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Preface

A textbook presents far more material than any professor can cover in class.
These lecture notes present only somewhat more than I covered during two
iterations of the half-semester course Spectral Theory of Partial Differential
Equations (Math 595) at the University of Illinois, Urbana–Champaign, in
Fall 2011 and Spring 2017.

I claim no originality for the material presented other than some originality
of emphasis: I present computable examples before developing the general
theory. This approach leads to occasional redundancy, and sometimes we
use ideas before they are properly defined, but I think students gain a better
understanding of the purpose of a theory after they are first well grounded
in specific examples.

Please email me with corrections, and suggested improvements.

Richard S. Laugesen Email: Laugesen@illinois.edu
Department of Mathematics
University of Illinois, Urbana–Champaign, U.S.A.
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Chapter 0

Introduction, prerequisites and
notation

Spectral methods permeate the theory of partial differential equations. One
solves linear PDEs by separation of variables, getting eigenvalues when the
spectrum is discrete and continuous spectrum when it is not. Linearized
stability of a steady state or traveling wave of a nonlinear PDE depends on
the sign of the first eigenvalue, or on the location of the continuous spectrum
in the complex plane.

This book presents highlights of spectral theory for selfadjoint partial
differential operators, emphasizing problems with discrete spectrum.

Style of the course. Research differs from course work. Research often
starts with questions motivated by analogy, or by trying to generalize special
cases. We find answers in a nonlinear fashion, slowly developing a coherent
theory by linking up and extending our scraps of known information. We
cannot predict what we will need to know in order to succeed, and we cer-
tainly do not have enough time to study all relevant background material. To
succeed in research, we must develop a rough mental map of the surrounding
mathematical landscape, so that we know the key concepts and canonical
examples even if we do not learn the proofs. Then when we need to learn
more about a topic, we know where to begin.

We will emphasize computable examples, and will be neither complete in
our coverage nor always rigorous in our approach. Yet you will end up pos-
sessing a trustworthy mental map of the spectral theory of partial differential
equations.
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6 CHAPTER 0. INTRODUCTION, PREREQUISITES AND NOTATION

Future directions. If the course were longer, then we could treat topics
such as nodal patterns, geometric bounds for the first eigenvalue and the
spectral gap, majorization techniques (passing from eigenvalue sums to spec-
tral zeta functions and heat traces), and inverse spectral problems. And we
could investigate more deeply the spectral and scattering theory of operators
with continuous spectrum, giving applications to stability of traveling waves
and similarity solutions. These fascinating topics must await another course.

Prerequisites We assume familiarity with elementary Hilbert space the-
ory: inner product, norm, Cauchy–Schwarz, orthogonal complement, Riesz
Representation Theorem, orthonormal basis (ONB), bounded operators, and
compact operators. Our treatment of discrete spectra builds on the spectral
theorem for compact, selfadjoint operators.

Acronyms
LHP: left half-plane, RHP: right half-plane
BC: boundary condition, IC: initial condition

Function spaces All functions are assumed to be measurable. We use the
function spaces

L1 = integrable functions,

L2 = square integrable functions,

L∞ = bounded functions,

but we have no need of general Lp spaces.
We use the language of Sobolev spaces throughout. Readers unfamiliar

with this language can proceed unharmed; we just need that

H1 =W1,2 = {L2-functions with 1 derivative in L2},

H2 =W2,2 = {L2-functions with 2 derivatives in L2},

and

H10 =W
1,2
0 = {H1-functions that equal zero on the boundary},

H20 =W
2,2
0 = {H2-functions that equal zero on the boundary

and have first derivatives zero on the boundary}.
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These characterizations are not mathematically precise, but they are good
enough for our purposes. Later we will recall the standard inner products
that make these Sobolev spaces into Hilbert spaces.

For more on Sobolev space theory, and related concepts of weak solutions
and elliptic regularity, see [Evans].

Fourier transform Sometimes we employ the L2-theory of the Fourier
transform,

f̂(ξ) = (Ff)(ξ) =
∫
Rd

f(x)e−2πiξ·x dx.

Only the basic facts are needed, such as that the Fourier transform preserves
the L2-norm, and maps derivatives in the spatial domain to multipliers in the
frequency domain.

Divergence theorem Given a domain Ω with smooth enough boundary,
and a vector field F on the closure of the domain, one has∫

Ω

∇ · F dx =
∫
∂Ω

F · ndS

where n denotes the outward unit normal vector on ∂Ω. In 1-dimension, the
Divergence Theorem is simply the Fundamental Theorem of Calculus:∫

(a,b)

F′(x)dx = −F(a) + F(b)

where the negative sign indicates the leftward orientation of n at x = a.

Integration by parts∫
Ω

∂u

∂xj
v dx = −

∫
Ω

u
∂v

∂xj
dx+

∫
∂Ω

uvnj dS

where nj is the jth component of the normal vector.

Proof. Apply the Divergence Theorem to F = (0, . . . , 0, uv, 0, . . . , 0).
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Green’s formulas∫
Ω

(∇u · ∇v+ v∆u)dx =
∫
∂Ω

v
∂u

∂n
dS (0.1)∫

Ω

(u∆v− v∆u)dx =

∫
∂Ω

(
u
∂v

∂n
− v

∂u

∂n

)
dS (0.2)

where the normal derivative is defined as the normal component of the gra-
dient vector:

∂u

∂n
= ∇u · n.

Proof of Green’s formulas. Apply the Divergence theorem to F = v∇u.
Interchange u and v and subtract.
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Discrete Spectrum
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Chapter 1

ODE overture

Goal

To review the role of eigenvalues and eigenvectors in solving 1st and 2nd order
systems of linear ODEs; to interpret eigenvalues as decay rates, frequencies,
and stability indices; and to observe formal analogies with PDEs.

Notational convention

Eigenvalues are written with multiplicity, and are listed in increasing order
(when real valued):

λ1 ≤ λ2 ≤ λ3 ≤ · · ·

Spectrum of a real symmetric matrix

If A is a real symmetric d× d matrix (e.g. A = [ a bb c ] when d = 2) then its
spectrum is the collection of eigenvalues:

spec(A) = {λ1, . . . , λd} ⊂ R

(see the figure). Recall that

Avj = λjvj

where the eigenvectors {v1, . . . , vd} can be chosen to form an ONB for Rd.
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12 CHAPTER 1. ODE OVERTURE

specHAL

C

Λ1 Λ2 Λ3 Λ4
´ ´ ´ ´

Observe A : Rd → Rd is diagonal with respect to the eigenbasis:

A
(∑

cjvj
)
=
∑

λjcjvj

λ1 0
. . .

0 λd


c1...
cd

 =

λ1c1...
λdcd


Corresponding statements hold for a complex Hermitian matrix acting on
Cd.

What does the spectrum tell us about linear ODEs?
Decay rates and frequencies. . .

Example 1.1 (1st order).

dv

dt
= −Av ODE

v(0) =
∑

cjvj IC

has solution
v(t) = e−Atv(0)

def
=
∑

e−λjtcjvj.

Notice

λj =

{
decay rate of the solution in direction vj, if λj > 0,

growth rate of the solution in direction vj, if λj < 0.

Long-time behavior: the solution is dominated by the first mode, with

v(t) ≃ e−λ1tc1v1 for large t
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assuming λ1 < λ2 (so that the second mode decays faster than the first). The
rate of collapse onto the first mode is governed by the spectral gap λ2 − λ1
since

v(t) = e−λ1t
(
c1v1 +

d∑
j=2

e−(λj−λ1)tcjvj
)

= e−λ1t
(
c1v1 +O(e

−(λ2−λ1)t).

Example 1.2 (2nd order). Assume λ1 > 0, so that all the eigenvalues are
positive. Then the system

d2v

dt2
= −Av ODE

v(0) =
∑

cjvj IC displacement

v′(0) =
∑

djvj IC velocity

has solution

v(t) = cos(
√
At)v(0) +

1√
A

sin(
√
At)v′(0)

def
=
∑

cos(
√
λjt)cjvj +

∑ 1√
λj

sin(
√
λjt)djvj.

Notice
√
λj = frequency of the solution in direction vj.

Example 1.3 (1st order complex). The system

i
dv

dt
= Av ODE

v(0) =
∑

cjvj IC

has complex valued solution

v(t) = e−iAtv(0)
def
=
∑

e−iλjtcjvj.

Here λj = frequency of the solution in direction vj.
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What does the spectrum tell us about nonlinear ODEs?
In/stability. . .

Example 1.4 (1st order nonlinear). Suppose

dv

dt
= F(v)

where the vector field F satisfies F(0) = 0, with first order Taylor expansion

F(v) = Bv+O(|v|2)

for some matrix B having d linearly independent eigenvectors v1, . . . , vd and
corresponding eigenvalues λ1, . . . , λd ∈ C. (Any non-real eigenvalues come in
complex conjugate pairs, since B is real.)

Clearly v(t) ≡ 0 is an equilibrium solution, since F(0) = 0. Is the equi-
librium stable? To investigate, we linearize the ODE around the equilibrium
to get dv

dt
= Bv, which has solution

v(t) = eBtv(0) =
∑

eλjtcjvj.

Notice v(t) → 0 as t → ∞ if Re(λj) < 0 for all j, whereas |v(t)| → ∞ if
Re(λj) > 0 for some j (provided the corresponding coefficient cj is nonzero,
and so on). We conclude the equilibrium solution v(t) ≡ 0 is:

• linearly asymptotically stable if spec(B) ⊂ LHP (first figure below),

• linearly unstable if spec(B) ∩ RHP ̸= ∅ (second figure below).

specHBL

C

´

´

´ ´

specHBL

C

´

´

´ ´

The Linearization Theorem of Hartman and Grobman guarantees that
the nonlinear ODE indeed behaves like the linearized ODE near the equilib-
rium solution, in the stable and unstable cases.
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specHBL

C

´

´

´ ´

The nonlinear ODE’s behavior requires further investigation in the neu-
trally stable case where the spectrum lies in the closed left half plane and
intersects the imaginary axis.

For example, if B =
[
0 −1
1 0

]
(which has eigenvalues ±i), then the phase

portrait for dv
dt

= Bv consists of circles centered at the origin, but the phase
portrait for the nonlinear system dv

dt
= F(v) might spiral in towards the origin

(stability) or out towards infinity (instability), or could display even more
complicated behavior.

Looking ahead to PDEs

The negative Laplacian A = −∆ on a domain Ω ⊂ Rd with Dirichlet bound-
ary conditions is a linear operator that behaves in some ways like a self-
adjoint matrix. As we will learn in Chapter 5, its eigenvalues λj and eigen-
functions vj(x) satisfy

−∆vj = λjvj in Ω,

vj = 0 on ∂Ω,

and the spectrum is real and increases to infinity:

λ1 ≤ λ2 ≤ λ3 ≤ · · ·→∞.
The eigenfunctions form an ONB for L2(Ω).

Formally substituting A = −∆ into ODE Examples 1.1–1.3 transforms
them into famous PDEs for the function v(x, t), and transforms the formulas
for v into “separation of variables” solutions:

• Example 1.1 — diffusion equation vt = ∆v, where v(x, t) represents
chemical concentration or temperature. Solution:

v = e∆tv(·, 0) def
=
∑

e−λjtcjvj(x)
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where the initial value is v(·, 0) =
∑
cjvj. Here λj = decay rate.

• Example 1.2 — wave equation vtt = ∆v, where v(x, t) represents the
vertical displacement at time t of a horizontal membrane, or the oscil-
lation of an electromagnetic signal. Solution:

v = cos(
√
−∆t)v(·, 0) + 1√

−∆
sin(

√
−∆t)vt(·, 0)

def
=
∑

cos(
√
λjt)cjvj(x) +

∑ 1√
λj

sin(
√
λjt)djvj(x).

In this case
√
λj = frequency and vj = mode of vibration.

• Example 1.3 — Schrödinger equation ivt = −∆v, where |v(x, t)|2 rep-
resents the probability density at time t for the location of a quantum
particle. Solution:

v = ei∆tv(·, 0) def
=
∑

e−iλjtcjvj(x).

Here λj = frequency or energy level, and vj = quantum state.

Remark. The methods that will be covered in this book can handle not only
the Laplacian, but a whole family of related operators including:

A = −∆ Laplacian,

A = −∆+ V(x) Schrödinger operator,

A = (i∇+ V⃗ )2 magnetic Laplacian,

A = (−∆)2 = ∆∆ biLaplacian.

The spectral theory of these operators helps to solve the corresponding evo-
lution equations, and explain the stability or instability of different types
of equilibrium solutions, namely: steady states, standing waves, traveling
waves, and similarity solutions.

Notes and comments

The Hartman–Grobman Linearization Theorem for nonlinear ODEs can be
found, for example, in [Coddington and Levinson].



Chapter 2

Computable spectra and
qualitative properties —
Laplacian

Goal

To develop a library of explicitly computable spectra (which will motivate
the later general theory) and to extract from these examples some qualitative
properties such as scaling and asymptotic growth rates.

These computable spectra are classical, and so proofs are left to the reader
or omitted, though the Weyl asymptotic law is proved in detail for rectangles.
Completeness of the eigenfunction bases will be addressed later in the book.

Notation

Let Ω be a domain in Rd, d ≥ 1. Fix L > 0.

• Dirichlet BC means u = 0 on ∂Ω,

• Robin BC means ∂u
∂n

+ σu = 0 on ∂Ω (where σ ∈ R is the Robin
constant),

• Neumann BC means ∂u
∂n

= 0 on ∂Ω.

For a vibrating drum, Dirichlet BCs mean the drum is fixed at the boundary,
while Neumann BCs mean the drum is free (attached to a frictionless vertical
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18 CHAPTER 2. COMPUTABLE SPECTRA — LAPLACIAN

support). For the diffusion or heat equation, Dirichlet BCs mean the bound-
ary is refrigerated to maintain the temperature at zero, while Neumann BCs
mean the boundary is perfectly insulated and so has heat flux zero.

Spectra of the Laplacian under these BCs

Recall the Laplacian is

∆ = ∇ · ∇ =
( ∂
∂x1

)2
+ · · ·+

( ∂
∂xd

)2
.

Its eigenfunctions satisfy −∆u = λu , and we put the eigenvalues in increas-
ing order as

λ1 ≤ λ2 ≤ λ3 ≤ · · ·→∞.
Chapter 5 proves existence of the spectrum under various BCs. Explicit
formulas for these eigenvalues can be computed on just a handful of special
domains. This chapter summarizes the most important computable cases.

Note. One usually normalizes the eigenfunctions in L2, in order to get an
ONB, but for simplicity we do not normalize the following examples.

One dimension −u′′ = λu

1. Circle T = R/2πZ, periodic BC: u(−π) = u(π), u′(−π) = u′(π).
Eigenfunctions eijx for j ∈ Z, or equivalently 1, cos(jx), sin(jx) for j ≥ 1.
Eigenvalues λj = j

2 for j ∈ Z, or λ = 02, 12, 12, 22, 22, . . .

2. Interval (0, L)

(a) Dirichlet BC: u(0) = u(L) = 0.
Eigenfunctions uj(x) = sin(jπx/L) for j ≥ 1.
Eigenvalues λj = (jπ/L)2 for j ≥ 1, e.g. L = π ⇒ λ = 12, 22, 32, . . .

(b) Robin BC: −u′(0) + σu(0) = u′(L) + σu(L) = 0. Assume σ > 0.
Eigenfunctions uj(x) =

√
ρj cos(

√
ρjx) + σ sin(

√
ρjx).

Eigenvalues ρj = jth positive root of tan(
√
ρL) =

2σ
√
ρ

ρ−σ2
for j ≥ 1.

(c) Neumann BC: u′(0) = u′(L) = 0.
Eigenfunctions uj(x) = cos

(
(j− 1)πx/L

)
for j ≥ 1 (note u1 ≡ 1).

Eigenvalues µj =
(
(j−1)π/L

)2
for j ≥ 1, e.g. L = π ⇒ µ = 02, 12, 22, 32, . . .
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Dirichlet spectrum

ΛL2
�Π2

´ ´ ´

Dirichlet modes

L�2 L

Robin spectrum

ΡL2
�Π2

´ ´ ´ ´

Robin modes

L�2 L

Spectral features in 1 dim: −u′′ = λu
i. Spatial frequency increases as j increases. Thus the temporal and

spatial frequencies increase together.
ii. Symmetry: eigenfunctions are either even or odd with respect to the

midpoint of the interval, that is, under the substitution x 7→ L− x.
iii. Concavity: eigenfunctions are concave up wherever u is negative

(u < 0 implies u′′ > 0), and concave down wherever u is positive (u > 0

implies u′′ < 0). Physically, this occurs because the tension in the vibrating
string wants to pull it back toward the rest state.

iv. Scaling: the eigenvalue λ must balance d2/dx2 in the eigenvalue equa-
tion, and so λ ∼ (length scale)−2. Intuitively, long strings produce low tones.
More precisely, Dirichlet and Neumann eigenvalues scale like the reciprocal
square of the length of the interval:

λj
(
(0, L)

)
=
λj
(
(0, 1)

)
L2

and similarly for the Neumann eigenvalue µj. Matters are slightly more
complicated for Robin eigenvalues, as the Robin parameter must also be
rescaled.

v. Growth rate: eigenvalues grow at a regular rate, λj ∼ (const.)j2
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Neumann spectrum

ΜL2
�Π2

´ ´ ´ ´

Neumann modes

L�2 L

vi. Robin spectrum lies between Neumann and Dirichlet, and approaches
them in suitable limiting cases:

Neumann
σ→0←−−− Robin

σ→∞−−−−→ Dirichlet

as one sees formally letting σ approach 0 or∞ in the Robin BC ∂u
∂n

+σu = 0.

Two dimensions −∆u = λu

Write ∆ = ∂2/∂x2 + ∂2/∂y2.

1. Rectangle Ω = (0, L)× (0,M) (product of intervals).
We may assume the sides of the rectangle are parallel to the coordi-

nate axes because the Laplacian, and hence its spectrum, is rotationally and
translationally invariant; see the Exercises.

One finds eigenvalues by separating variables in rectangular coordinates
x, y. See the formulas below and the figures at the end of the chapter.

(a) Dirichlet BC: u = 0
Eigenfunctions u(x) = sin(jπx/L) sin(kπy/M) for j, k ≥ 1.
Eigenvalues λ = (jπ/L)2 + (kπ/M)2 for j, k ≥ 1.
e.g. L =M = π ⇒ λ = j2+k2 for j, k ≥ 1; that is, λ = 2, 5, 5, 8, 10, 10, . . .

These eigenvalues are the squares of distances from the origin to the positive
integer lattice points.

(b) Neumann BC: ∂u
∂n

= 0
Eigenfunctions u(x) = cos

(
(j− 1)πx/L

)
cos
(
(k− 1)πy/M

)
for j, k ≥ 1.

Eigenvalues µ =
(
(j− 1)π/L

)2
+
(
(k− 1)π/M

)2
for j, k ≥ 1.

e.g. L =M = π ⇒ µ = 0, 1, 1, 2, 4, 4, . . .

2. Disk Ω = {x ∈ R2 : |x| < R}.
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Separate variables using polar coordinates r, θ.

(a) Dirichlet BC: u = 0
Eigenfunctions

J0(rj0,m/R) for m ≥ 1,
Jn(rjn,m/R) cos(nθ) and Jn(rjn,m/R) sin(nθ) for n ≥ 1,m ≥ 1.

