Biointormatics study of convertases Molly Novy^{1,2} and Sandra Rodriguez-Zas¹ ¹Department of Animal Sciences, University of Illinois Urbana-Champaign; ²ACES James Scholar Honors Pro

Introduction

 Prohormone convertases (PCs) are enzymes that cleave the prohormone precursors to produce neuropeptides. •Neuropeptides play an important role in learning, behavior, memory, and perception of stimuli and directly affect neural transmission and nerve activity. Therefore, PCs are critical for the health and well being of organisms.

 Seven subfamilies of PCs have been identified: PC1/PC3, PC2, PC4, PACE4, PC5, Furin, and PC7. The subfamilies may be active in different conditions (e.g. pH level) and organs (e.g. PC7 can be found in the liver, brain and gastrointestinal tract). The study of neuropeptides is challenging because of the complexity of the cleavage process and neuropeptide activity. •Our objective was to study the PC subfamilies and their relationship using genomic and proteomic sequences and bioinformatics tools.

Hypotheses

•The degree of conservation of the PC sequences varies with organism, phyla and subfamily.

•The detection of the specific amino acid positions or sequence regions that differ among species can help to explain major and minor differences in PC and neuropeptide activity among species. •The conservation of PC sequences among species can help discover and annotate this family of proteins in in-progress or unavailable genomes sequencing projects.

Objectives and activities

•The diagram bellow describes the activities and bioinformatic resources (databases and programs) used at each stage of the study. We used the Biology Workbench (workbench.sdsc.edu) for all sequence searches and alignments with the exception of the red flour beetle Tribolium castaneum. The discovery of PCs in this nonsequenced beetle genome was based on the (NCBI (www.ncbi.nlm.nih.org) Expressed Sequence Tagged (EST) database and BLAST.

Obtain PC sequences across species	Review NDJINN GenBan
Align and compare sequences $(F$	LUSTALW Figures 2, 3)
Create tree of sequences	CLUSTALW (Figures 4, 5
Identify representative sequence(s)	NCB
Obtain PCs in the <i>Tribolium c.</i> genor	me cast data
Conclusions/Further annotations	Figu

articles (Fig. 1) on k databases

TREE

Tribolium taneum EST base, and **I BLAST** ires 6, 7

Results

Figure 1. List of species by PC subfamily

	Human	Mouse	Rat	Cow	Pig	Fish	Frog	Chicken	Dog	Chimp	Fruit Fly	Bee
PC1/3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	No	Yes
PC2	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
PC4	Yes	Yes	Yes	Yes	Νο	No	Yes	Νο	Yes	Νο	No	No
PACE4	Yes	Partial	Yes	No	No	No	Yes	Νο	Yes	No	No	No
PC5	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	No	No
PC7	Yes	Yes	Yes	Νο	Νο	No	No	Νο	No	Yes	No	No
Furin	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Partial	Yes	Yes

Figure 2. Partial alignment of Furin sequences

Honeybee Fruit Fly Domestic Silkworm Dog Cow Rat Mouse Chinese Hamster Human Chimpanzee Chicken African Clawed Frog Snail Cabbage Looper California Sea Hare

IYSASWGPDDDGKTVDGPGELATRAFIEGITKGRNGRGSIFVWASGNGGR IYSASWGPDDDGKTVDGPGELASRAFIEGTTKGRGGKGSIFIWASGNGGR IYSASWGPDDDGKTVDGPGLLATRAFIEGVTKGRNGKGSIFVWASGNGGK IYSASWGPEDDGKTVDGPARLAEEAFFRGVSQGRGGLGSIFVWASGNGGR IYSASWGPEDDGKTVDGPAHLAEEAFFRGVSQGRGGLGSIFVWASGNGGR IYSASWGPEDDGKTVDGPARLAEEAFFRGVSQGRGGLGSIFVWASGNGGR IYSASWGPEDDGKTVDGPARLAEEAFFRGVSQGRGGLGSIFVWASGNGGR IYSASWGPEDDGKTVDGPARLAEEAFFRGVSQGRGGLGSIFVWASGNGGR IYSASWGPEDDGKTVDGPARLAEEAFFRGVSQGRGGLGSIFVWASGNGGR IYSASWGPEDDGKTVDGPARLAEEAFFRGVSQGRGGLGSIFVWASGNGGR IYSASWGPEDDGKTVDGPARLAEEAFFRGVSQGRGGLGSIFVWASGNGGR IYSASWGPEDDGKTVDGPAKLAEEAFYRRVTQGRGGLGSIYVWASGNGGR IYSASWGPDDDGRTVDGPATLARKAFYDGITKGRGGLGSIFVWASGNGGR IYSASWGPEDDGKTVDGPGPLARRAFIYGVTSGRRGKGSIFVWASGNGGR IYSASWGPDDDGKVVDGPGKLAKEAFIKGIENGRGGKGSIFVWASGNGGS ******* *** * *********

