGITL SGDQRARISL A
Mutate DISKFAEKDN IVLGEGGITL SGGQRARISL A

Missense Variation C to T (stop)

Location: Amino Acid 553 and Base Pair 1789

A missense mutation creates a stop codon, which basically cuts off the rest of the gene sequence following the mutation. Therefore, the protein is not complete

Normal Exon 11

Sequence Variation (stop)
GACATCTCCAAGTTTGCAGAGAAAGACAATATAGTTCTTGGAGAAGGTGGAATCACACTGAGTGGAGGTC
AATGAGCAAGAATTTCTTTAGCAAG

6 Frame Translation \rightarrow

Alignment

Mutate DISKFAEKDN IVLGEGGITL SGGQ------
Normal DISKFAEKDN IVLGEGGITL SGGQRARISL A

1. What does a missense mutation cause?
2. One A.A. to be replaced by another
3. A stop codon
4. A mutation that doesn't make sense
5. A start codon
6. Replacing an A.A. with a very different A.A. causes:
7. The protein to function normally and without change in shape
8. The protein to have another function

Tutor on Cystic Fibrosis

3. A change in shape of the protein, but it still functions
4. The protein to be unusable

3D Protein Structure
\square
This is the protein structure of a non-mutated gene sequence for the CFTR protein.
\square
 Summary

Questionnaire

Evaluation
$\underline{2}$ htp:///www.hhmi.org/genetictrail/a130.html
$3 \mathrm{htpp://www.labtestsonline.org/understanding/conditions/cystic} \mathrm{fibrosis.html}$
$4 \mathrm{http://www.cff.org/AboutCF/}$

5 http://www.genet.sickkids.on.ca/cftr/StatisticsPage.html

$\underline{6}$ http://www.ncbi.nlm.nih.gov/sites/entrez?db=omim