Eigenvalues λ = (jn,m/R)
2 for n ≥ 0,m ≥ 1, where

Jn = Bessel function of order n,

jn,m = m-th positive root of Jn(r) = 0.

When n = 0, the modes are purely radial. When n ≥ 1, the modes have
angular dependence (both cosine and sine modes), and λn,m has multiplicity
2. The Bessel functions satisfy

r2J′′n(r) + rJ
′
n(r) + (r2 − n2)Jn(r) = 0

and behave like rn near the origin: Jn(r) ≃ (const.)rn when r ≃ 0.
From the graphs of the Bessel functions J0, J1, J2 we can read off the first

four roots:

j0,1 ≃ 2.40, j1,1 ≃ 3.83, j2,1 ≃ 5.13, j0,2 ≃ 5.52.

These roots generate the first six eigenvalues (remembering eigenvalues are
double when n ≥ 1).

J0HrL
J1HrL

J2HrL

2 4 6 8 10

(b) Neumann BC: ∂u
∂n

= 0
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Use roots of J′n(r) = 0. See [Bandle, Chapter III].

3. Equilateral triangle of sidelength L.
Separation of variables fails, but one may reflect repeatedly to a hexagonal

lattice whose eigenfunctions are trigonometric. See [Mathews and Walker,
McCartin].

Dirichlet eigenvalues:

λ = 16π2

9L2
(j2 + jk+ k2) for j, k ≥ 1.

Neumann eigenvalues:

µ = 16π2

9L2
(j2 + jk+ k2) for j, k ≥ 0.

Spectral features in 2 dim: −∆u = λu

i. Scaling: the eigenvalue λ must balance ∆, and so λ ∼ (length scale)−2.
Intuitively, big drums produce low tones. More precisely, Dirichlet and Neu-
mann eigenvalues scale like the reciprocal square of the scale of the domain:

λn(tΩ) =
λn(Ω)

t2

and similarly for the Neumann eigenvalue µn. This scaling relation can be
verified explicitly in the examples above, and holds also for general domains
as explained in the exercises.

ii. Sub/superharmonicity: eigenfunctions are subharmonic wherever u
is negative (since u < 0 implies ∆u > 0), and superharmonic wherever u
is positive (since u > 0 implies ∆u < 0). Physically, the tension in the
membrane wants to pull it back toward the rest state.

iii. Degnerate domains: Dirichlet and Neumann spectra behave quite dif-
ferently when the domain degenerates. Consider the rectangle, for example.
Fix one side length L, and let the other side length M tend to 0. Then the
first positive Dirichlet eigenvalue blows up, since taking j = k = 1 gives
eigenvalue (π/L)2 + (π/M)2 → ∞. Meanwhile the first positive Neumann
eigenvalue is constant (independent ofM) because taking j = 1, k = 0, gives
eigenvalue (π/L)2.

iv. Growth rate: eigenvalues of the rectangle grow at a regular rate:
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Proposition 2.1. (Weyl’s law for rectangles) The rectangle (0, L)× (0,M)
satisfies

λn ∼ µn ∼
4πn

Area
as n→∞,

where Area = LM is the area of the rectangle and λ1, λ2, λ3, . . . and µ1, µ2, µ3, . . .
are the Dirichlet and Neumann eigenvalues respectively, in increasing order.

Proof. We give a proof for Dirichlet eigenvalues; the Neumann case is similar.
Define for α > 0 the eigenvalue counting function

N(α) = #{eigenvalues ≤ α}

= #
{
(j, k) ∈ N× N :

j2

αL2/π2
+

k2

αM2/π2
≤ 1
}

= #
{
(j, k) ∈ N× N : (j, k) ∈ E

}
where E is the ellipse (x/a)2 + (y/b)2 ≤ 1 and a =

√
αL/π, b =

√
αM/π.

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

j

k
E

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

j

k
E-H1,1L

We associate each lattice point (j, k) ∈ E with the square

S(j, k) = [j− 1, j]× [k− 1, k]

whose upper right corner lies at (j, k). These squares all lie within E, and so
by comparing areas we find

N(α) ≤ (area of E in first quadrant) =
1

4
πab =

Area

4π
α.

In the reverse direction, the union of the squares having (j, k) ∈ E covers a
copy of E shifted down and left by one unit, as a little thought shows:

∪S(j, k) ⊃
(
E− (1, 1)

)
∩ (first quadrant).
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Comparing areas implies

N(α) ≥ 1

4
πab− a− b

=
LM

4π
α−

L+M

π

√
α

=
Area

4π
α−

Perimeter

2π

√
α.

Combining our upper and lower estimates shows that

N(α) ∼
Area

4π
α

as α → ∞. To complete the proof we simply invert this last asymptotic,
with the help of the lemma below.

Lemma 2.2. (Inversion of asymptotics) Fix c > 0. Then:

N(α) ∼
α

c
as α→∞ =⇒ λn ∼ cn as n→∞.

Proof. Formally substituting α = λn and N(α) = n takes us from the first
asymptotic to the second. The difficulty with making this substitution rigor-
ous is that if λn is a multiple eigenvalue, then N(λn) can exceed n. In other
words, N(λn) ≥ n but equality need not hold.

To circumvent the problem, we argue as follows. Given ε > 0 we know
from N(α) ∼ α/c that

(1− ε)
α

c
< N(α) < (1+ ε)

α

c

for all large α. Substituting α = λn into the right hand inequality and
recalling N(λn) ≥ n implies that

n < (1+ ε)
λn

c

for all large n. Letting 0 < δ < 1 and substituting α = λn − δ into the left
hand inequality implies, since N(λn − δ) < n, that

(1− ε)
λn − δ

c
< n
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for each large n. Hence by letting δ→ 0,

(1− ε)
λn

c
≤ n.

We deduce that
1

1+ ε
<
λn

cn
≤ 1

1− ε

for all sufficiently large n (depending on ε), and since ε is arbitrary we
conclude

lim
n→∞

λn

cn
= 1

as desired.

Later, in Chapter 12, we will prove Weyl’s Asymptotic Law that

λn ∼ 4πn/Area

for all bounded domains in 2 dimensions, regardless of shape or boundary
conditions. This Law was conjectured by Hilbert, who was Weyl’s thesis
advisor.

Question. What does a “typical” eigenfunction look like, in each of the
examples above? See the figures below. . .

Exercises

Max/min problems for eigenvalues of rectangles and domains in the plane

2.1 — Find the shape of rectangle that minimizes λ1A among all rectangles,
where A denotes the area.
Note. The eigenvalue is multiplied by area in this problem in order to obtain
a scale-invariant quantity: notice λ1A does not change value when the side
lengths of the rectangle are multiplied by a constant factor (replacing L and
M with tL and tM, for example).

2.2 — Guess the shape of domain that minimizes λ1A among all planar
domains. (Faber–Krahn theorem.)

2.3 — Find the shape of rectangle that maximizes µ2A among all rectangles.

2.4 — Guess the shape of domain that maximizes µ2A among all planar
domains. (Szegő–Weinberger theorem.)
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The moral is the same for each of the preceding problems — namely that
nature prefers symmetric optimizers.

Inverse spectral problems

2.5 — Show that a square is determined by its fundamental tone, that is, by
its first Dirichlet eigenvalue. (In other words, given a square domain and its
first eigenvalue, one can determine the sidelength of the square.)

2.6 — How many Dirichlet eigenvalues are needed to determine a rectangle?

2.7 — How many Dirichlet eigenvalues do you expect would determine a
triangle? (Open problem! [Antunes and Freitas] investigated numerically.
More about eigenvalues on triangles can be found in [Henrot et al.])

2.8 — How many Neumann eigenvalues are needed to determine a rectangle?

Eigenfunctions of a right isosceles triangle

2.9 — Consider the 45–45–90 degree triangle {(x, y) : 0 < x < y < π}, which
is the region of the square (0, π)× (0, π) lying above the diagonal line x = y.

(i) Find an eigenfunction of the Laplacian on this triangle that satisfies
the Dirichlet boundary condition on the left and top sides, and the Neumann
condition on the diagonal side.

(ii) Find an eigenfunction of the Laplacian on this triangle that satisfies
the Dirichlet boundary condition on all three sides.

(iii) Find infinitely many Dirichlet eigenfunctions on the triangle.

Invariance under reflections, translations and rotations in the plane

2.10 — Show the Laplacian is invariant under reflections across the y-axis:

∆
(
u(−x, y)

)
= (∆u)(−x, y)

whenever u is a smooth function of two variables. One may write the result
more formally as

∆(u ◦ F) = (∆u) ◦ F

where

F ( xy ) =

(
−x
y

)
is the reflection of R2 across the y-axis.
2.11 — Show the Laplacian is invariant under translations:

∆(u ◦ T) = (∆u) ◦ T
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where u is a smooth function of two variables and

T ( xy ) =

(
x+ a
y+ b

)
is a translation of R2 by the constant vector ( ab ).

2.12 — Show the Laplacian is invariant under rotations:

∆(u ◦ R) = (∆u) ◦ R

where u is a smooth function of two variables and

R ( xy ) =

(
cosα − sinα
sinα cosα

)(
x

y

)
is a rotation of R2 by angle α.
Remark. Rotational invariance of the Laplacian might seem surprising, since
the Laplacian is defined in terms of rectangular coordinates.

2.13 — Show the Dirichlet eigenvalues of a domain remain unchanged if the
domain is reflected, translated or rotated. The same holds true for Neu-
mann eigenvalues. (Physically, this invariance means vibrating membranes
are unaffected by the coordinate systems we place upon them.)

These invariance properties of the spectrum hold in higher dimensions
also.

Scaling invariance

2.14 — Show the Laplacian is invariant under dilations:

∆
(
u(tx, ty)

)
= t2(∆u)(tx, ty)

whenever u is a smooth function of two variables and t > 0. That is,

∆(u ◦D) = t2(∆u) ◦D

where

D ( xy ) = t

(
x

y

)
is the dilation or scaling of R2 by the factor t.

2.15 — Show the Dirichlet eigenvalues of a domain Ω rescale as follows:

λn(tΩ) =
λn(Ω)

t2
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whenever t > 0, and similarly for the Neumann eigenvalues µn. (Physically,
this scaling formula means large drums produce low tones.) Robin eigenval-
ues rescale the same way under dilation, provided the Robin parameter is
rescaled to σ/t on the domain tΩ.

These rescaling formulas hold in higher dimensions also.

Weyl asymptotic and higher eigenvalues

2.16 — Prove that for rectangles, the Weyl asymptotic expression provides
a lower bound on each Dirichlet eigenvalue:

λnA ≥ 4πn, n = 1, 2, 3 . . .

Pólya’s Conjecture claims that this inequality holds on every (bounded) do-
main in 2-dimensions. (Open problem! Known for tiling domains, but for
general domains the conjecture remains open for all n ≥ 3. See Chapter 13.)

Notes and comments

For the computable spectra stated in this chapter, see [Strauss] Chapters 4
and 10, and [Farlow] Lesson 30, among many other good sources.
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Dirichlet square HL=M=ΠL
´ ´́ ´ ´́

Neumann square HL=M=ΠL
´ ´́ ´ ´́ ´́ ´ ´́ ´́ ´́

Dirichlet disk HR= Π ,A=Π2L
´ ´́ ´́ ´ ´́



30 CHAPTER 2. COMPUTABLE SPECTRA — LAPLACIAN



Chapter 3

Computable spectra —
Schrödinger

Goal

To present the classic examples of the harmonic oscillator (1 dim) and hy-
drogen atom (3 dim).

Harmonic oscillator in 1 dimension −u′′ + x2u = Eu

We will state first and ask questions later.
Boundary condition: u(x) → 0 as x → ±∞. (A deeper perspective

on this boundary condition at infinity, in terms of a weighted L2-space, is
examined in Chapter 7.)
Eigenfunctions uk(x) = Hk(x)e

−x2/2 for k ≥ 0, where

Hk(x) = (−1)kex
2(d
dx

)k
e−x

2
= k-th Hermite polynomial.

Eigenvalues Ek = 2k+ 1 for k ≥ 0, so that E = 1, 3, 5, 7, . . .
Examples. H0(x) = 1,H1(x) = 2x,H2(x) = 4x

2 − 2.
Ground state: u0(x) = e

−x2/2 = Gaussian. Check: −u′′
0 + x

2u0 = u0.

Spectral features
i. Spatial frequency increases as k increases. Thus the temporal and

spatial frequencies increase together.
ii. Symmetry: eigenfunctions are either even or odd.

31
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Harmonic osc. spectrum

´ ´ ´ ´ ´ ´

VHxL=x2

-3 3
1
3
5
7

Harmonic oscillator modes

iii. Scaling: the rescaled potential c2x2 has eigenvalues cEk, whenever
c > 0. Explicitly, −v′′k + c

2x2vk = cEkvk for eigenfunctions vk(x) = uk(
√
cx).

iv. Growth rate: eigenvalues grow at a regular rate, Ek ∼ (const.)k

Quantum mechanical interpretation

If u(x, t) solves the time-dependent Schrödinger equation

iut = −u′′ + x2u

with potential V(x) = x2 and u has L2-norm equal to 1, then |u|2 represents
the probability density for the location of a particle in a quadratic potential
well.

The k-th eigenfunction uk(x) is called the k-th excited state, because it
gives a “standing wave” solution

u(x, t) = e−iEktuk(x)

to the time-dependent equation. The higher the frequency or “energy” Ek of
the excited state, the farther the wavefunction can spread out in the potential
well, as the solution plots show.

Justifying the harmonic oscillator formulas

Method 1: ODEs. Since u0(x) = e
−x2/2 is an eigenfunction, we guess that all

eigenfunctions decay like e−x
2/2. So we try the change of variable u = we−x

2/2.
The eigenfunction equation becomes

w′′ − 2xw′ + (E− 1)w = 0,
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which we recognize as the Hermite equation. The only valid power se-
ries solutions turn out to be terminating power series, namely the Hermite
polynomials. All other solutions grow like ex

2
at infinity, violating the

boundary condition on u. Detailed calculations are in [Strauss].

Method 2: Raising and lowering energy levels. Define

h+ = −
d

dx
+ x (raising or creation operator),

h− =
d

dx
+ x (lowering or annihilation operator).

WriteH = −d2

dx2
+x2 for the harmonic oscillator operator. Then one computes

H = h+h− + 1

= h−h+ − 1.

Claim. If u is an eigenfunction with eigenvalue E then h±u is an eigenfunc-
tion with eigenvalue E± 2. (In other words, h+ “raises” the energy, and h−

“lowers” the energy.)
Proof.

H(h+u) = (h+h− + 1)(h+u)

= h+(h−h+ + 1)u

= h+(H+ 2)u

= h+(E+ 2)u

= (E+ 2)h+u

and similarly H(h−u) = (E− 2)h−u (exercise).

The only exception to the Claim is that h−u will not be an eigenfunction
if h−u ≡ 0, which occurs precisely when u = u0 = e

−x2/2. Thus the lowering
operator annihilates the ground state.

Applying the raising operator h+ to the groundstate u0 with energy 1
yields the first excited state u1 with energy 3. Applying the raising operator
repeatedly yields the excited states u1, u2, u3, . . . , with energies 3, 5, 7, . . .
(verification left to the reader).

It is reasonable to ask whether any other eigenfunctions exist in addition
to the uk. They do not, as can be seen using the tools of either Method 1 or
Method 2.
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Relation to classical harmonic oscillator

Consider a classical oscillator with mass m = 2, spring constant k = 2,
and displacement x(t), so that 2ẍ = −2x. The total energy (kinetic plus
potential) is

ẋ2 + x2 = const. = E.

To describe a quantum oscillator, one formally replaces momentum ẋ with
the “momentum operator” −id

dx
and lets the equation act on a function u:[(

− i
d

dx

)2
+ x2

]
u = Eu.

This is exactly the eigenfunction equation −u′′ + x2u = Eu for the quantum
harmonic oscillator.

Harmonic oscillator in higher dimensions −∆u+ |x|2u = Eu

Here |x|2 = x21+ · · ·+x2d. The operator separates into a sum of 1 dimensional
operators, and hence has product type eigenfunctions

u = uk1(x1) · · ·ukd(xd), E = (2k1 + 1) + · · ·+ (2kd + 1),

where k1, . . . , kd ≥ 0.

Hydrogen atom in 3 dimensions −∆u− 2
|x|
u = Eu

For our second computable example, let V(x) = −2/|x| be the attractive
electrostatic “Coulomb” potential created by the proton in the hydrogen
nucleus. Notice the gradient of this potential gives the correct |x|−2 inverse
square law for electrostatic force.
Boundary conditions: u(x)→ 0 as |x|→∞.
Eigenvalues: E = −1,− 1

4
,− 1

9
, . . . with multiplicities 1, 4, 9, . . .. That is, the

eigenvalue E = −1/n2 has multiplicity n2.
Eigenfunctions: e−r/nLℓn(r)Y

m
ℓ (θ,ϕ) for 0 ≤ |m| ≤ n − 1, where Ymℓ is a

spherical harmonic and Lℓn equals rℓ times a Laguerre polynomial.
(Recall the spherical harmonics are eigenfunctions of the spherical Lapla-

cian in 3 dimensions, with −∆sphereY
m
ℓ = ℓ(ℓ + 1)Ymℓ . In 2 dimensions the

spherical harmonics have the form Y = cos(kθ) and Y = sin(kθ), which

satisfy − d2

dθ2
Y = k2Y.)
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Examples. The first three purely radial eigenfunctions (ℓ = m = 0, n =
1, 2, 3) are e−r, e−r/2(1− r

2
), e−r/3(1− 2

3
r+ 2

27
r2).

Hydrogen atom spectrum
without multiplicities

´ ´ ´
-1

-
1

4
-

1

9

uHxL=e- x

E=-1

VHxL=-2�ÈxÈ

1

Hydrogen atom: radial n=1

uHxL=e- x �2H1-
1

2
ÈxÈL

E=-

1

4

VHxL=-2�ÈxÈ

1

Hydrogen atom: radial n=2

uHxL=e- x �3H1-

2

3
ÈxÈ+ 2

27
Èx 2L

E=-

1

9

VHxL=-2�ÈxÈ

1

Hydrogen atom: radial n=3

The corner (nonzero slope) in the graph of the eigenfunction at r = 0 is
due to the singularity of the Coulomb potential at the origin.

Continuous spectrum Eigenfunctions with positive energy E > 0 do ex-
ist, but they oscillate as |x| → ∞, and thus do not satisfy our boundary
conditions. They represent “free electrons” that are not bound to the nu-
cleus. See our later discussion of continuous spectrum, in Chapter 21.

Exercises

3.1 — Find the energies (eigenvalues) of the rescaled harmonic oscillator

−∆u+ (c21x
2
1 + c

2
2x
2
2)u = Eu

in 2-dimensions, where c1, c2 > 0 are constants and u(x)→ 0 as |x|→∞.
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3.2 — Write E0 for the lowest energy of the oscillator in Exercise 3.1, and let

Area =

∫
{c21x

2
1+c

2
2x

2
2<1}

dx1dx2 =
π

c1c2

be the area enclosed by the level set at height 1 of the potential function.
Assume the Area is fixed, say Area = α, and minimize E0 with respect to
the allowable choices of c1 and c2. Then describe your result intuitively.