Figure 3. Partial alignment of PC1

Chimpanzee EAGVATTDLYGNCTLRHSGTSAAAPEAAGVFALALEANLGLTURDMQHLT EAGVATTDLYGNCTLRHSGTSAAAPEAAGVFALALEANLGLTURDMQHLT Human EAGVATTDLYGNCTLRHSGTSAAAPEAAGVFALALEANLGLTURDMQHLT Dog EAGVATTDLYGNCTLRHSGTSAAAPEAAGVFALALEANLGLTURDMQHLT Pig EAGVATTDLYGNCTLRHSGTSAAAPEAAGVFALALEANLDLTURDMQHLT Mouse Rat EAGVATTDLYGNCTLRHSGTSAAAPEAAGVFALALEANVDLTURDMQHLT EAGVATTDLYGNCTLRHSGTSAAAPEAAGVFALALEANLGLTURDMQHLT Cow Chicken EAGVATTDLYGNCTLRHSGTSAAAPEAAGVFALALEANLDLTURDMQHLT Bullfrog EAGVATTDLYGNCTLRHSGTSAAAPEAAGVFALALEANPGLTURDLQHLT Marsh Frog EAGVATTDLYGNCTLRHSGTSAAAPEAAGVFALALEANPGLTURDLQHLT GAGVATTDLYGNCTLHHSGTSAAAPEAAGVYALALEANPSLTURDVQHLT Tunicate Fruit Fly NTGVATTDLYGKCTTTHSGTSAAAPEAAGVFALALEANPQLTURDIQHLT Honeybee NIGVATTDLYGKCTTTHSGTSAAAPEAAGVFALALEANPQLTWRDIQHLT Nematode ETGVATTDLYGRCTRSHSGTSAAAPEAAGVFALALEANPSLTURDLQHLT **DAGVATTDLYNNCTASHSGTSAAAPEAAGVFALALEANKNLTURDMOHLT** California Sea Hare ******

Score = 248 bits (634), Identities = 126/186 (67 Frame = +2 Query 231 DPDISYDVNEG DP ISYD N+ Sbjct 49592 DPKISYDCNDE Query 291 DGLVNDRVEGE DG+V DR+EG Sbjct 49772 DGIVTDRIEGT Query 351 IYVWAXXXXXX I+VWASGNGGA Sbjct 49952 IFVWASGNGGA Query 411 DQMIVT 416 DQMIV+			
Query231DPDISYDVNEG DP ISYD N+ DP ISYD N+Sbjct49592DPKISYDCNDEQuery291DGLVNDRVEGE DG+V DR+EGSbjct49772DGIVTDRIEGTQuery351IYVWAXXXXXX I+VWASGNGGASbjct49952IFVWASGNGGAQuery411DQMIVT	Score Identi Frame	= 248 ties = = +2	bits (634), 126/186 (67
DP ISYD N+Sbjct 49592 DPKISYDCNDEQuery 291 DGLVNDRVEGE DG+V DR+EGSbjct 49772 DGIVTDRIEGTQuery 351 IYVWAXXXXXL+VWASGNGGHSbjct 49952 IFVWASGNGGNQuery 411 DQMIVT 416 DQMIV+	Query	231	DPDISYDVNEG
Query 291 DGLVNDRVEGE DG+V DR+EG DGIVTDRIEGT Query 351 IYVWAXXXXX I+VWASGNGGH Sbjct 49952 IFVWASGNGGN Query 411 DQMIVT 416 DQMIV+	Sbjct	49592	DP ISYD N+ DPKISYDCNDE
DG+V DR+EG Sbjct 49772 DGIVTDRIEGT Query 351 IYVWAXXXXXX I+VWASGNGG4 Sbjct 49952 IFVWASGNGGN Query 411 DQMIVT 416 DQMIV+	Query	291	DGLVNDRVEGE
Query 351 IYVWAXXXXXX I+VWASGNGG4 Sbjct 49952 IFVWASGNGGN Query 411 DQMIVT 416 DQMIV+	Sbjct	49772	DG+V DR+EG DGIVTDRIEGI
I+VWASGNGG+ Sbjct 49952 IFVWASGNGGN Query 411 DQMIVT 416 DQMIV+	Query	351	IYVWAXXXXX
Query 411 DQMIVT 416 DQMIV+	Sbjct	49952	I+VWASGNGG+ IFVWASGNGGN
	Query	411	DQMIVT 416 DQMIV+