3.3 — Find the energies of the more general 2-dimensional harmonic oscillator

−∆u+ (xTAx)u = Eu,

where A is a positive definite real symmetric 2 × 2 matrix, x = ( x1x2 ) and
u(x)→ 0 as |x|→∞. Hint: diagonalize A.

3.4 — Find a Weyl-type asymptotic formula for the n-th energy of the
rescaled harmonic oscillator appearing in Exercise 3.1, and similarly for Ex-
ercise 3.3.

Notes and comments

For more information on the harmonic oscillator and hydrogen atom, see
[Strauss] Sections 9.4, 9.5, 10.7, and [Gustafson and Sigal] Section 7.5, 7.7.



Chapter 4

Discrete spectral theorem for
sesquilinear forms

Goal

To state the spectral theorem for a coercive sesquilinear form on a dense,
compactly imbedded Hilbert space, and to prove it using the spectral theorem
for compact selfadjoint operators.

Later chapters will apply this spectral theorem to unify and extend the
explicit examples of Chapters 2 and 3.

Preview 1 — weak eigenvectors of matrices

Consider a Hermitian matrix A (so that AT = A) and suppose u is an
eigenvector with eigenvalue γ, meaning Au = γu. Take the dot product
with an arbitrary vector v to obtain

Au · v = γu · v, ∀v ∈ Cd.

Call this condition the “weak form” of the eigenvector equation. Clearly it
implies the original “strong” form, because (Au−γu) ·v = 0 for all v implies
Au− γu = 0.

Notice the Hermitian property of the matrix guarantees the left side of the
weak equation is conjugate-symmetric: Au · v = Av · u. Symmetry ensures
that all eigenvalues are real (γ = γ), by choosing v = u in the weak form.

The weak form of the eigenvector equation indicates the correct approach
for generalizing from the matrix case to Hilbert spaces, in this chapter.

37
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Preview 2 — weak eigenfunctions of the Laplacian

Consider an eigenfunction of the Laplacian in a domain Ω, satisfying −∆u =
λu. Multiply by a function v ∈ H10(Ω) and integrate to obtain

−

∫
Ω

v∆udx = λ

∫
Ω

uvdx.

Assume u and v are real valued for simplicity. Green’s formula (0.1) and the
assumption that v = 0 on ∂Ω imply that∫

Ω

∇u · ∇v dx = λ⟨u, v⟩L2(Ω), ∀v ∈ H10(Ω).

We take this condition as the definition of the “weak form” of the eigen-
function equation. Notice that u needs only first order derivatives in order
for this definition to make sense. Thus in principle, the weak eigenfunction
equation is less restrictive than the original “classical” eigenfunction equation
involving the Laplacian, which requires u to possess second order derivatives.

Our plan is to construct an ONB of weak eigenfunctions using the Hilbert
space methods of this chapter, and later invoke PDE regularity theory to
conclude that weak eigenfunctions are in fact smooth functions satisfying
the equation −∆u = λu classically. Chapter 5 will implement this plan.

Now we develop the spectral theorem for sesquilinear forms in Hilbert
space.

Hypotheses

Consider two infinite dimensional Hilbert spaces H and K over R (or C):
H: inner product ⟨u, v⟩H, norm ∥u∥H,
K: inner product ⟨u, v⟩K, norm ∥u∥K.

Assume H is separable (has a countable dense subset) and:
1. K is continuously and densely imbedded in H, meaning a continuous

linear injection
ι : K→ H

exists such that ι(K) dense in H. Thus we may regard K as a subset of H.
2. The imbedding K ↪→ H is compact, meaning if E is a bounded subset

of K then E is precompact when considered as a subset of H. Equivalently,
every bounded sequence in K has a subsequence that converges in H.
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3. A map a : K ×K→ R (or C) exists that is sesquilinear:

u 7→ a(u, v) is linear, for each fixed v,

v 7→ a(u, v) is linear (or conjugate linear), for each fixed u,

and continuous:
|a(u, v)| ≤ (const.)∥u∥K∥v∥K,

and symmetric:
a(v, u) = a(u, v) (or a(u, v)).

4. a is coercive on K, meaning

a(u, u) ≥ c∥u∥2K ∀u ∈ K,

for some c > 0. Hence a(u, u) ≍ ∥u∥2K.
Symmetry and coercivity imply that:

a(u, v) defines an inner product whose norm is equivalent to the
∥·∥K-norm.

Spectral theorem

Theorem 4.1. Under the hypotheses above, there exist vectors u1, u2, u3, . . . ∈ K
and numbers

0 < γ1 ≤ γ2 ≤ γ3 ≤ · · ·→∞
such that:

• uj is an eigenvector of a(·, ·) with eigenvalue γj, meaning

a(uj, v) = γj⟨uj, v⟩H ∀v ∈ K, (4.1)

• {uj} is an ONB for H,

• {uj/
√
γj} is an ONB for K with respect to the a-inner product.

The decomposition

f =
∑
j

⟨f, uj⟩H uj (4.2)

holds with convergence in H for each f ∈ H, and holds with convergence in
K for each f ∈ K.
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Formula (4.1) is known as the (weak) eigenvalue equation for a.
The idea of the proof is to show that a certain “inverse” operator asso-

ciated with the sesquilinear form is compact and selfadjoint on H, and then
apply the spectral theorem for compact selfadjoint operators. In terms of
differential equations, a corresponds to a differential operator such as −∆,
which is unbounded, and the inverse corresponds to an integral operator
(−∆)−1, which is bounded and in fact compact. Indeed, we will begin the
proof by solving the analogue of Poisson’s equation −∆u = f weakly in our
Hilbert space setting, with the help of the Riesz Representation Theorem.

Proof of Theorem 4.1.
Step 1. We claim for each f ∈ H there exists a unique u ∈ K such that

a(u, v) = ⟨f, v⟩H ∀v ∈ K, (4.3)

and that the map

B :H→ K
f 7→ u

is linear and bounded. To prove this claim, fix f ∈ H and define a bounded
linear functional F(v) = ⟨v, f⟩H on K, noting for the boundedness that

|F(v)| ≤ ∥v∥H∥f∥H by Cauchy–Schwarz

≤ (const.)∥v∥K∥f∥H since K is imbedded in H
≤ (const.)a(v, v)1/2∥f∥H

by coercivity. Hence by the Riesz Representation Theorem onK (with respect
to the a-inner product on K), a unique u ∈ K exists such that F(v) = a(v, u)
for all v ∈ K. That is,

⟨v, f⟩H = a(v, u) ∀v ∈ K,

as desired for (4.3). Thus the map B : f 7→ u is well defined. Clearly it is
linear. And

a(u, u) = |F(u)| ≤ (const.)a(u, u)1/2∥f∥H
implies a(u, u)1/2 ≤ (const.)∥f∥H, so that B is bounded from H to K (using
the a-norm on K), which proves our claim in Step 1.
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Step 2. ι ◦ B : H→ K→ H is compact, since ι imbeds K compactly into
H. Thus we may regard B as a compact bounded linear operator from H to
itself. Observe B is selfadjoint on H, since for all f, g ∈ H one has

⟨Bf, g⟩H = ⟨g, Bf⟩H by symmetry of the inner product

= a(Bg, Bf) by definition of B in (4.3),

= a(Bf, Bg) by symmetry of a,

= ⟨f, Bg⟩H by definition of B in (4.3),

which implies B∗ = B.
Further, B is injective, because if Bf = 0 then (4.3) implies ⟨f, v⟩H = 0

for all v ∈ K and hence for all v ∈ H (by density of K in H), from which we
conclude f = 0. Thus the kernel of B consists of just the zero vector.

Therefore the spectral theorem for compact selfadjoint operators (Ap-
pendix A) provides an ONB for H consisting of eigenvectors of B, with

Buj = βjuj

for some real eigenvalues βj → 0. Note βj ̸= 0 because the kernel of B
contains only the zero vector. The decomposition (4.2) holds for f ∈ H
because {uj} forms an ONB for H.

Step 3. Dividing by the eigenvalue shows uj = B(uj/βj), which guaran-
tees that uj belongs to the range of B and therefore uj ∈ K. Next observe
the eigenvalues are all positive, because

βja(uj, v) = a(Buj, v) = ⟨uj, v⟩H ∀v ∈ K,

and choosing v = uj ∈ K and using coercivity shows that βj > 0. Thus the
reciprocals

γj =
1

βj

are positive and tend to infinity, and satisfy

a(uj, v) = γj⟨uj, v⟩H ∀v ∈ K,

which is the desired eigenvalue formula (4.1). After reordering, we may
further assume the γj are increasing: 0 < γ1 ≤ γ2 ≤ γ3 ≤ · · ·→∞.
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Step 4. Finally, the set {uj/
√
γj} is a-orthonormal because

a(uj, uk) = γj⟨uj, uk⟩H
= γjδjk

=
√
γj
√
γk δjk.

This orthonormal set is complete in K, because if a(uj, v) = 0 for all j then
⟨uj, v⟩H = 0 for all j by (4.1), so that v = 0. Therefore each f ∈ K can be
decomposed as

f =
∑
j

a(f, uj/
√
γj)uj/

√
γj

with the series converging in K, and this decomposition reduces to (4.2)
because a(f, uj) = γj⟨f, uj⟩H.

Remark. Eigenvectors corresponding to distinct eigenvalues are automat-
ically orthogonal, since

(γj − γk)⟨uj, uk⟩H = γj⟨uj, uk⟩H − γk⟨uk, uj⟩H
= a(uj, uk) − a(uk, uj)

= 0

by symmetry of a.

Notes and comments

The discrete spectral Theorem 4.1 can be found in various textbooks such as
[Blanchard and Brüning] Section 6.3. It does not seem to have a standard
name.

A more general spectral theorem for sesquilinear forms can be found in
[Auchmuty] and certain references therein. Briefly, the eigenvectors there
satisfy a(uj, v) = γjb(uj, v) for all v ∈ K, where the form b is assumed to
be weakly continuous on K×K. In our situation, b(u, v) = ⟨u, v⟩H and our
assumption that K imbeds compactly into H implies weak continuity of b.



Chapter 5

Application: discrete spectrum
for the Laplacian

Goal

To apply the spectral theorem from Chapter 4 to the Dirichlet, Robin and
Neumann Laplacians.

Dirichlet Laplacian

We want an ONB of eigenfunctions satisfying

−∆u = λu in Ω

u = 0 on ∂Ω

where Ω is a domain in Rd having finite volume.

To verify the hypotheses of the discrete spectral Theorem 4.1 we let
H = L2(Ω), inner product ⟨u, v⟩L2 =

∫
Ω
uvdx,

K = H10(Ω) = Sobolev space, which is the completion of C∞
0 (Ω) (the

space of smooth functions having compact support in Ω) under the inner
product

⟨u, v⟩H1 =

∫
Ω

(
∇u · ∇v+ uv

)
dx.

All functions are assumed real valued, for simplicity. Note L2(Ω) is separable
[Ciarlet, Theorem 2.5-4].

Density: C∞
0 ⊂ H10 ⊂ L2 and C∞

0 is dense in L2, so H10 is dense in L2.
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Continuous imbedding H10 ↪→ L2:

∥u∥L2 =
( ∫

Ω

u2 dx
)1/2

≤
( ∫

Ω

(
|∇u|2 + u2

)
dx
)1/2

= ∥u∥H1 .

Compact imbedding H10 ↪→ L2: see Rellich’s Theorem B.4 in the Ap-
pendix.

Sesquilinear form: define

a(u, v) =

∫
Ω

∇u · ∇v dx+
∫
Ω

uvdx = ⟨u, v⟩H1 , u, v ∈ H10(Ω).

Clearly a is linear in each variable, and symmetric and continuous on H10(Ω).
Coercivity: a(u, u) = ∥u∥2

H1 .

Hence the discrete spectral Theorem 4.1 gives an ONB {uj} for L2(Ω)
(with uj ∈ H10(Ω) also) and eigenvalues which we denote γj = λj+1 satisfying

⟨uj, v⟩H1 = (λj + 1)⟨uj, v⟩L2 ∀v ∈ H10(Ω).

That is, ∫
Ω

∇uj · ∇v dx = λj
∫
Ω

ujv dx ∀v ∈ H10(Ω), (5.1)

which means
−∆uj = λjuj weakly.

Thus uj is a weak eigenfunction of the Laplacian with eigenvalue λj.
Elliptic regularity theory says that this weak eigenfunction uj is C

∞-
smooth in Ω [Gilbarg and Trudinger, Corollary 8.11].

Next we show uj satisfies the eigenfunction equation classically. Formula
(5.1) and Green’s formula (0.1) imply∫

Ω

(−∆uj)v dx =

∫
Ω

(λjuj)v dx ∀v ∈ C∞
0 (Ω), (5.2)

where for simplicity we work with smooth trial functions in C∞
0 (Ω) ⊂ H10(Ω);

note the boundary term vanishes in Green’s formula because v = 0 on ∂Ω.
Thus ∫

Ω

(∆uj + λjuj)v dx = 0 ∀v ∈ C∞
0 (Ω).
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If ∆uj + λjuj > 0 on some open set then we may choose v to be a nonnega-
tive smooth function with compact support in that set such that

∫
Ω
(∆uj +

λjuj)v dx > 0, which contradicts the last displayed equation. Argue similarly
if ∆uj + λjuj < 0 on some open set. Hence ∆uj + λjuj = 0 at every point, or

−∆uj = λjuj in Ω,

which means uj is an eigenfunction in the classical sense.
Dirichlet boundary condition: uj = 0 on ∂Ω in the sense of Sobolev spaces

(the trace theorem) since H10 is the closure of C∞
0 . This boundary condition

holds classically on any smooth portion of ∂Ω, by elliptic regularity results.
Positivity of the Dirichlet eigenvalues: we have

λj =

∫
Ω
|∇uj|2 dx∫
Ω
u2j dx

≥ 0 (5.3)

by choosing v = uj in the weak formulation (5.1). In fact λj > 0, as follows.
If λj = 0 then |∇uj| ≡ 0 by the last formula and so uj is constant. Since
uj = 0 on the boundary we conclude uj ≡ 0 in the domain. But uj cannot
vanish identically because it has L2-norm equal to 1. Hence the Dirichlet
eigenvalues are positive, with

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · ·→∞.
Aside. Alternatively one may use a Sobolev inequality for H10 to conclude

the Dirichlet eigenvalues are positive. A suitable such inequality can be
proved directly for u ∈ C∞

0 (Ω), when the domain is bounded:

∥u∥2L2 =
∫
Ω

u2 dx

= −

∫
Ω

2u
∂u

∂x1
x1 dx

by integration by parts in the x1-direction

≤
(
2max
x∈Ω

|x1|
)
∥u∥L2∥∂u/∂x1∥L2

≤ (const.)∥u∥L2∥∇u∥L2 ,
so that

∥u∥L2 ≤ (const.)∥∇u∥L2
where the constant depends on the bounded domain Ω. This Sobolev in-
equality holds also for u ∈ H10(Ω), by passing to a limit. Consequently the
left side of (5.3) is bounded below by a positive constant, giving λj > 0.
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Neumann Laplacian

One seeks an ONB of eigenfunctions such that

−∆u = µu in Ω

∂u

∂n
= 0 on ∂Ω

where Ω is a bounded domain in Rd with Lipschitz boundary.

To verify the hypotheses of the discrete spectral Theorem 4.1 we let
H = L2(Ω),
K = H1(Ω) = Sobolev space, which is the completion of C∞(Ω) under

the inner product ⟨u, v⟩H1 ; see [Gilbarg and Trudinger, p. 174].
Now argue as above for the Dirichlet Laplacian. The compact imbedding

is provided by Rellich’s Theorem B.6, which relies on Lipschitz smoothness
of the boundary.

Writing the eigenvalues in the discrete spectral Theorem 4.1 as γj = µj+1,
one finds ∫

Ω

∇uj · ∇v dx = µj
∫
Ω

ujv dx ∀v ∈ H1(Ω). (5.4)

In particular, restricting to v ∈ H10(Ω) implies

−∆uj = µjuj weakly.

Hence uj is smooth, by elliptic regularity. Arguing as in the Dirichlet case
using v ∈ C∞

0 (Ω), one shows uj is an eigenfunction in the classical sense,
satisfying −∆uj = µjuj in Ω.

Nonnegativity of the Neumann eigenvalues: choosing v = uj in (5.4)
proves µj ≥ 0. The first Neumann eigenvalue is zero: µ1 = 0 with a constant
eigenfunction u1 ≡ const. ̸= 0. (Note this constant function belongs to
H1(Ω), though not to H10(Ω).) Hence

0 = µ1 ≤ µ2 ≤ µ3 ≤ · · ·→∞.
Neumann “natural” boundary condition. Formula (5.4) asserts more
than its Dirichlet counterpart (5.1) does, because (5.4) holds for all v ∈
H1(Ω) rather than just v ∈ H10(Ω). We will use this additional information
to show our weak eigenfunctions in (5.4) automatically satisfy the Neumann
boundary condition ∂uj/∂n = 0. This Neumann boundary condition holds
even though it is not imposed in the function space K.
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(Functions in H1(Ω) do not generally have vanishing normal derivative.
In contrast, for the Dirichlet eigenfunctions considered earlier, the boundary
condition is imposed directly by the choice of function space H10(Ω): every
function in that space equals zero on the boundary.)

The weak form of the eigenfunction equation (5.4) for an eigenfunction u
with eigenvalue µ says∫

Ω

∇u · ∇v dx = µ
∫
Ω

uvdx ∀v ∈ H1(Ω). (5.5)

Recall u is smooth inΩ, by elliptic regularity theory. From (5.5) and Green’s
formula (0.1) we find∫

Ω

(−∆u)v dx+

∫
∂Ω

∂u

∂n
vdS =

∫
Ω

(µu)v dx ∀v ∈ C∞(Ω), (5.6)

where for simplicity we work with trial functions in C∞(Ω) ⊂ H1(Ω). If
v ∈ C∞

0 (Ω) then the boundary term vanishes in (5.6), and so∫
Ω

(∆u+ µu)v dx = 0 ∀v ∈ C∞
0 (Ω).

If ∆u + µu > 0 on some open set then we may choose v to be a nonnega-
tive smooth function with compact support in that set such that

∫
Ω
(∆u +

µu)v dx > 0, which is impossible. Argue similarly if ∆u + µu < 0 on some
open set. Hence ∆u + µu = 0 at every point. Thus by using trial functions
in C∞

0 (Ω) we have obtained the eigenfunction equation

−∆u = µu in Ω.

Next, to get the Neumann boundary condition, we will use trial functions
v that do not vanish identically on the boundary. Assume for simplicity
that the boundary is smooth, so that u extends smoothly to Ω by elliptic
regularity. Substituting −∆u = µu into (5.6) reduces that formula to∫

∂Ω

∂u

∂n
vdS = 0 ∀v ∈ C∞(Ω).

If ∂u/∂n > 0 on some relatively open subset of the boundary (or if it is
< 0 there), then we may choose a nonnegative smooth function v on Rd
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whose restriction to ∂Ω is supported in the relatively open set and for which∫
∂Ω
(∂u/∂n)v dS > 0 (or < 0), which is a contradiction. Hence

∂u

∂n
= 0 on ∂Ω,

which is the Neumann boundary condition.
Note. If the boundary is only piecewise smooth, then one may prove the

Neumann condition on the smooth portions of the boundary, by the above
reasoning.

Robin Laplacian

The task is to construct an ONB of eigenfunctions satisfying

−∆u = ρu in Ω

∂u

∂n
+ σu = 0 on ∂Ω

where Ω is a bounded domain in Rd with Lipschitz boundary.

To verify the hypotheses of the discrete spectral Theorem 4.1 we let σ > 0
be the Robin constant and put

H = L2(Ω),
K = H1(Ω).

The density and compact imbedding results are the same as for the Neumann
case above.

Before defining the sesquilinear form, we need to make sense of the bound-
ary values of u. Sobolev functions have well defined boundary values — more
precisely, there is a bounded linear operator T : H1(Ω)→ L2(∂Ω) called the
trace operator such that if u ∈ H1(Ω) happens to equal a continuous func-
tion on Ω then Tu = u on ∂Ω. (Thus the trace operator correctly captures
the boundary values of continuous functions in H1.) Further, if u ∈ H10(Ω)
then Tu = 0, so that functions in H10 equal zero on the boundary in the
trace sense. For these trace results, see [Evans, Section 5.5] for domains with
C1 boundary, or [Evans and Gariepy, §4.3] for the slightly rougher case of
Lipschitz boundary.

Now we can define the sesquilinear form

a(u, v) =

∫
Ω

∇u · ∇v dx+ σ
∫
∂Ω

uvdS(x) +

∫
Ω

uvdx
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where u and v on the boundary should be interpreted as the trace values Tu
and Tv. Clearly a is symmetric and continuous on H1(Ω).

Coercivity: a(u, u) ≥ ∥u∥2
H1 , since σ > 0.

Writing the eigenvalues in the discrete spectral Theorem 4.1 as γj = ρj+1,
one finds∫

Ω

∇uj · ∇v dx+ σ
∫
∂Ω

ujv dS(x) = ρj

∫
Ω

ujv dx ∀v ∈ H1(Ω). (5.7)

In particular, taking v ∈ H10(Ω) implies −∆uj = ρjuj weakly. Hence uj is
smooth by elliptic regularity and satisfies the eigenvalue equation classically
by the argument used above in the Dirichlet case with v ∈ C∞

0 (Ω).
Positivity of the Robin eigenvalues: choosing v = uj in (5.7) gives

ρj =

∫
Ω
|∇uj|2 dx+ σ

∫
∂Ω
u2j dS(x)∫

Ω
u2j dx

≥ 0,

using that σ > 0. Further, ρj > 0 as follows. If ρj = 0 then |∇uj| ≡ 0

and so uj ≡ c is constant, which implies Tuj = c on the boundary. Since
also

∫
∂Ω
(Tuj)

2 dS = 0 we conclude c = 0 and hence uj ≡ 0 in the domain,
which contradicts the fact that uj is an eigenfunction. Hence when the Robin
constant σ is positive one has

0 < ρ1 ≤ ρ2 ≤ ρ3 ≤ · · ·→∞.
Robin “natural” boundary condition. The Robin boundary condition is
derived similarly to the Neumann case above, starting from the weak Robin
eigenfunction equation (5.7), which says∫

Ω

∇u · ∇v dx+ σ
∫
∂Ω

uvdS = ρ

∫
Ω

uvdx ∀v ∈ H1(Ω).

Once again, one employs trial functions v ∈ C∞
0 (Ω) to obtain the eigen-

value equation −∆u = ρu, and then uses v ∈ C∞(Ω) to deduce the Robin
boundary condition

∂u

∂n
+ σu = 0 on ∂Ω

on smooth portions of the boundary.
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Negative Robin constant, σ < 0

Coercivity is more difficult to prove when σ < 0. We start by controlling the
boundary values in terms of the gradient and L2-norm. We have∫

∂Ω

u2 dS(x) ≤ (const.)

∫
Ω

|∇u||u|dx+ (const.)

∫
Ω

u2 dx,

as one sees by inspecting the proof of the trace theorem ([Evans, §5.5] or
[Evans and Gariepy, §4.3]). An application of Cauchy-with-ε gives∫

∂Ω

u2 dS(x) ≤ ε∥∇u∥2L2 + C∥u∥
2
L2

for some constant C = C(ε) > 0. Choose ε = 1/2|σ|, so that

1

2
∥u∥2H1 ≥ |σ|

∫
∂Ω

u2 dS(x) − C|σ| ∥u∥2L2

and hence

a(u, u) ≥ 1

2
∥u∥2H1 − C|σ| ∥u∥2L2 .

Hence the new sesquilinear form ã(u, v) = a(u, v) + C|σ|⟨u, v⟩L2 is coercive.
We apply the discrete spectral theorem to this new form, and then obtain the
eigenvalues of a by subtracting C|σ| (with the same ONB of eigenfunctions).

Negativity of some Robin eigenvalues: ρ1 < 0 when σ < 0, as one sees by
substituting the trial function u ≡ 1 into the variational characterization for
ρ1 in Chapter 11, later in the book.

Eigenfunction expansions in the L2 and H1 norms

The L2-ONB of eigenfunctions {uj} of the Laplacian gives the decomposition

f =
∑
j

⟨f, uj⟩L2 uj (5.8)

with convergence in the L2 and H1 norms, whenever f belongs to the following
spaces:

f ∈


H10(Ω) for Dirichlet,

H1(Ω) for Neumann,

H1(Ω) for Robin.

These claims follow immediately from the discrete spectral Theorem 4.1, in
view of our work above.
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Exercises

Regular Sturm–Liouville problem

5.1 — Consider the eigenvalue problem

−(pu′)′ + qu = λwu on the interval (0, L),

u(0) = 0, u(L) = 0,

where the coefficient functions p, q,w are smooth and real valued on [0, L],
and p and w are positive on [0, L].

(i) Formulate this regular Sturm–Liouville eigenvalue problem in terms
of appropriate Hilbert spaces H and K and a sesquilinear form a(u, v).

(ii) Verify the hypotheses of the discrete spectral Theorem 4.1.
(iii) Find a lower bound on the first eigenvalue λ1 in terms of the coefficient

functions. For simplicity, assume in this part that q is nonnegative.

Elliptic operator
5.2 — Consider the second order elliptic eigenvalue problem

−∇ ·
(
A(x)∇u

)
= λu

on a bounded domain Ω ⊂ Rd, where the real symmetric d×d matrix A(x)
depends smoothly on x ∈ Ω and is uniformly elliptic, meaning

yTA(x)y ≥ c|y|2, x, y ∈ Rd,

for some constant c > 0. (In other words, the lowest eigenvalue of the matrix
is bounded below away from 0.)

Formulate the Dirichlet eigenvalue problem for this elliptic operator in
terms of the function spaces H10 and L2, for a suitable sesquilinear form
a(u, v), and verify the hypotheses of the discrete spectral Theorem 4.1.

Laplacian on manifolds
Consider a compact, connected, smooth, d-dimensional Riemannian manifold
(M,g). Note M has no boundary, since it is compact. The gradient and
divergence operators are defined in terms of the metric (see [Chavel, §I.1])
and the Laplacian is then

∆u = div (gradu).
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(Geometers usually include a negative sign on the right side of this definition,
but we follow the analyst’s convention like in Euclidean space.) Green’s
formulas hold as usual ([Chavel, §I.2]).

The space L2(M) of square integrable functions is defined using integra-
tion against the volume form dV [Chavel, §I.3]. The space H1(M) of square
integrable functions with one weak derivative in L2 is defined analogously to
the Euclidean case ([Chavel, §I.5]), with inner product

⟨u, v⟩H1 =

∫
M

(
g(gradu, grad v) + uv

)
dV.

Then H1 imbeds compactly into L2, as one sees by localizing to coordinate
charts with a partition of unity and invoking Rellich’s Theorem B.6 in Eu-
clidean space. Further, elliptic regularity theory holds onM, again by work-
ing locally.

5.3 — Prove an ONB {uj} for L
2(M) exists with each uj being smooth onM

and satisfying
−∆uj = λjuj

for some eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ · · ·→∞.
(It is standard on compact manifolds to begin indexing the eigenvalues with
j = 0.) Also, show the zero-th eigenfunction u0 is a constant, and every other
eigenfunction has integral zero:∫

M

uj dV = 0, j = 1, 2, 3, . . . .

Remark. The spectrum of a compact manifold behaves like the spectrum of
a domain with Neumann boundary conditions, where the lowest eigenvalue
is again zero and the corresponding eigenfunction is a constant.

5.4 — Suppose M is the circle (d = 1) with the standard metric induced
from the Euclidean metric on the plane. Show the Laplacian is ∆ = ∂θθ and
the eigenfunctions are

u(θ) = 1, cos θ, sin θ, cos 2θ, sin 2θ, cos 3θ, sin 3θ, . . . ;

with corresponding eigenvalues

λ = 02, 12, 12, 22, 22, 32, 32, . . . .
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Here the eigenfunctions have not been normalized in L2. More efficiently, the
eigenfunctions in complex form are u(θ) = einθ, n ∈ Z, with corresponding
eigenvalues n2.

5.5 — Take M to be the sphere (d = 2) with the standard metric induced
from Euclidean 3-space. Show the eigenfunctions are the spherical harmonics,
and hence that the first four eigenfunctions are

u = 1, x, y, z

where x, y, z are the coordinate functions on R3.
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Chapter 6

Application: discrete spectrum
for the Laplacian with magnetic
field

Goal

To apply the spectral theorem from Chapter 4 to the magnetic Laplacian,
which is the Schrödinger operator describing a quantum particle in a classical
magnetic field.

Magnetic Laplacian

Take a domain Ω with finite volume in Rd, where d = 2 or d = 3. We seek
an ONB of eigenfunctions for the magnetic Laplacian

(i∇+ A⃗)2 u = βu in Ω,

u = 0 on ∂Ω,

where u(x) is complex valued and

A⃗ : Rd → Rd

is a given vector field, assumed to be bounded.
Physically, A⃗ represents the vector potential, whose curl (assuming A⃗

is differentiable) represents equals the magnetic field: ∇ × A⃗ = B⃗. In 2

dimensions, one extends A⃗ = (A1, A2) to a 3-vector (A1, A2, 0) before taking

55
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the curl. Then the field B⃗ = (0, 0, ∂A2

∂x1
− ∂A1

∂x2
) cuts vertically through the

planar domain.

Now we choose the Hilbert spaces and sesquilinear form, and verify the
hypotheses of Theorem 4.1. Consider only the Dirichlet boundary condition,
for simplicity. Let:

H = L2(Ω;C) (complex valued functions), with inner product

⟨u, v⟩L2 =
∫
Ω

uvdx;

K = H10(Ω;C), with inner product

⟨u, v⟩H1 =

∫
Ω

(
∇u · ∇v+ uv

)
dx.

Density: K contains C∞
0 , which is dense in L2.

Continuous imbedding: H10 ↪→ L2 since ∥u∥L2 ≤ ∥u∥H1 . The imbedding
is compact by Rellich’s Theorem B.4.

Sesquilinear form: define

a(u, v) =

∫
Ω

(i∇+ A⃗)u · (i∇+ A⃗)v dx+ C

∫
Ω

uvdx, u, v ∈ H10(Ω;C),

with C = ∥A⃗∥2L∞ + 1
2
. Clearly a is symmetric (a(v, u) = a(u, v)) and is

continuous on H10.

Coercivity:

a(u, u)

=

∫
Ω

(
|∇u|2 + 2Re(i∇u · A⃗u) + |A⃗|2|u|2 + C|u|2

)
dx

≥
∫
Ω

(
|∇u|2 − 2|∇u||A⃗||u|+ 2|A⃗|2|u|2 + 1

2
|u|2

)
dx by definition of C

≥
∫
Ω

(1
2
|∇u|2 + 1

2
|u|2

)
dx since 1

2
p2 − 2pq+ 2q2 ≥ 0

=
1

2
∥u∥2H1 .
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The discrete spectral Theorem 4.1 gives an ONB {uj} for L
2(Ω;C). Write

the corresponding eigenvalues as γj = βj + C, so that∫
Ω

(i∇+ A⃗)uj · (i∇+ A⃗)v dx = βj

∫
Ω

ujv dx ∀v ∈ H10(Ω;C). (6.1)

That is,
(i∇+ A⃗)2 uj = βjuj weakly,

and hence classically, where we assume from here on that the vector potential
A⃗ is smooth. The eigenvalues satisfy

βj =

∫
Ω
|(i∇+ A⃗)uj|

2 dx∫
Ω
|uj|2 dx

≥ 0, (6.2)

as we see by choosing v = uj in the weak formulation (6.1), and so

0 ≤ β1 ≤ β2 ≤ β3 ≤ · · ·→∞.
We claim β1 > 0 if there is no open set on which the magnetic field vanishes
identically. For if β1 = 0 then (i∇+A⃗)u1 ≡ 0, which implies A⃗ = −i∇ logu1
on the open set where u1 is nonzero, and B⃗ = ∇× A⃗ = 0 on that open set
since the curl of a gradient vanishes identically. Note this argument does not
rely on the Dirichlet boundary condition.

A similar argument (in the Exercises) shows that if β1 = 0 then |u1| is
constant. Then the Dirichlet boundary condition forces u1 to vanish every-
where, a contradiction. Thus in the Dirichlet case one knows the ground
state energy is positive, β1 > 0.

Gauge invariance

Many different vector potentials can generate the same magnetic field. For
example, in 2 dimensions the potentials

A⃗ = (0, x1), A⃗ = (−x2, 0), A⃗ =
1

2
(−x2, x1),

all generate the magnetic field ∇×A⃗ = (0, 0, 1). Indeed, adding any gradient
vector ∇f to the potential leaves the magnetic field unchanged, since the
curl of a gradient equals zero. This phenomenon goes by the name of gauge
invariance.
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How is the spectral theory of the magnetic Laplacian affected by gauge
invariance? The sesquilinear form definitely changes when we replace A⃗ with
A⃗ + ∇f. Fortunately, the new eigenfunctions are related to the old by a
unitary transformation, as follows. Suppose f is smooth on the closure of the
domain. For any trial function u ∈ H10(Ω;C), the modulated function eifu
also belongs to H10(Ω;C) and

(i∇+ A⃗)u = e−if(i∇+ A⃗+∇f)(eifu).

Thus if we write a for the original sesquilinear form and ã for the analogous
form coming from the vector potential A⃗+∇f, we have

a(u, v) = ã(eifu, eifv)

for all trial functions u, v. Since also ⟨u, v⟩L2 = ⟨eifu, eifv⟩L2 , the ONB of
eigenfunctions uj associated with a transforms to an ONB of eigenfunctions
eifuj associated with ã. The eigenvalues (energy levels) βj are unchanged by
this transformation.

Exercises

6.1 — Use formula (6.2) to show that if β1 = 0 then |u1|
2 is constant.

Notes and comments

For a brief explanation of how the magnetic Laplacian arises from the cor-
respondence between classical energy functions and quantum mechanical
Hamiltonians, see [Reed and Simon 2, p. 173].

For invariance of the magnetic Laplacian spectrum with respect to rota-
tions, reflections and translations, and for a discussion of the Neumann and
Robin situations, see [Laugesen, Liang and Roy, Appendix A].

In higher dimensions one identifies the vector potential A⃗ : Rd → Rd with
a 1-form

A = A1 dx1 + · · ·+Ad dxd
and obtains the magnetic field from the exterior derivative:

B = dA.

Otherwise, the spectral theory proceeds as in dimensions 2 and 3.



Chapter 7

Application: discrete spectrum
for Schrödinger in a potential
well

Goal

To apply the spectral theorem from Chapter 4 to the harmonic oscillator and
more general potential wells in higher dimensions.

Schrödinger with finite-volume sublevel potential

Consider a real valued, measurable potential V that is locally bounded above
and globally bounded below, with

V(x) ≥ −C, x ∈ Rd,

for some constant C > 0. Assume the sublevel set

B(t) = {x : V(x) < t}

has finite volume for each t ∈ R. For example, the sublevel sets have finite
volume if the potential grows to infinity at ∞, that is, if

V(x)→∞ as |x|→∞.

The harmonic oscillator potential V(x) = |x|2 satisfies this last condition.
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We aim to prove existence of an ONB of eigenfunctions for

(−∆+ V)u = Eu in Rd,
u→ 0 as |x|→∞.

Let:
Ω = Rd,
H = L2(Rd), inner product ⟨u, v⟩L2 =

∫
Rd uvdx.

K = H1(Rd) ∩ L2(|V |dx) with inner product

⟨u, v⟩K = ⟨u, v⟩H1 + ⟨u, v⟩L2(|V |dx)

=

∫
Rd

(
∇u · ∇v+ (1+ |V |)uv

)
dx.

Density: K contains C∞
0 , which is dense in L2.

Continuous imbedding: K ↪→ L2 since ∥u∥L2 ≤ ∥u∥K.
Compact imbedding: K ↪→ L2 compactly, as we now show. Suppose {fk} is

a bounded sequence in K, say with ∥fk∥K ≤M for all k, so that in particular
{fk} is bounded in H1(Rd). We must prove the existence of a subsequence
converging in L2(Rd).

Each sublevel set B(t) has finite volume, by hypothesis. Take t = 1. The
Restriction Theorem B.5 provides a subsequence that converges in L2

(
B(1)

)
.

Repeat with t = 2 to get a sub-subsequence converging in L2
(
B(2)

)
. Con-

tinue in this fashion and then consider the diagonal subsequence, to obtain
a subsequence that converges in L2

(
B(t)

)
for each t > 0.

Relabel and call this subsequence {fℓ}. We show it converges in L2(Rd).
For t > 0,

t

∫
Rd\B(t)

f2ℓ dx ≤
∫
Rd\B(t)

f2ℓV dx

≤ ∥fℓ∥2K
≤M2

for all ℓ. Since {fℓ} converges in L
2
(
B(t)

)
, we have from above that

lim sup
ℓ,m→∞ ∥fℓ − fm∥L2(Rd) = lim sup

ℓ,m→∞ ∥fℓ − fm∥L2(Rd\B(t)) ≤ 2M/
√
t.

Letting t → ∞ shows that ∥fℓ − fm∥L2(Rd) → 0 as ℓ,m → ∞, and so {fℓ} is
Cauchy in L2(Rd) and hence converges, as we wanted to show for compactness
of the imbedding.
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Incidentally, if the potential grows to infinity at ∞ (V(x)→∞ as |x|→∞) then one may instead take B(t) to be the open ball of radius t and use
that infRd\B(t) V →∞ as t→∞.

Sesquilinear form: define

a(u, v) =

∫
Rd

(∇u · ∇v+ Vuv)dx+ (2C+ 1)

∫
Rd

uvdx, u, v ∈ K.

Clearly a is symmetric and continuous on K.

Coercivity: a(u, u) ≥ ∥u∥2K, since V + 2C+ 1 ≥ 1+ |V |.

The discrete spectral Theorem 4.1 gives an ONB {uj} for L2(Rd) and
corresponding eigenvalues which we denote γj = Ej + 2C+ 1 satisfying∫

Rd

(∇uj · ∇v+ Vujv)dx = Ej
∫
Rd

ujv dx ∀v ∈ K.

In particular, this last formula holds for all v ∈ H1(Rd) with compact support,
and so

−∆uj + Vuj = Ejuj weakly.