Figure7. BLAST flour beetle (Sbjct

Score : Ident: Frame	= 249 ities = = +2	bits (635), 112/186 (60]:
Query	387	DPKASYDVNSH	[] 1
Sbjct	49592	DPKISYDCNDE	נ [[2
Query	447	DGDVTDAVEAR	2;
Sbjct	49772	DG VID +E DGIVTDRIEGI	- ر]
Query	507	IFIWASGNGG	2]
Sbjct	49952	IF + WASGNGG	J]
Query	567	EKQVVT 572	2
Sbjct	50132	DQMIVS 501	Ŀ

Conclusions

•All PC sequences species.

 The differences be vary with PC subfa

 The homology bet beetle PC sequence

 The alignment of allows to enhance sequenced and of species not

Acknowled **ACES** James Scho

This material is available at

Figure 6. BLAST alignment of honey bee (qu flour beetle (sbjct) PC1/3 sequences

> Expect = 8e-1567%), Positives = 152/186 (81%), Gaps =

DYDPFPRYELSGMNGHGTRCGGEIAMEANNRKCGVGV/ D+DP PRY+ S N HGTRC GE+AM A+N KCGVG+A DHDPLPRYDHSRFNSHGTRCAGEVAMTADNGKCGVGI

CALGYK PELVD IYTA SWGPADDGK SLEAP GRLATEALE F LVDIY+ASWGP DDGK+++ PGRLA EAL H 'ALGYAYHLVD IYSA SWGPNDDGKTVDGP GRLAAEALRH

(XXXXXXXXXYVGSIYTIAVGSASQTGRFPWYGESCPA) -K D+C CDGY+ S YTI++GSASQ G FPWYGE C +7 IKGDNCNCDGYLASPYTISIGSASQKGEFPWYGEECAST

alignment of fruit t) Furin sequenc	fly (es	que	ry)
Expect = 7e-112 %), Positives = 138/186	(74%),	, Gaps	= 0

DDD PM PHYDMTD SN RHGTR CAGE VAATANNSF CAVGI AY D DP+P YD + N HGTRCAGEVA TA+N C VGIAY DHD PL PRYDH SRFN SHGTR CAGE VAMTADNGK CGVG I AY

SLSLNPQHIDIYSASWGPDDDGKTVDGPGELASRAFIEG +DIYSASWGP+DDGKTVDGPG LA+ A G 'ALGYAYHLVD IYSA SWGPNDDGKTVDGP GRLAAEALRRG

EQDNCNCDGYTNSIWTLSISSATEEGHVPWYSEKCSSTL + DNCNCDGY S +T+SI SA+++G PWY E+C+STL KGDNCNCDGYLASPYTISIGSASQKGEFPWYGEECASTL

are well con	serve	d with	in cla
etween seque mily. ween honey es was high.	ences bee,	fruit fly	differ
PC sequence the annotation help uncoversequenced.	es fron on of ver PC	n well genon genes	stud nes b s in t
gement olar Honors I	Progra	am	anim