Hence uj is smooth (assuming smoothness of V), and the eigenfunction equa-
tion holds classically by arguing as we did in the Dirichlet case in Chapter 5.
Thus uj is an eigenfunction of the Schrödinger operator −∆+V , with eigen-
value Ej, where

E1 ≤ E2 ≤ E3 ≤ · · ·→∞.
Boundary condition at infinity: the boundary condition uj → 0 at infinity

is interpreted as meaning uj belongs to the space H1(Rd) ∩ L2(|V |dx). In 1
dimension, belonging to H1(R) already insures that u(x) → 0 as |x| → ∞,
by Exercise 7.1.

The eigenvalues satisfy

Ej =

∫
Rd

(
|∇uj|2 + Vu2j

)
dx∫

Rd u
2
j dx

,

as we see by choosing v = uj in the weak formulation. Hence if V ≥ 0 then
the eigenvalues are all positive.
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Exercises

7.1 — Suppose u ∈ H1(R), so that u is absolutely continuous and the fun-
damental theorem of calculus holds for it.
(a) Show u is Hölder continuous with exponent 1/2:

|u(x) − u(y)| ≤ ∥u′∥L2 |x− y|1/2, x, y ∈ R.

(b) Prove u(x)→ 0 as x→ ±∞.

7.2 — f-Laplacian. Given a positive smooth function f on Rd, define the
f-Laplacian to be the operator

∆fu =
1

f
∇ · (f∇u).

(a) Show the f-Laplacian conjugates to a Schrödinger operator, with

−e−g/2∆f e
g/2 = −∆+ V

where
f = e−g

and the potential is

V =
1

4
|∇g|2 − 1

2
∆g.

(b) Conclude formally that if

V(x)→∞ as |x|→∞, (7.1)

or more generally if

V is bounded below and its sublevel sets have finite volume, (7.2)

then the f-Laplacian has discrete spectrum. State a formula expressing eigen-
functions of ∆f in terms of eigenfunctions of −∆+ V .
(c) Let f = e−x

2
be the Gaussian in 1-dimension. Verify condition (7.1),

compute the potential V , and show the spectrum is λ = 0, 2, 4, 6, . . . .
(d) To justify rigorously that the f-Laplacian has discrete spectrum, under
assumption (7.1) or (7.2), let

H̃ = L2(Rd, f dx), ⟨u, v⟩H̃ =

∫
uv e−g dx,

K̃ = H1(Rd, f dx), ⟨u, v⟩K̃ =

∫
(∇u · ∇v+ uv) e−g dx,
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and verify the hypotheses of the discrete spectral Theorem 4.1.
Hint. Consider the spaces H and K that we used earlier for the Schrödinger
operator with potential well. Show that u ∈ H if and only if ueg/2 ∈ H̃, and
u ∈ K if and only if ueg/2 ∈ K̃, with comparable norms.
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Chapter 8

Application: discrete spectrum
for Sturm–Liouville operators

Goal

To apply the spectral theorem from Chapter 4 to regular and singular Sturm–
Liouville operators, obtaining discreteness criteria for the spectrum.

Consider the Sturm–Liouville eigenvalue equation

− (pu′)′ + qu = λwu on the interval (0, L), (8.1)

where the coefficient functions p, q,w are smooth and real valued on (0, L),
with p and w positive at every point.

Assumptions on coefficient functions

Near the left endpoint assume either

q/w→∞ as x→ 0, or (8.2)

q/w is bounded below and w and Pw are integrable on (0, L/2), (8.3)

where P is an antiderivative of 1/p. Near the right endpoint assume either

q/w→∞ as x→ L, or (8.4)

q/w is bounded below and w and Pw are integrable on (L/2, L). (8.5)

There is nothing special about the number L/2. Any point in the interval
could be used.
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Boundary conditions

In order to formulate a Dirichlet boundary condition at x = L, in the function
space K below, we assume ∫L

L/2

1

p(x)
dx <∞. (8.6)

We will not impose a boundary condition at x = 0. Later we discuss the
natural BC that arises at that left endpoint.

Remarks

Conditions (8.2)–(8.5) can handle various singular Sturm–Liouville problems.
An application to Bessel functions and the vibrating circular drum will be
given later in the chapter, while the exercises cover other famous examples.

The example p = 1, q = x−2, w = x−1 satisfies (8.2) but not (8.3), since
w is not integrable. In the other direction, the example p = q = w = 1

satisfies (8.3) but not (8.2), since q/w is bounded.
The regular Sturm–Liouville eigenvalue problem (see exercise in Chap-

ter 5) is covered by the results in this chapter, since conditions (8.3), (8.5)
and (8.6) hold if p, q,w are continuous on the closed interval [0, L] and p
and w are positive there.

Hilbert spaces and sesquilinear form

Let us proceed to verify the hypotheses of the discrete spectral theorem.
Write I = (0, L) for the interval and put

m = inf
I

q

w
.

Then −∞ < m <∞ by assumptions (8.2)–(8.5), and so

q−mw ≥ 0.

Define Hilbert spaces

H = L2
(
I, wdx

)
,

K =
{
u ∈ H1loc(I) : u′ ∈ L2

(
I, p dx

)
, u ∈ L2

(
I, (q−mw+w)dx

)
, u(L) = 0

}
,
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with inner products

⟨u, v⟩H =

∫L
0

uvwdx,

⟨u, v⟩K =

∫L
0

(
u′v′p+ uv(q−mw+w)

)
dx.

The boundary value u(L) in the definition of K is well defined: it equals

u(L) =

∫L
L/2

u′(x)dx+ u(L/2),

where the integral is finite since∫L
L/2

|u′|dx ≤
( ∫L

L/2

(u′)2pdx
)1/2( ∫L

L/2

1

p
dx
)1/2

<∞
by Cauchy–Schwarz and hypothesis (8.6).

Separability: H is separable by a short argument relying on separability
of the unweighted L2-space.

Density: K contains C∞
0 (I), which is already dense in H.

Continuous imbedding: K ↪→ H because

∥u∥2H =

∫L
0

u2wdx

≤
∫L
0

u2(q−mw+w)dx

≤ ∥u∥2K.

Compact imbedding: K ↪→ H: suppose {fk} is a bounded sequence in
K, say with ∥fk∥K ≤ M for all k. The goal is to prove the existence of a
subsequence converging in H = L2

(
I, wdx

)
. First we find a subsequence

converging on the left half of the interval. Analogous arguments yield a
subsequence that converges on the right half of the interval, completing the
proof.

Construction for compact imbedding on (0, L/2), assuming (8.2).
Let δ3 = L/3. Then p and q −mw + w are positive on the closed interval
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[δ3, L/2], and so the sequence {fk} is bounded in W1,2
(
(δ3, L/2)

)
. Rellich’s

Theorem B.6 provides a subsequence of {fk} that converges in L
2
(
(δ3, L/2)

)
and hence in L2

(
(δ3, L/2), wdx

)
. Repeating with δ4 = L/4 provides a sub-

subsequence converging in L2
(
(δ4, L/2), wdx

)
. Continue in this fashion, and

then consider the diagonal subsequence, which converges in L2
(
(δ, L/2), wdx

)
for each δ < L/2. After relabelling, we denote this diagonal subsequence by
{fℓ}.

In fact, this sequence converges in L2
(
(0, L/2), wdx

)
, as we now show.

Let ε > 0. Since q/w grows to infinity as x → 0 by (8.2), we may choose
δ < L/2 small enough that

q(x)

w(x)
≥ 1

ε
whenever x ∈ (0, δ).

Consider now two cases. If m ≤ 1 then mw ≤ w and so

w ≤ εq ≤ ε(q−mw+w).

On the other hand, if m > 1 then (m− 1)mw ≤ (m− 1)q and so

w ≤ εq ≤ εm(q−mw+w).

In both cases w ≤ ε(1+ |m|)(q−mw+w), and so∫ δ
0

f2ℓwdx ≤ ε(1+ |m|)∥fℓ∥2K ≤ ε(1+ |m|)M2

for all ℓ. Since {fℓ} converges in L
2
(
(δ, L/2), wdx

)
, we may restrict attention

to the interval (0, δ) and deduce

lim sup
ℓ,n→∞ ∥fℓ − fn∥L2((0,L/2),w dx) = lim sup

ℓ,n→∞ ∥fℓ − fn∥L2((0,δ),w dx)

≤ 2
√
ε(1+ |m|)M.

Letting ε → 0 shows {fℓ} is Cauchy in L2
(
(0, L/2), wdx

)
, and hence con-

verges.

Construction for compact imbedding on (0, L/2), assuming (8.3).
The proof goes like above, except we need a different argument to control
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0
f2ℓ wdx. Write P(x) =

∫x
L/2
p(y)−1 dy, so that P is an antiderivative of 1/p.

Let ε > 0 and choose δ ∈ (0, L/2) such that∫ δ
0

w(x)dx ≤ ε and

∫ δ
0

|P(x)|w(x)dx ≤ ε,

which is possible since w and Pw are integrable by assumption (8.3). Then
for x < L/2 we have

fℓ(x) = fℓ(L/2) −

∫L/2
x

f′ℓ(y)dy

≤ C∥fℓ∥H1(L/4,3L/4) +

(∫L/2
x

f′ℓ(y)
2 p(y)dy

)1/2(∫L/2
x

p(y)−1 dy

)1/2
by Lemma 8.1 below and Cauchy–Schwarz

≤ C∥fℓ∥K + ∥fℓ∥K |P(x)|1/2

where the constant C in the last line depends on the behavior of the coefficient
functions on the interval [L/4, 3L/4]. Hence

( ∫ δ
0

f2ℓ wdx
)1/2

≤ C∥fℓ∥K
( ∫ δ

0

wdx
)1/2

+ ∥fℓ∥K
( ∫ δ

0

|P(x)|w(x)dx
)1/2

≤ (C+ 1)M
√
ε

by our choice of δ. Now the proof can be concluded like in the previous case.

Sesquilinear form: define a : K ×K→ R by

a(u, v) =

∫L
0

(
u′v′p+ uv(q−mw+w)

)
dx = ⟨u, v⟩K

so that a is linear, continuous, and symmetric.
Coercivity: a(u, u) = ∥u∥2K.

Conclusions. We have verified the assumptions of the discrete spectral
Theorem 4.1, and so we obtain from it an ONB of weak eigenfunctions sat-
isfying

a(uj, v) = γj⟨uj, v⟩H ∀v ∈ K,
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which simplifies to∫L
0

(
u′
jv

′p+ ujvq
)
dx = λj

∫L
0

ujvwdx ∀v ∈ K,

where

λj = γj +m− 1.

The preceding formula holds in particular whenever v ∈ H1(I) has compact
support in the interval, and so

−(pu′
j)
′ + quj = λwuj weakly on (0, L).

It follows by regularity theory that uj is smooth.
Dirichlet boundary condition at x = L: the condition u(L) = 0 was

imposed in the definition of the space K.
Neumann boundary condition at x = 0: by the natural boundary condi-

tion argument in Chapter ??, one obtains formally the Neumann BC

pu′|x=0+ = 0.

To make this derivation rigorous, one requires the space K to contain a

function v that equals 1 near x = 0, which is true if
∫L/2
0
qdx < ∞ and∫L/2

0
wdx <∞. Weaker conditions might suffice to obtain the natural bound-

ary condition, of course, in particular cases.
It remains to establish a lemma used in the proof above.

Lemma 8.1 (Boundedness of Sobolev functions in 1 dimension). Fix s < t.
If f ∈ H1(s, t) then

∥f∥L∞ ≤ C∥f∥H1

where the constant C depends on the length t− s.

Proof. f is Hölder continuous with exponent 1/2, since

|f(x) − f(y)| =
∣∣ ∫y
x

f′(z)dz
∣∣ ≤ ∥f′∥L2 |x− y|1/2, x, y ∈ (s, t).

Hence

|f(x)| ≤ |f(y)|+ ∥f′∥L2(t− s)1/2.
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Integrating with respect to y gives

|f(x)| ≤ 1

t− s

∫ t
s

|f(y)|dy+ ∥f′∥L2(t− s)1/2

≤ 1

(t− s)1/2
∥f∥L2 + ∥f′∥L2(t− s)1/2

and so |f(x)| ≤ C∥f∥H1 .

Example — Bessel eigenfunctions

The Bessel eigenvalue problem with parameter n ≥ 0 is

− u′′(r) −
1

r
u′(r) +

n2

r2
u(r) = λu(r), 0 < r < 1, (8.7)

which can be rewritten in standard form as

−(ru′)′ + n2r−1u = λru, 0 < r < 1.

The coefficient functions

p(r) = r, q(r) = n2r−1, w(r) = r,

satisfy assumptions (8.2), (8.3) and (8.5).
We may impose a Dirichlet condition u(1) = 0 at the right endpoint,

since p satisfies assumption (8.6).
This Bessel eigenvalue problem satisfies the hypotheses of this Chapter,

and so one gets an ONB of eigenfunctions in the weighted space L2
(
(0, 1), r dr

)
.

One may compute the eigenfunctions explicitly by solving the ODE and ap-
plying the boundary condition at r = 1. The solutions, before normalizing
in L2, are Jn(jn,kr) for k = 1, 2, 3, . . . , where jn,k is the k-th root of the Bessel
function Jn.

The Bessel eigenvalue problem arises from separating variables to find
eigenvalues of the Laplacian on the disk. Indeed, by substituting either
f = u(r) cosnθ or f = u(r) sinnθ into the Laplacian eigenvalue equation

−∆f = λf

and recalling that the Laplacian in polar coordinates has the form ∆ = ∂rr+
r−1∂r + r

−2∂θθ, we arrive immediately at (8.7). The restriction ∇f ∈ L2(D)
means in polar coordinates that u′ ∈ L2

(
(0, 1), r dr

)
and u ∈ L2

(
(0, 1), r−1 dr

)
.

The Dirichlet condition u(1) = 0 for the Bessel problem corresponds to a
Dirichlet condition for f on the boundary of the disk.
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Exercises

Show the following eigenvalue problems are covered by the results in this
chapter, after a translation and multiplying through by an integrating factor
if necessary. Ignore boundary conditions, and do not impose (8.6) for a
Dirichlet boundary condition at x = L.

8.1 — Legendre problem

−
(
(1− x2)u′)′ = λu, −1 < x < 1.

8.2 — Chebyshev problem

−(1− x2)u′′ + xu′ = λu, −1 < x < 1.

8.3 — Harmonic oscillator in disguise

−
d

dθ

(
cos2 θ

du

dθ

)
+ (sec2 θ tan2 θ)u = λ(sec2 θ)u, −

π

2
< θ <

π

2
.

8.4 — Laguerre problem

−xu′′ + (x− 1)u′ = λu, 0 < x <∞.
The semi-infinite interval in this last exercise requires a modification of the
proof, using a diagonal argument on a sequence of intervals of the form (1, n).

Notes and comments

The methods of this chapter are similar to the treatment of the Schrödinger
operator with a potential well, in Chapter 7.

The literature on Sturm–Liouville problems is vast. Two particularly
interesting sources are an old paper by [Friedrichs] and a more recent book
by [Zettl].



Chapter 9

Application: discrete spectrum
for the biLaplacian

Goal

To apply the spectral theorem from Chapter 4 to the biLaplacian, which is
a fourth order operator.

BiLaplacian — vibrating plates

The fourth order wave equation

ϕtt = −∆∆ϕ

describes the transverse vibrations of a rigid plate, which in one dimension
simplifies to the beam equation

ϕtt = −ϕ′′′′.

After separating out the time variable with ϕ = sin(
√
Λt)u(x), one arrives

at the eigenvalue problem for the biLaplacian:

∆∆u = Λu in Ω.

We will prove existence of an orthonormal basis of eigenfunctions. For sim-
plicity we start with the Dirichlet case, which has boundary conditions

u = |∇u| = 0 on ∂Ω.
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Let:
Ω = domain of finite volume in Rd,
H = L2(Ω),
K = H20(Ω) = completion of C∞

0 (Ω) under the inner product

⟨u, v⟩H2 =

∫
Ω

( d∑
m,n=1

uxmxnvxmxn +

d∑
m=1

uxmvxm + uv
)
dx

=

∫
Ω

(D2u ·D2v+∇u · ∇v+ uv)dx

whereD2u denotes the Hessian matrix of u (the matrix of second derivatives)
and the dot products act component-wise.

Intuitively, H20 consists of functions in L
2 whose first and second deriva-

tives belong to L2 and for which the function and its first derivatives vanish
on the boundary.

Recall L2(Ω) is separable [Ciarlet, Theorem 2.5-4].
Density: C∞

0 ⊂ H20 ⊂ L2 and C∞
0 is dense in L2, so H20 is dense in L2.

Compact imbedding: H20 ↪→ H10 ↪→ L2. The second imbedding is compact
by Rellich’s Theorem B.4, and so the composition of imbeddings is compact
also.

Sesquilinear form: define

a(u, v) =

∫
Ω

(
D2u ·D2v+ uv

)
dx, u, v ∈ H20(Ω).

Clearly a is linear, and symmetric and continuous on H20(Ω).
Coercivity:

∥u∥2H2 = a(u, u) +

d∑
m=1

∫
Ω

u2xm dx

= a(u, u) −

d∑
m=1

∫
Ω

uxmxmudx by parts

≤ a(u, u) +
d∑

m=1

∫
Ω

(u2xmxm + u2)dx

≤ (1+ d)a(u, u).
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Hence the discrete spectral Theorem 4.1 gives an ONB {uj} for L
2(Ω) and

corresponding eigenvalues which we denote γj = Λj + 1 satisfying

a(uj, v) = (Λj + 1)⟨uj, v⟩L2 ∀v ∈ H20(Ω).

Equivalently,∫
Ω

d∑
m,n=1

(uj)xmxnvxmxn dx = Λj

∫
Ω

ujv dx ∀v ∈ H20(Ω). (9.1)

That is,
d∑

m,n=1

(uj)xmxmxnxn = Λjuj weakly,

or
∆∆uj = Λjuj weakly.

Hence uj is a weak eigenfunction of the biLaplacian with eigenvalue Λj.
Elliptic regularity gives that uj is C

∞-smooth, and hence satisfies the eigen-
function equation classically.

Dirichlet boundary condition: uj = |∇uj| = 0 on ∂Ω in the sense of
Sobolev spaces (since uj and each partial derivative (uj)xm belong to H10).
The boundary condition holds classically on any smooth portion of ∂Ω, by
elliptic regularity results.

Positivity of the eigenvalues:

Λj =

∫
Ω
|D2uj|

2 dx∫
Ω
u2j dx

≥ 0

by choosing v = uj in the weak formulation (9.1). Further, Λj > 0 because if
Λj = 0 then (uj)xmxn ≡ 0 by the last formula, and so (uj)xm ≡ (const.); one
deduces (uj)xm ≡ 0 since (uj)xm vanishes on the boundary; hence uj itself
is constant and thus identically zero because it vanishes on the boundary,
which contradicts the normalization of the L2-norm of uj to equal 1. We
conclude that

0 < Λ1 ≤ Λ2 ≤ Λ3 ≤ · · ·→∞.
BiLaplacian — natural boundary conditions

Natural boundary conditions for the biLaplacian acting on u ∈ H2(Ω)
can be derived by a process like in Chapter ?? [Chasman, §5]. These natural
conditions are much more complicated than for the Laplacian.
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Chapter 10

Variational characterizations of
eigenvalues

Goal

To obtain minimax and maximin characterizations of the eigenvalues of the
sesquilinear form in Chapter 4.

Motivation and hypotheses. How can one estimate the eigenvalues if the
spectrum cannot be computed explicitly? We will develop two complemen-
tary variational characterizations of eigenvalues. The intuition for these char-
acterizations comes from the special case of eigenvalues of a Hermitian (or
real symmetric) matrix A, for which the sesquilinear form is a(u, v) = Au ·v
and the first eigenvalue is

γ1 = min
v ̸=0

Av · v
v · v

.

Poincaré’s minimax characterization of the eigenvalues

We work under the assumptions of the discrete spectral theorem in Chap-
ter 4, for the sesquilinear form a. Recall the ordering

γ1 ≤ γ2 ≤ γ3 ≤ · · ·→∞.
Define the Rayleigh quotient of u to be

a(u, u)

⟨u, u⟩H
.
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Rayleigh principle for the first eigenvalue

The first eigenvalue γ1 equals the minimum value of the Rayleigh quotient:

γ1 = min
f∈K\{0}

a(f, f)

⟨f, f⟩H
. (10.1)

The minimum is attained if and only if f is an eigenfunction with eigenvalue
γ1.

Proof of Rayleigh principle. The arbitrary vector f ∈ K can be expanded in
terms of the ONB of eigenvectors as

f =
∑
j

cjuj

where cj = ⟨f, uj⟩H. This series converges in both H and K, as proved in
Chapter 4. Hence we may substitute the series into the Rayleigh quotient to
obtain

a(f, f)

⟨f, f⟩H
=

∑
j,k cjcka(uj, uk)∑
j,k cjck⟨uj, uk⟩H

=

∑
j |cj|

2γj∑
j |cj|

2
(10.2)

since the eigenvectors {uj} are orthonormal in H and the collection {uj/
√
γj}

is a-orthonormal in K (that is, a(uj, uk) = γjδjk). The expression (10.2) is
obviously greater than or equal to γ1.

Equality holds if and only if f is a first eigenfunction, that is, if and only
if f =

∑J
j=1 cjuj where γ1 = · · · = γJ < γJ+1. (In most applications the first

eigenvalue is simple, in which case J = 1 and equality holds in the Rayleigh
quotient if and only if f is a multiple of u1.)

Rayleigh principle for second eigenvalue

A variant of the Rayleigh principle is sometimes used for the second eigen-
value:

γ2 = min
0 ̸=f⊥u1

a(f, f)

⟨f, f⟩H
(10.3)

where the trial vector satisfies f ∈ K, f ̸= 0 and ⟨f, u1⟩H = 0. The proof
mimics that of the Rayleigh principle, except now with c1 = 0 since f is
orthogonal to the first eigenvector
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Poincaré principle for higher eigenvalues

The j-th eigenvalue for any j ≥ 1 is given by the following minimax formula:

γj = min
S

max
f∈S\{0}

a(f, f)

⟨f, f⟩H
(10.4)

where S ranges over all j-dimensional subspaces of K.

Remark. The Rayleigh and Poincaré principles provide upper bounds on
eigenvalues, since they express γ1 and γj as minima of computable quantities.
That is, an upper bound on γ1 follows from substituting any vector f into
the Rayleigh quotient in (10.1), and an upper bound on γj is obtained by
choosing S to be any j-dimensional subspace and evaluating the maximum
over f ∈ S of the Rayleigh quotient in (10.4).

Proof of Poincaré principle. We prove the minimax formula (10.4) for j = 2,
and leave the case of higher j-values as an exercise.

“≥” direction of the proof. Choose S = {c1u1+ c2u2 : c1, c2 scalars} to be
the span of the first two eigenvectors. Then

max
f∈S\{0}

a(f, f)

⟨f, f⟩H
= max

(c1,c2 )̸=(0,0)

∑2
j=1 |cj|

2γj∑2
j=1 |cj|

2
= γ2.

Hence γ2 ≥ right side of (10.4).
“≤” direction of the proof. To prove the opposite inequality, consider an

arbitrary 2-dimensional subspace S ⊂ K. Note this subspace is arbitrary,
and need not equal the span of two of the eigenvectors.

The subspace contains a nonzero vector g that is orthogonal to u1. (Proof:
given a basis {v1, v2} for the subspace, there exist scalars d1, d2 not both zero
such that d1⟨v1, u1⟩H + d2⟨v2, u1⟩H = 0. Hence the vector g = d1v1 + d2v2
satisfies ⟨g, u1⟩H = 0.) Thus c1 = 0 in the orthonormal expansion for g, and
so by (10.2),

a(g, g)

⟨g, g⟩H
=

∑∞
j=2 |cj|

2γj∑∞
j=2 |cj|

2
≥ γ2.

Hence

max
f∈S\{0}

a(f, f)

⟨f, f⟩H
≥ a(g, g)

⟨g, g⟩H
≥ γ2,

which implies that γ2 ≤ right side of (10.4).
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Variational characterization of eigenvalue sums.

The sum of the first n eigenvalues has a “minimum” characterization similar
to the Rayleigh principle for the first eigenvalue, but now involving pairwise
orthogonal trial vectors:

γ1 + · · ·+ γn (10.5)

= min
{a(f1, f1)
⟨f1, f1⟩H

+ · · ·+ a(fn, fn)

⟨fn, fn⟩H
: fj ∈ K \ {0}, ⟨fj, fk⟩H = 0 when j ̸= k

}
.

See the notes at the end of the chapter.

Courant’s maximin characterization

Eigenvalues of the sesquilinear form are given also by Courant’s maximin
principle:

γj = max
S

min
0 ̸=f⊥S

a(f, f)

⟨f, f⟩H
(10.6)

where here S ranges over all (j− 1)-dimensional subspaces of K.

Remark. The Courant principle provides lower bounds on eigenvalues, since
it expresses γj as a maximum. The lower bounds are difficult to compute,
though, because S⊥ is an infinite dimensional space.

Sketch of proof of Courant principle. The Courant principle reduces to
Rayleigh’s principle when j = 1, since in that case S is the zero subspace
and S⊥ = K.

Take j = 2. (The proof for higher j-values is left to the reader.) For the
“≤” direction of the proof, choose S to be the 1-dimensional space spanned
by the first eigenvector u1. Then every f ∈ S⊥ has c1 = ⟨f, u1⟩H = 0 and so

γ2 ≤ min
f∈S⊥\{0}

a(f, f)

⟨f, f⟩H
by expanding f =

∑∞
j=2 cjuj and computing just as in the proof of the

Poincaré principle.
For the “≥” direction of the proof, consider an arbitrary 1-dimensional

subspace S of K. Then S⊥ contains some vector of the form f = c1u1 + c2u2
with c1 or c2 nonzero. Hence

min
0 ̸=f⊥S

a(f, f)

⟨f, f⟩H
≤
∑2

j=1 |cj|
2γj∑2

j=1 |cj|
2

≤ γ2.
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Eigenvalues as critical values of the Rayleigh quotient

Even if one did not know the existence of an ONB of eigenvectors, one could
still prove the Rayleigh principle by the following direct approach. Define γ∗

to equal the infimum of the Rayleigh quotient:

γ∗ = inf
f∈K\{0}

a(f, f)

⟨f, f⟩H
.

We will prove γ∗ is an eigenvalue. It follows that γ∗ is the lowest eigenvalue,
γ∗ = γ1 (because if any eigenvector f corresponded to a smaller eigenvalue,
then the Rayleigh quotient of f would be smaller than γ∗, a contradiction).

First, choose an infimizing sequence {fk} normalized with ∥fk∥H = 1, so
that

a(fk, fk)→ γ∗.

By weak sequential compactness of the closed ball in the Hilbert space K,
we may suppose after passing to a subsequence that fk converges weakly in
K to some u ∈ K. Hence fk also converges weakly in H to u (because if
F(·) is any bounded linear functional on H then it is also a bounded linear
functional on K). We may further suppose fk converges in H to some v ∈ H,
by compactness of the imbedding K ↪→ H, and then fk converges also weakly
in H to v, so that v = u. To summarize: fk ⇀ u weakly in K and fk → u in
H. In particular, ∥u∥H = 1. Therefore

0 ≤ a(fk − u, fk − u)
= a(fk, fk) − 2Rea(fk, u) + a(u, u)→ γ∗ − 2Rea(u, u) + a(u, u) using weak convergence fk ⇀ u

= γ∗ − a(u, u)

≤ 0

by definition of γ∗ as an infimum. Thus equality holds throughout, and so
γ∗ = a(u, u), which means the infimum defining γ∗ is actually a minimum:

γ∗ = min
f∈K\{0}

a(f, f)

⟨f, f⟩H
.

The minimum is attained when f = u.
Our second task is to show u is an eigenvector with eigenvalue γ∗. Let

v ∈ K be arbitrary and use f = u + tv as a trial vector in the Rayleigh
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quotient. Since t = 0 gives the minimizer f = u, the derivative of the
Rayleigh quotient at t = 0 must equal zero by the first derivative test from
calculus:

0 =
d

dt

a(u+ tv, u+ tv)

⟨u+ tv, u+ tv⟩H

∣∣∣∣
t=0

= 2Rea(u, v) − γ∗2Re⟨u, v⟩H.

The same equation holds with Im instead of Re, as we see by replacing v with
iv. (This last step is unnecessary when working with real Hilbert spaces, of
course.) Hence

a(u, v) = γ∗⟨u, v⟩H ∀v ∈ K,

which means u is an eigenvector for the sesquilinear form a with eigenvalue
γ∗.

Notes and comments

Variational principles can be developed not just for individual eigenvalues,
but also for combinations such as the sum of the first n eigenvalues, and the
sum of the first n reciprocal eigenvalues. See [Bandle] Section III.1.2.



Chapter 11

Monotonicity properties of
eigenvalues

Goal

To establish monotonicity results for Dirichlet and Neumann eigenvalues of
the Laplacian, and a diamagnetic comparison for the magnetic Laplacian.

Rayleigh quotients

The spectral problems in Chapters 5–9 have Rayleigh quotients and function
spaces as follows.

Dirichlet Laplacian:

∫
Ω
|∇f|2 dx∫
Ω
f2 dx

, f ∈ H10(Ω).

Robin Laplacian:

∫
Ω
|∇f|2 dx+ σ

∫
∂Ω
f2 dS∫

Ω
f2 dx

, f ∈ H1(Ω).

Neumann Laplacian:

∫
Ω
|∇f|2 dx∫
Ω
f2 dx

, f ∈ H1(Ω).

83
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magnetic Laplacian:

∫
Ω
|i∇f+ A⃗f|2 dx∫
Ω
|f|2 dx

, f ∈ H10(Ω).

Schrödinger:

∫
Rd

(
|∇f|2 + Vf2

)
dx∫

Rd f2 dx
, f ∈ H1(Rd) ∩ L2(|V |dx).

Sturm–Liouville:

∫L
0

(
|f′|2p+ f2q

)
dx∫L

0
f2wdx

, f ∈ K (see below).

Dirichlet biLaplacian:

∫
Ω

∑d
m,n=1 f

2
xmxn

dx∫
Ω
f2 dx

, f ∈ H20(Ω),

=

∫
Ω
(∆f)2 dx∫
Ω
f2 dx

.

The Sturm–Liouville function space used above is

K =
{
u ∈ H1loc(I) : u′ ∈ L2

(
I, p dx

)
, u ∈ L2

(
I, (q−mw+w)dx

)
, u(L) = 0

}
where I = (0, L) and m = infI q/w > −∞.

The Poincaré principle (10.4) gives a minimax formula for the eigenvalues
in terms of these Rayleigh quotients. In particular, for the Dirichlet, Robin
and Neumann spectra of the Laplacian one has

λj = min
S

max
f∈S\{0}

∫
Ω
|∇f|2 dx∫
Ω
f2 dx

,

ρj = min
T

max
f∈T\{0}

∫
Ω
|∇f|2 dx+ σ

∫
∂Ω
f2 dS∫

Ω
f2 dx

,

µj = min
U

max
f∈U\{0}

∫
Ω
|∇f|2 dx∫
Ω
f2 dx

,

where S ranges over j-dimensional subspaces of H10(Ω), and T and U range
over j-dimensional subspaces of H1(Ω).

Neumann ≤ Robin ≤ Dirichlet

Free membranes give lower tones than partially free and fixed membranes:
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Theorem 11.1 (Neumann–Robin–Dirichlet comparison). LetΩ be a bounded
domain in Rd with Lipschitz boundary, and fix σ > 0.

Then the Neumann eigenvalues of the Laplacian lie below their Robin
counterparts, which in turn lie below the Dirichlet eigenvalues:

µj ≤ ρj ≤ λj ∀j ≥ 1.

Proof. Clearly µj ≤ ρj, since σ > 0 in the Robin Rayleigh quotient.

Next, every subspace S is also a valid T , since H10 ⊂ H1 by definition.
Thus the minimum for the Robin eigenvalue ρj is taken over a larger class
of subspaces than the minimum for the Dirichlet eigenvalue λj. Further, the
boundary term vanishes in the Robin Rayleigh quotient for each f ∈ S ⊂ H10.
Hence ρj ≤ λj.

Incidentally, remember the first Neumann eigenvalue is zero: µ1 = 0.

Domain monotonicity for Dirichlet spectrum

Making a drum smaller increases its frequencies of vibration:

Theorem 11.2. Let Ω and Ω̃ be domains of finite volume in Rd with eigen-
values λj and λ̃j for the Dirichlet Laplacian, respectively. If Ω ⊃ Ω̃ then

λj ≤ λ̃j ∀j ≥ 1.

Proof. Poincaré’s minimax principle gives

λj = min
S

max
f∈S\{0}

∫
Ω
|∇f|2 dx∫
Ω
f2 dx

, λ̃j = min
S̃

max
f∈S̃\{0}

∫
Ω̃
|∇f|2 dx∫
Ω̃
f2 dx

,

where S ranges over j-dimensional subspaces of H10(Ω) and S̃ ranges over

j-dimensional subspaces of H10(Ω̃).

Every subspace S̃ is also a valid S since H10(Ω̃) ⊂ H10(Ω), by extending

f ∈ H10(Ω̃) to equal 0 outside Ω̃. This extension by 0 does not change the
value of the Rayleigh quotient, and hence does not change the value of the
maximum over f ∈ S̃. Therefore λj ≤ λ̃j.
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Counterexample to Neumann domain monotonicity

A smaller domain can have smaller Neumann eigenvalues, as the figure below
shows for a rectangle contained in a unit square. Recall from Chapter 2 that
µ2 = π2/L2 for a rectangle with longer side length L. The square has both
sides of length 1 and hence µ2 = π2, while the rectangle has longer side
length (0.9)

√
2 (just a little shorter than the diagonal length

√
2) and so

µ̃2 = π2/(1.62). Thus the second Neumann eigenvalue is smaller for the
rectangle even though the rectangle is smaller than the square. Thus domain
monotonicity can fail for Neumann eigenvalues.

Ω
˜

Ω

To see where the Dirichlet domain monotonicity proof breaks down for
Neumann eigenvalues, note that although one can extend a function inH1(Ω̃)
to belong to H1(Ω), the extended function must generally be nonzero outside

Ω̃ and so the L2-norm of the function and its gradient will differ from those
of the original function; hence the Rayleigh quotient will differ too.

Rescaling gives a kind of monotonicity that is sometimes useful for Neu-
mann eigenvalues:

µj(tΩ) =
µj(Ω)

t2
,

as shown in the Chapter 2 exercises.

Restricted reverse monotonicity for Neumann spectrum

Neumann monotonicity does hold in a certain restricted situation, with the
inequality reversed from the Dirichlet case — the smaller drum has smaller
tones.
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Theorem 11.3. Let Ω and Ω̃ be bounded Lipschitz domains in Rd with
eigenvalues µj and µ̃j for the Neumann Laplacian, respectively.

If Ω ⊃ Ω̃ and Ω \ Ω̃ has measure zero, then

µj ≥ µ̃j ∀j ≥ 1.

One might imagine the smaller domain Ω̃ as being constructed by remov-
ing a hypersurface of measure zero from Ω, thus introducing an additional
boundary surface that behaves like a “tear” in the fabric of the membrane.
Reverse monotonicity then makes sense, because an eigenfunction can take
different values on the two sides of this additional piece of boundary, enabling
the eigenfunction to “relax” and the eigenvalue (frequency) to decrease.

Ω Ω
˜

In contrast, introducing additional boundary surfaces to a Dirichlet prob-
lem would have the opposite effect: the eigenfunction would face additional
constraints, and hence the eigenvalue (frequency) would increase.

Proof of Theorem 11.3. Poincaré’s minimax principle gives

µj = min
S

max
f∈S\{0}

∫
Ω̃
|∇f|2 dx∫
Ω̃
f2 dx

, µ̃j = min
S̃

max
f∈S̃\{0}

∫
Ω̃
|∇f|2 dx∫
Ω̃
f2 dx

,

where S ranges over j-dimensional subspaces of H1(Ω) and S̃ ranges over

j-dimensional subspaces of H1(Ω̃). In the Rayleigh quotient for µj we should

really integrate overΩ instead of Ω̃, but it makes no difference becauseΩ\Ω̃

has measure zero.
Every subspace S is also a valid S̃, since functions in H1(Ω) obviously

restrict to functions in H1(Ω̃). Therefore µj ≥ µ̃j.

Diamagnetic comparison

Our final monotonicity property says that the ground state energy of the
Dirichlet Laplacian goes up when a magnetic field is imposed.
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Theorem 11.4 (Diamagnetic comparison). If Ω is a domain of finite volume
in R2 or R3 then

β1 ≥ λ1.
First we prove a pointwise comparison.

Lemma 11.5 (Diamagnetic inequality).∣∣(i∇+ A⃗)f
∣∣ ≥ ∣∣∇|f|

∣∣
Proof. Write f in polar form as f = ReiΘ. Then

|i∇f+ A⃗f|2 = |ieiΘ∇R− ReiΘ∇Θ+ A⃗ReiΘ|2

= |i∇R− R∇Θ+ A⃗R|2

= |∇R|2 + R2|∇Θ− A⃗|2

≥ |∇R|2 =
∣∣∇|f|

∣∣2.
Proof of Theorem 11.4. The proof is immediate from the diamagnetic in-
equality in Lemma 11.5 and the following Rayleigh principles:

β1 = min
f∈H1

0(Ω;C)

∫
Ω
|i∇f+ A⃗f|2 dx∫
Ω
|f|2 dx

, λ1 = min
f∈H1

0(Ω;R)

∫
Ω
|∇f|2 dx∫
Ω
f2 dx

.

Notes and comments

Monotonicity properties for Sturm–Liouville and biLaplace spectra can be
proved by the methods of this chapter too. For example, increasing the
weight function w on the right side of the Sturm–Liouville equation decreases
the Rayleigh quotient (provided q ≥ 0) and hence decreases the eigenvalues.

The argument used to prove the diagmagnetic inequality shows the Dirich-
let Laplacian has a nonnegative groundstate, the point being that for real
valued functions,

|∇f| ≥
∣∣∇|f|

∣∣.
Additional arguments then show the first Dirichlet eigenvalue is simple (see
[Gilbarg and Trudinger, Theorem 8.38]), which means

λ1 < λ2.



Chapter 12

Weyl’s asymptotic for high
eigenvalues

Goal

To determine the rate of growth of eigenvalues of the Laplacian.

References [Arendt et al.]; [Courant and Hilbert] Section VI.4

Notation

The asymptotic notation αj ∼ βj means

lim
j→∞

αj

βj
= 1.

Write Vd for the volume of the unit ball in d-dimensions.

Growth of eigenvalues

The eigenvalues of the Laplacian grow at a rate cj2/d where the constant
depends only on the volume of the domain, independent of the boundary
conditions.

89
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Theorem 12.1 (Weyl’s law). Let Ω be a bounded domain in Rd with piece-
wise smooth boundary. As j→∞ the eigenvalues grow according to:

λj ∼ ρj ∼ µj ∼


(πj/|Ω|)2 (d = 1)

4πj/|Ω| (d = 2)(
6π2j/|Ω|

)2/3
(d = 3)

and more generally,

λj ∼ ρj ∼ µj ∼ 4π
2

(
j

Vd|Ω|

)2/d
(d ≥ 1).

Here |Ω| denotes the d-dimensional volume of the domain, in other words its
length when d = 1 and area when d = 2.

In 1 dimension the theorem is proved by the explicit formulas for the
eigenvalues in Chapter 2. We will prove the theorem in 2 dimensions, by
a technique known as “Dirichlet–Neumann bracketing”. The higher dimen-
sional proof is similar.

An alternative proof using small-time heat kernel asymptotics can be
found (for example) in the survey paper by Arendt et al. [Arendt et al.,
§1.6].

Proof of Weyl aymptotic — Step 1: rectangular domains. In view of the Neu-
mann–Robin–Dirichlet comparison (Theorem 11.1), we need only proveWeyl’s
law for the Neumann and Dirichlet eigenvalues. We provided a proof in
Proposition 2.1, for rectangles.

Proof of Weyl aymptotic — Step 2: finite union of rectangles. Next we sup-
pose R1, . . . , Rn are disjoint rectangular domains and put

Ω̃ = ∪nm=1Rm ,

Ω = Int
(
∪nm=1Rm

)
.

For example, if R1 and R2 are adjacent squares of side length 1, then Ω̃ is
the disjoint union of those squares whereas Ω is the 2×1 rectangular domain
formed from the interior of their union.

Admittedly Ω̃ is not connected, but the spectral theory of the Laplacian
remains valid on a finite union of disjoint domains: the eigenfunctions are
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W
�

W

simply the eigenfunctions of each of the component domains extended to
be zero on the other components, and the spectrum equals the union of
the spectra of the individual components. (On an infinite union of disjoint
domains, on the other hand, one would lose compactness of the imbedding
H1 ↪→ L2, and the zero eigenvalue of the Neumann Laplacian would have
infinite multiplicity.)

Write λ̃j and µ̃j for the Dirichlet and Neumann eigenvalues of Ω̃.
Then by the restricted reverse Neumann monotonicity (Theorem 11.3),

Neumann–Robin–Dirichlet comparison (Theorem 11.1) and Dirichlet mono-
tonicity (Theorem 11.2), we deduce that

µ̃j ≤ µj ≤ ρj ≤ λj ≤ λ̃j ∀j ≥ 1.

Hence if we can prove Weyl’s law

µ̃j ∼ λ̃j ∼
4πj

|Ω|
(12.1)

for the union-of-rectangles domain Ω̃, then Weyl’s law will follow for the
original domain Ω.

Define the eigenvalue counting functions of the rectangle Rm to be

NNeu(α;Rm) = #{j ≥ 1 : µj(Rm) ≤ α},
NDir(α;Rm) = #{j ≥ 1 : λj(Rm) ≤ α}.

We know from Weyl’s law for rectangles (Step 1 of the proof above) that

NNeu(α;Rm) ∼ NDir(α;Rm) ∼
|Rm|

4π
α (12.2)

as α→∞.
The spectrum of Ω̃ is the union of the spectra of the Rm, and so (here

comes the key step in the proof!) the eigenvalue counting functions of Ω̃
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equal the sums of the corresponding counting functions of the rectangles:

NNeu(α; Ω̃) =

n∑
m=1

NNeu(α;Rm),

NDir(α; Ω̃) =

n∑
m=1

NDir(α;Rm).

Combining these sums with the asymptotic (12.2) shows that

NNeu(α; Ω̃) ∼

(
n∑
m=1

|Rm|

4π

)
α =

|Ω|

4π
α

and similarly

NDir(α; Ω̃) ∼
|Ω|

4π
α

as α→∞. We can invert these last two asymptotic formulas with the help
of Lemma 2.2, thus obtaining Weyl’s law (12.1) for Ω̃.

Proof of Weyl aymptotic — Step 3: approximation of arbitrary domains. Lastly
we suppose Ω is an arbitrary domain with piecewise smooth boundary. The
idea is to approximate Ω with a union-of-rectangles domain such as in Step
2, such that the volume of the approximating domain is within ε of the vol-
ume of Ω. We refer to the text of Courant and Hilbert for the detailed proof
[Courant and Hilbert, §VI.4.4].



Chapter 13

Pólya’s conjecture and the
Berezin–Li–Yau Theorem

Goal

To describe Polya’s conjecture about Weyl’s law, and to state the “tiling
domain” and “summed” versions that are known to hold.

References [AIM, Kellner, Laptev, Pólya]

Pólya’s conjecture

Weyl’s law (Theorem 12.1) says that

λj ∼
4πj

|Ω|
∼ µj as j→∞,

for a bounded plane domainΩ with piecewise smooth boundary. (We restrict
to plane domains, in this chapter, for simplicity.)

Pólya conjectured that these asymptotic formulas hold as inequalities.

Conjecture 13.1 ([Pólya], 1960).

λj ≥
4πj

|Ω|
≥ µj ∀j ≥ 1.

The conjecture remains open even for a disk.
Pólya proved the Dirichlet part of the inequality for tiling domains [Pólya],

and Kellner did the same for the Neumann part [Kellner]. Recall that a
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“tiling domain” covers the plane with congruent copies of itself (transla-
tions, rotations and reflections). For example, parallelograms and triangles
are tiling domains, as are many variants of these domains (a fact that M. C.
Escher exploited in his artistic creations).

Pólya and Kellner’s proofs are remarkably simple, using a rescaling argu-
ment together with Weyl’s law.

For arbitrary domains, Pólya’s conjecture has been proved only for λ1, λ2
(see [Henrot, Th. 3.2.1 and (4.3)]) and for µ1, µ2, µ3 (see [Girouard]). The
conjecture remains open for j ≥ 3 (Dirichlet) and j ≥ 4 (Neumann).

Berezin–Li–Yau results

The major progress for arbitrary domains has been on a “summed” ver-
sion of the conjecture. (Quite often in analysis, summing or integrating an
expression produces a significantly more tractable quantity.) Li and Yau
[Li and Yau] proved that

j∑
k=1

λk ≥
2πj2

|Ω|
,

which is only slightly smaller than the quantity (2π/|Ω|)j(j+1) that one gets
by summing the left side of the Pólya conjecture. An immediate consequence
is a Weyl-type inequality for Dirichlet eigenvalues:

λj ≥
2πj

|Ω|

by combining the very rough estimate jλj ≥
∑j

k=1 λk with the Li–Yau in-
equality. The last formula has 2π whereas Pólya’s conjecture demands 4π,
and so we see the conjecture is true up to a factor of 2, at worst.

Similar results hold for Neumann eigenvalues.
A somewhat more general approach had been obtained earlier by Berezin.

For more information, consult the work of Laptev [Laptev] and a list of open
problems from recent conferences [AIM].



Chapter 14

Trace of the heat kernel

Goal

To extract geometric information about a domain from the spectrum of the
Laplacian, via the trace of the heat kernel.

Definition

Throughout the chapter,Ω ⊂ Rd is a bounded domain with piecewise smooth
boundary, so that Weyl’s Law holds. Write {uj} for an ONB of Dirichlet
eigenfunctions with corresponding eigenvalues λj, satisfying

−∆uj = λjuj in Ω,

uj = 0 on ∂Ω,

and

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · ·→∞.
Define the heat kernel

K(t, x, y) =
∑
j

e−λjtuj(x)uj(y), t > 0, x, y ∈ Ω.

Then the function

u(x, t) =

∫
Ω

K(t, x, y)f(y)dy
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solves the heat equation IVP

ut = ∆u in Ω,

u = 0 for x ∈ ∂Ω,

u = f at t = 0.

One may verify formally that u solves the IVP. A rigorous proof (if desired)
can be obtained using a weak formulation of the IVP.

The trace of the heat kernel, or heat trace, is the spectral functional

Tr(t) =

∫
Ω

K(t, x, x)dx =
∑
j

e−λjt, t > 0.

Example. The intervalΩ = (0, π) in 1-dimension has Dirichlet eigenvalues
λj = j2, and so Tr(t) =

∑∞
j=1 e

−j2t. This heat trace is closely related to the
Jacobi theta function ϑ3.

Upper bound on the heat kernel and trace

The heat kernel for the whole space Rd is given not by an eigenfunction
expansion but instead by a simple closed form:

KRd(t, x, y) =
e−|x−y|2/4t

(4πt)d/2
.

Proposition 14.1 (Gaussian upper bound). The heat kernel of a domain is
bounded above by the heat kernel of the whole space:

K(t, x, y) ≤ e−|x−y|2/4t

(4πt)d/2
, x, y ∈ Ω, t > 0.

In particular, K(t, x, x) ≤ (4πt)−d/2 and hence

Tr(t) ≤ |Ω|

(4πt)d/2
, t > 0.
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Proof. Fix y ∈ Ω and let v(x, t) = K(t, x, y) − KRd(t, x, y) for x ∈ Ω, t > 0.
Then v satisfies the heat equation (vt = ∆v) with initial condition

v(x, 0) = δ(x− y) − δ(x− y) = 0

and boundary condition

v(x, t) = 0− KRd(t, x, y) ≤ 0 x ∈ ∂Ω.

Hence v ≤ 0 by the Maximum Principle, which proves the main inequality
in the proposition. Taking x = y shows K(t, x, x) ≤ (4πt)−d/2, and then
integrating over x ∈ Ω gives the trace estimate.

Note. If one wishes to avoid delta measures in the initial condition, then
let f ∈ C∞

0 (Ω) be a nonnegative bump function supported around y and
repeat the above argument for the function

v(x, t) =

∫
Ω

K(t, x, y)f(y)dy−

∫
Rd

KRd(t, x, y)f(y)dy.

Clearly v satisfies the heat equation in Ω and has initial condition f− f = 0
and boundary condition ≤ 0. The Maximum Principle implies v(x) ≤ 0 for
all x ∈ Ω. Since this inequality holds for all such f, one concludes that
K(t, x, y) ≤ KRd(t, x, y) for all x, y and t.

First order asymptotics

For small time the heat equation does not “feel the boundary”. Thus we
expect the heat kernel K(t, x, y) on Ω to be well approximated by the heat
kernel for the whole space Rd. In particular, putting x = y one expects
K(t, x, x) ∼ 1/(4πt)d/2 and hence Tr(t) ∼ |Ω|/(4πt)d/2 for small t. That is,
one expects the upper bound in Proposition 14.1 to be asymptotically exact.

Proposition 14.2.

Tr(t) ∼
|Ω|

(4πt)d/2
as t→ 0 and Tr(t) ∼ e−λ1t as t→∞.

Proof. For the long-time asymptotic, note that λ1 < λ2 (see Notes and Com-
ments for Chapter 11), and so

Tr(t)

e−λ1t
= 1+

∞∑
j=2

e(λ1−λj)t → 1
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as t→∞.
For the short-time asymptotic in 2-dimensions we argue using Weyl’s Law

(Theorem 12.1), which says

λj ∼
4πj

A
as j→∞

where A = area of Ω. Let C > 1, and choose J large enough that

C−14πj

A
≤ λj ≤ C

4πj

A
∀j > J.

The lower bound on λj implies

Tr(t) ≤
J∑
j=1

e−λjt +

∞∑
j=J+1

e−4πjt/AC

≤ J+
∞∑

j=J+1

e−jδ where δ = 4πt/AC

≤ J+ δ−1
∫∞
Jδ

e−z dz

by estimating the integral from below with right Riemann sums having step
size δ. Hence

lim sup
t→0

4πt

A
Tr(t) ≤ C.

Similarly the upper bound on λj leads to

lim inf
t→0

4πt

A
Tr(t) ≥ C−1.

Letting C→ 1, we conclude limt→0 4πtA Tr(t) = 1.
In dimensions d ̸= 2 the short-time asymptotic can be proved the same

way, with the help of the integral∫∞
0

e−z
2/d

dz =
d

2

∫∞
0

e−ζζd/2−1 dζ =
d

2
Γ(d/2) = Γ(1+ d/2).
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Higher order asymptotics as t→ 0

The short-time asymptotic in Proposition 14.2 can be improved to an infinite
asymptotic series, analogous to a Taylor series.

Theorem 14.3 (Heat trace asymptotic). If Ω has smooth boundary then

Tr(t) ∼
1

td/2

∞∑
n=0

cnt
n/2 as t→ 0,

for certain constants cn = cn(Ω).

The meaning of the asymptotic series in the theorem is that

td/2Tr(t) =
N∑
n=0

cnt
n/2 +O(t(N+1)/2) as t→ 0,

for each N ≥ 0, and that the analogous formula holds for the derivative:

d

dt

[
td/2Tr(t)

]
=
d

dt

N∑
n=0

cnt
n/2 +O(t(N−1)/2) as t→ 0.

For the history and proof of this result, see the Notes at the end of the
chapter. The constants cn are known as the heat invariants of the domain.
The zeroth coefficient depends only on the volume:

c0 =
|Ω|

(4π)d/2
.

The leading heat invariants take a particularly simple form in 2-dimensions:

Corollary 14.4 (Heat trace asymptotic in the plane). If Ω ⊂ R2 has smooth
boundary then

Tr(t) ∼
Area

4πt
−
Perimeter

8
√
πt

+
1

6
(1−#holes)+

√
t

256
√
π

∫
∂Ω

κ2 ds+O(t) as t→ 0,

where κ denotes the curvature of the boundary.

Readers familiar with topology might note that (1 −#holes) equals the
Euler characteristic of Ω.

Thus the spectrum of the Dirichlet Laplacian determines the following
geometric quantities:

area, boundary length, connectivity, L2-norm of boundary curvature.
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Remark. On manifolds with boundary, one obtains similar heat trace
asymptotics.

On manifolds without boundary, the 1/2-order terms vanish from the
asymptotic, meaning cn = 0 for all odd n.

Higher order asymptotics for polygons

The heat trace asymptotic behaves quite differently for domains with corners.

Theorem 14.5 (Heat trace asymptotic for polygonal domain). If Ω ⊂ R2
is a polygon then

Tr(t) ∼
Area

4πt
−

Perimeter

8
√
πt

+
1

24

∑
i

( π
αi

−
αi

π

)
+O(e−b/t) as t→ 0,

where the αi are the interior angles of the polygon and b > 0 is a constant.

This formula was stated by [McKean and Singer], and a proof can be
found in [van den Berg and Srisatkunarajah]. Notice the asymptotic con-
tains only three terms, after which the remainder term is exponentially small
as t→ 0.

Inverse spectral problem — can you hear the shape of
a drum?

The spectrum encodes a great deal of information about the domain, as we
saw above from the heat trace. Inspired by this observation, Mark Kac asked
in 1966

“Can one hear the shape of a drum?” [Kac]

That is, suppose you have perfect hearing, and can hear all the frequencies
of a drum. Can you determine its shape? More mathematically, does the
spectrum of the Dirichlet Laplacian determine the shape of the domain Ω?

One can “hear” whether or not the domain is a disk, since the spectrum
determines the area and the disk has the smallest λ1 among all domains of
the same area, by the Faber–Krahn Theorem mentioned in the Chapter 2
exercises.

In general, though, domains cannot be heard. A counterexample in 2-
dimensions was found by [Gordon, Webb and Wolpert] in 1992, after many
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years of effort by many authors. Their counterexample, and all subsequent
counterexamples, are domains with corners. Thus nowadays one asks:

“Can one hear the shape of a smoothly bounded drum?”

This problem remains open. Recent progress of [Zelditch] handles the case
of analytically bounded drums having some symmetry.

Triangular drums. Even a triangular drum is nontrivial to “hear”. In
1990, [Durso] showed that it can be done by wave trace methods (generally
more difficult and powerful than heat trace methods). In other words, she
showed if one knows the domain is a triangle, and if one knows its Dirichlet
spectrum, then one can determine the shape of the triangle.

An easier proof of this fact using the heat trace asymptotic of Theo-
rem 14.5 was found by [Grieser and Maronna]. The essence of their proof is
as follows. The angles of a triangle add up to π, and so from the coefficients
of the asymptotic in Theorem 14.5 one obtains the two quantities

3∑
i=1

α3 and
3∑
i=1

1

αi
.

One also knows the perimeter P and area A, and hence P2/4A, which equals
(by an interesting identity for triangles) a third quantity involving the angles:

3∑
i=1

cot
αi

2
.

From these last three quantities, Grieser and Maronna determine the three
angles α1, α2, α3. Their argument is elementary yet elegant, relying on certain
convexity and monotonicity properties. Then the angles determine the shape
of the triangle. Lastly, the size of the triangle follows from knowing the area
A.

Exercises

14.1 — Heat trace on product domain. Consider bounded domains Ω1 ⊂
Rd1 and Ω2 ⊂ Rd2 . Write λ

(1)
j and λ

(2)
k for the eigenvalues of the Dirichlet
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Laplacian on the two domains, and Tr(1) and Tr(2) for the corresponding heat
traces. Show the heat trace on the product domain

Ω = Ω1 ×Ω2.

is the product of the heat traces:

Tr(t) = Tr(1)(t)Tr(2)(t), t > 0.

Notes and comments

Material to add: The heat trace asymptotic (Theorem 14.3) was first ob-
tained by [Seeley] (with boundary as we need here, or without boundary???).
For the geometric interpretation of heat invariants in terms of curvature in
2-dimensions (Corollary 14.4), see [Smith]. Need a reference that also proves
the asymptotic for the derivative of td/2Tr(t)!!!

On manifolds without boundary, [Polterovich] found a brief explicit for-
mula for each heat invariant in terms of derivatives of powers of the distance
function. His approach was simplified and generalized in [Weingart, Chapter
2].

Sometimes one wishes to perturb the boundary of a domain and obtain
a formula for the resulting perturbation of the heat trace. Hadamard–type
first and second variations of this kind were developed by [Ozawa].

Insert a picture for GWW — possibly use the homophonic drums from
Buser, Conway, Doyle, and Semmler (1994), if the authors grant permission?

Mention extremal problems for the trace: Luttinger (connects Faber–
Krahn to isoperimetric). Add exercises and open problems.



Chapter 15

Spectral zeta function

Goal

To develop the spectral zeta function as the Mellin transform of the heat
trace, then show it is meromorphic, identify the residues, and find explicit
formulas between the poles.

Definition

In this chapter, Ω ⊂ Rd is a bounded domain with smooth boundary, and
λj is the j-th eigenvalue of the Dirichlet Laplacian. Define the spectral zeta
function

Z(s) =
∑
j

1

λsj
, Re s >

d

2
,

where s is a complex number. The series converges absolutely when Re s >
d/2, since λj ∼ (const.)j2/d by the Weyl asymptotic in Theorem 12.1.

Example and motivation. The interval Ω = (0, π) in 1-dimension has
Dirichlet eigenvalues λj = j

2, and so Z(s) =
∑∞

j=1 j
−2s = ζ(2s), where ζ is the

Riemann zeta function.

Relation to the heat trace

The spectral zeta function is a weighted mean of the heat trace.

103
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Lemma 15.1 (Zeta function = Mellin transform of heat trace).

Z(s) =
1

Γ(s)

∫∞
0

ts−1Tr(t)dt, Re s >
d

2
.

Here Γ(s) is the Gamma function, which is defined for Re s > 0 by the
formula Γ(s) =

∫∞
0
zs−1e−z dz and then extends to all complex s by repeated

use of the functional relation sΓ(s) = Γ(s+ 1).

Proof. The integral on the right side of the lemma is∫∞
0

ts−1Tr(t)dt =
∑
j

∫∞
0

ts−1e−λjt dt by definition of Tr(t)

=
∑
j

1

λsj

∫∞
0

τs−1e−τ dτ where τ = λjt,

= Z(s)Γ(s),

which gives the desired formula.

Compact manifold without boundary. If Ω is a compact manifold
without boundary then one defines the spectral zeta function similarly, except
omitting the zero eigenvalue (traditionally labelled λ0 = 0) so as not to divide
by zero. In that case

Z(s) =
∑
j>0

1

λsj
=

1

Γ(s)

∫∞
0

ts−1
(
Tr(t) − 1

)
dt, Re s >

d

2
.

For example, the torus R/2πZ has eigenvalues j2 for j ∈ Z, and so its zeta
function is

∑
j ̸=0 j

−2s = 2ζ(2s).

Extending the zeta function to all complex numbers

Just as the Riemann zeta function extends to a meromorphic function on the
whole plane (complex analytic except for isolated poles), so does the spectral
zeta function, as we proceed to show.
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Theorem 15.2 (Spectral zeta in 2-dimensions). Suppose Ω ⊂ R2. Then the
spectral zeta function Z(s) has a meromorphic extension to C with simple
poles at s = 1 and s = 1/2:

Z(s) =
Area

4π

1

s− 1
+O(1) for s near 1,

Z(s) = −
Perimeter

8π

1

s− 1/2
+O(1) for s near 1/2.

The zeta function has simple poles also at s = −1/2,−3/2,−5/2, . . . , and is
regular at every other s ∈ C. Further, the zeta function is expressed by the
formulas

Z(s) = Γ(s)−1
∫∞
0

ts−1Tr(t)dt, Re s ∈ (1,∞),

= Γ(s)−1
∫∞
0

ts−1
[
Tr(t) −

Area

4πt

]
dt, Re s ∈

(1
2
, 1
)
,

= Γ(s)−1
∫∞
0

ts−1
[
Tr(t) −

Area

4πt
+

Perimeter

8
√
πt

]
dt, Re s ∈

(
0,
1

2

)
,

and also

Z(s) =
−1

Γ(s+ 1)

∫∞
0

ts
d

dt

[
Tr(t)−

Area

4πt
+
Perimeter

8
√
πt

]
dt, Re s ∈

(
−
1

2
,
1

2

)
.

At the origin, the spectral zeta function equals

Z(0) =
1

6
(1−#holes) =

1

6
(Euler characteristic of Ω).

Already one can see patterns emerging in these formulas. The patterns
appear even more strongly in the next theorem, when we treat domains in all
dimensions. First, though, we establish the concrete 2-dimensional formulas
in Theorem 15.2.

Proof. For Re s ∈ (1,∞), one has

Γ(s)Z(s) =

∫∞
0

ts−2tTr(t)dt,

= −(s− 1)−1
∫∞
0

ts−1
d

dt

[
tTr(t)

]
dt (15.1)
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by integration by parts, where the boundary terms vanish as follows for
Re s > 1:

(s− 1)−1ts−1tTr(t)
∣∣∞
0

= 0− 0

because Tr(t) decays exponentially as t→∞, and tTr(t) = c0 +O(t
1/2) as

t→ 0 by the heat trace asymptotic in Theorem 14.3.

The integral in (15.1) is an analytic function of s for Re s > 1/2, since
Tr(t) decays exponentially as t → ∞ and d

dt

[
tTr(t)

]
= O(t−1/2) as t → 0

by Theorem 14.3. Therefore Z(s) is meromorphic for Re s ∈ (1/2,∞). The
residue at s = 1 is obtained by evaluating (15.1) at s = 1 (except for the
term (s− 1)−1, of course), which gives

Res(Z, 1) = −
1

Γ(1)

∫∞
0

d

dt

[
tTr(t)

]
dt = −

[
tTr(t)

]∞
0

= c0 =
Area

4π
.

Notice (15.1) implies

Γ(s)Z(s) = −(s− 1)−1
∫∞
0

ts−1
d

dt

[
tTr(t) − c0

]
dt

=

∫∞
0

ts−2
[
tTr(t) − c0

]
dt, Re s ∈

(1
2
, 1
)
,

by integration by parts, where the boundary terms vanish as follows:

−(s− 1)−1ts−1
[
tTr(t) − c0

]∣∣∞
0

= 0− 0

because

tTr(t) − c0 =

{
O(1) as t→∞,

O(t1/2) as t→ 0.

Thus we have proved the desired formula for Z(s) in the theorem, when
Re s ∈ (1/2, 1).

By continuing to integrate by parts and subtract terms of the heat trace
asymptotic in the above fashion, one proves the rest of the claims in the
theorem. The proof gives in principle that the zeta function has simple
poles at s = 1, 1

2
, 0,− 1

2
,−1,− 3

2
, . . . , but the poles at s = 0,−1,−2, . . . are

eliminated by the zeros of Γ(s)−1 at those points.
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Note the final formula for Z(s) in Theorem 15.2 can be evaluated at s = 0
to obtain

Z(0) =
−1

Γ(1)

∫∞
0

d

dt

[
Tr(t) −

Area

4πt
+

Perimeter

8
√
πt

]
dt

= −
[
Tr(t) −

Area

4πt
+

Perimeter

8
√
πt

]∞
0

= −0+ c2 =
1

6
(1−#holes)

because

Tr(t) −
Area

4πt
+

Perimeter

8
√
πt

=

{
o(1) as t→∞,

c2 + o(1) as t→ 0.

Next we develop formulas in all dimensions d ≥ 1 for the zeta function
between the poles.

Theorem 15.3 (Spectral zeta in d-dimensions). Suppose Ω ⊂ Rd. Then
the spectral zeta function Z(s) has a meromorphic extension to C with simple
poles at s = d/2, (d − 1)/2, . . . , 1/2 and at s = −1/2,−3/2,−5/2, . . . , with
residues

Res
(
Z, d−n

2

)
= cnΓ

(
d−n
2

)−1
.

The zeta function is regular at all other s ∈ C. In particular, it is finite at
s = 0,−1,−2, . . . with values

Z(−m) = (−1)mm! cd+2m, m = 0, 1, 2, . . . .

Around the pole at s = (d−N)/2 one has

Z(s) =
−1

s− d−N
2

1

Γ(s)

∫∞
0

ts−(d−N)/2d

dt

(
t−N/2

[
td/2Tr(t) −

N∑
n=0

cnt
n/2
])
dt,

d−N− 1

2
< Re s <

d−N+ 1

2
, (15.2)

for N = 0, 1, 2, . . . , and between successive poles the zeta function is given by

Z(s) =
1

Γ(s)

∫∞
0

ts−d/2−1
[
td/2Tr(t) −

N∑
n=0

cnt
n/2
]
dt,

d−N− 1

2
< Re s <

d−N

2
. (15.3)
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Proof. Write P(N) for statement (15.2) and Q(N) for statement (15.3), for
N ≥ 0. Also write Q(−1) for the statement

Z(s) =
1

Γ(s)

∫∞
0

ts−d/2−1
[
td/2Tr(t)

]
dt, Re s >

d

2
,

which is true by definition of the zeta function.
We will prove that

Q(N− 1) =⇒ P(N) =⇒ Q(N)

whenever N ≥ 0. Then P(N) and Q(N) hold for all N by induction.

Proof that Q(N−1) =⇒ P(N). Statement Q(N−1) can be rewritten
to say

Γ(s)Z(s) =

∫∞
0

ts−(d−N)/2−1t−N/2
[
td/2Tr(t) −

N−1∑
n=0

cnt
n/2
]
dt

whenever
d−N

2
< Re s <

d−N+ 1

2
. (15.4)

Integrating by parts gives

Γ(s)Z(s) =
−1

s− d−N
2

∫∞
0

ts−(d−N)/2 d

dt

(
t−N/2

[
td/2Tr(t) −

N−1∑
n=0

cnt
n/2
])
dt

(15.5)
because the boundary term

ts−d/2
[
td/2Tr(t) −

N−1∑
n=0

cnt
n/2
]

vanishes as t → ∞ and as t → 0, as we now show. As t → ∞ it vanishes
because

td/2Tr(t) −
N−1∑
n=0

cnt
n/2 = O(t(N−1)/2)

and Re(s − d/2) < −(N − 1)/2 by (15.4). The boundary term vanishes as
t→ 0 because

td/2Tr(t) −
N−1∑
n=0

cnt
n/2 = O(tN/2)
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by the heat trace asymptotic in Theorem 14.3, and Re(s− d/2) > −N/2 by
(15.4).

In formula (15.5) we may extend the range of summation up to n = N,
because doing so merely adds a constant term cN inside the derivative and
thus has no effect on the formula. Thus we obtain (15.2), for the range of
s-values in (15.4).

Formula (15.2) is an analytic function of s for the larger range

d−N− 1

2
< Re s <

d−N+ 1

2
(15.6)

because

d

dt

(
t−N/2

[
td/2Tr(t) −

N∑
n=0

cnt
n/2
])

=

{
O(t−3/2) as t→∞,

O(t−1/2) as t→ 0,

where the decay is proved directly as t→∞ and follows from the heat trace
asymptotic Theorem 14.3 as t→ 0. Thus formula (15.2) provides an analytic
extension of Γ(s)Z(s) to the larger range (15.6), and thus proves statement
P(N).

Proof that P(N) =⇒ Q(N). Integrating (15.2) by parts gives (15.2),
provided we prove the boundary term

ts−d/2
[
td/2Tr(t) −

N∑
n=0

cnt
n/2
]

vanishes as t→∞ and as t→ 0 under the assumption

d−N− 1

2
< Re s <

d−N

2
. (15.7)

As t→∞ it vanishes because

td/2Tr(t) −
N∑
n=0

cnt
n/2 = O(tN/2)

and Re(s − d/2) < −N/2 by (15.7). The boundary term vanishes as t → 0

because

td/2Tr(t) −
N∑
n=0

cnt
n/2 = O(t(N+1)/2)

by the heat trace asymptotic in Theorem 14.3, and Re(s−d/2) > −(N+1)/2
by (15.7).

INSERT REST OF PROOF HERE!!!
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Exercises

15.1 — Relative zeta function on domains. Suppose Ω1 and Ω2 are smoothly
bounded domains in Rd with the same area. Show that the difference of their
spectral zeta functions can be written

Z1(s) − Z2(s) = Γ(s)
−1

∫∞
0

ts−1
(
Tr1(t) − Tr2(t)

)
dt, Re s >

d− 1

2
.

Hint. The t−d/2 term is absent from the asymptotic for Tr1(t) − Tr2(t) as
t→ 0, due to the two domains having the same area.

15.2 — Zeta function on compact surface without boundary. As remarked in
Chapter 14, on a manifold without boundary the 1/2-order terms vanish from
the heat trace asymptotic, meaning cn = 0 for all odd n. Use this fact to
state and prove a meromorphic extension result (analogous to Theorem 15.2)
for the spectral zeta function of a smooth compact surface (d = 2) without
boundary.

15.3 — Relative zeta function on compact surfaces. Suppose Ω1 and Ω2

are smooth, compact 2-dimensional surfaces without boundary that have the
same area and same Euler characteristic. (For example, one might apply two
different conformal factors to a metric on an underlying surface, with the
conformal factors normalized to have the same integral.)

Show that the difference of the spectral zeta functions of the two surfaces
can be written

Z1(s) − Z2(s) = Γ(s)
−1

∫∞
0

ts−1
(
Tr1(t) − Tr2(t)

)
dt, Re s > −1,

and that Z1(s) − Z2(s) is entire, that is, analytic for all s ∈ C.
Hint. The t−1 and t0 terms are absent from the asymptotic for Tr1(t) −

Tr2(t) as t → 0, due to the two surfaces having the same area and same
Euler characteristic.

Notes and comments

The formulas for the spectral zeta function between successive poles and
around each pole, in Theorems 15.2 and 15.3, might be somewhat new. I
have not seen these formulas elsewhere since discovering them while working
with Carlo Morpurgo in the mid-1990s.
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The standard method for proving the meromorphic extension of the zeta
function is less elegant: one splits the integral into

∫1
0
and
∫∞
1

and then uses
the heat trace asymptotic only in the first integral.
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Chapter 16

Case study: stability of steady
states for reaction–diffusion
PDEs

Goal

To linearize a nonlinear reaction–diffusion PDE around a steady state, and
determine stability using the spectral theory of the linearized operator.

Reaction–diffusion PDEs

Assume throughout this section that f : R→ R is a smooth function with f′

bounded above. Let X > 0. We study the reaction–diffusion PDE

ut = uxx + f(u) (16.1)

on the interval (0, X) with Dirichlet boundary conditions u(0) = u(X) = 0.
Physical interpretations include:

(i) u = temperature and f = rate of heat generation,

(ii) u = chemical concentration and f = reaction rate of chemical creation.

Intuitively, the 2nd order diffusion term in the PDE is stabilizing (since ut =
uxx is the usual diffusion equation), whereas the 0th order reaction term can
be destabilizing (since solutions to ut = f(u) will grow, when f is positive).
Thus the reaction–diffusion PDE features a competition between stabilizing

113
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and destabilizing effects. This competition can lead to nonconstant steady
states, and interesting stability behavior.

Next we characterize the steady states of the reaction–diffusion equation,
and investigate their stability.

Steady states

U(x) is a steady state if

U′′ + f(U) = 0, 0 < x < X. (16.2)

More than one steady state can exist. For example if f(y) = y and X = π,
then U(x) ≡ 0 is a steady state and so is U(x) = sin x.

The nonlinear oscillator equation (16.2) can in principle be solved by
multiplying by U′ and integrating to obtain

1

2
(U′)2 + F(U) = c,

where F is an antiderivative of f and c is constant. Then one rearranges to
the form dx/dU = ±1/

√
2(c− F(U)) which can be integrated to obtain x

as a function of U.

Linearizing the PDE

Perturb a steady state by considering

u = U+ εϕ,

where the perturbation ϕ(x, t) is assumed to satisfy the Dirichlet BC ϕ = 0
at x = 0 and x = X, for each t. Substituting u into the reaction–diffusion
equation (16.1) gives

ut = uxx + f(u)

0+ εϕt = Uxx + εϕxx + f(U+ εϕ)

= Uxx + εϕxx + f(U) + f
′(U)εϕ+O(ε2).

The terms of order ε0 on the right side equal zero by the steady state equation
Uxx + f(U) = 0. We discard terms of order ε2 and higher. (This approxima-
tion seems reasonable when ε is small and ϕ is not too large. To justify the
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approximation rigorously, one would need to prove a linearization theorem
for the reaction diffusion PDE.)

The remaining terms, which have order ε1, give the linearized equation

ϕt = ϕxx + f
′(U)ϕ. (16.3)

That is,
ϕt = Lϕ

where L is the second order linear operator

Lw = wxx + f
′(U)w.

Separation of variables gives (formally) solutions of the form

ϕ(x, t) =
∑
j

cje
−τjtwj(x),

where the eigenvalues τj and Dirichlet eigenfunctions wj satisfy

−Lwj = τjwj

with wj(0) = wj(X) = 0.
The steady state U of the reaction–diffusion PDE is called

• linearly stable if τ1 ≥ 0, because in that case all coefficients in ϕ
remain bounded as t increases,

• linearly unstable if τ1 < 0, because in that case the first coefficient
c1e

−τ1t grows as t increases.

Thus the task is to investigate the spectrum of L and the sign of its first
eigenvalue τ1.

Spectrum of linearized operator L

We take:
Ω = (0, X),

H = L2(0, X), inner product ⟨u, v⟩L2 =
∫X
0
uvdx,

K = H10(0, X), inner product

⟨u, v⟩H1 =

∫X
0

(u′v′ + uv)dx.
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Compact imbedding H10 ↪→ L2 by Rellich’s Theorem B.4.
Symmetric sesquilinear form

a(u, v) =

∫X
0

(
u′v′ − f′(U)uv+ Cuv

)
dx

where C = 1+ sup f′.
Coercivity: the definition of C insures

a(u, u) ≥
∫X
0

(
(u′)2 + u2

)
dx = ∥u∥2H1 .

The discrete spectral Theorem 4.1 now yields an ONB of eigenfunctions
{wj} with eigenvalues γj such that

a(wj, v) = γj⟨wj, v⟩L2 ∀v ∈ H10(0, X).

Writing γj = τj + C we get∫X
0

(
w′
jv

′ − f′(U)wjv
)
dx = τj

∫X
0

wjv dx ∀v ∈ H10(0, X).

That is, the eigenfunctions satisfy

−Lwj = τjwj weakly

and hence also classically.

Stability of the zero steady state

Assume f(0) = 0, so that U ≡ 0 is a steady state. The linearized operator is
Lw = w′′ + f′(0)w, which on the interval (0, X) has Dirichlet eigenvalues

τj =
( jπ
X

)2
− f′(0)

with eigenfunctions sin(jπx/X), for j ≥ 1. The first eigenvalue is τ1 =
(π/X)2 − f′(0), from which one deduces:

Proposition 16.1 (Stability of the zero steady state).
(a) If f(0) = 0 and f′(0) ≤ 0 then the zero steady state is linearly stable.
(b) If f(0) = 0 and f′(0) > 0 then the zero steady state is linearly stable on
short intervals (X ≤ π/

√
f′(0)), but is linearly unstable when the interval is

long (X > π/
√
f′(0)).

The reaction–diffusion equation is called long-wave unstable, in case (b).



117

Instability of sign-changing steady states

The next criterion depends on a sign-changing property of the steady state.

Theorem 16.2 (Linear instability [Schaaf2, Proposition 4.1.2]). If the steady
state U changes sign on (0, X) then τ1 < 0.

For example, suppose f(y) = y so that the steady state equation is U′′ +
U = 0. If X = 2π then the steady state U = sin x is linearly unstable, by the
theorem. In this example we can compute the spectrum of L exactly: the

lowest eigenfunction is w = sin(x/2) with eigenvalue τ1 =
(
1
2

)2
− 1 < 0.

Proof. If U changes sign then it has a positive local maximum and a negative
local minimum in (0, X), recalling that U = 0 at the endpoints. Obviously
U′ must be nonzero at some point between these local extrema, and so there
exist points 0 < x1 < x2 < X such that

U′(x1) = U
′(x2) = 0

and U′ ̸= 0 on (x1, x2). Define a trial function

w =

{
U′ on (x1, x2),

0 elsewhere.

(We motivate this choice of trial function at the end of the proof.) Then
w is piecewise smooth, and is continuous since w = U′ = 0 at x1 and x2.
Therefore w ∈ H10(0, X), and w ̸≡ 0 since U′ ̸= 0 on (x1, x2).

The numerator of the Rayleigh quotient for w is∫X
0

(
(w′)2 − f′(U)w2

)
dx =

∫ x2
x1

(
−w′′ − f′(U)w

)
wdx by parts

= 0

since
−w′′ = −U′′′ =

(
f(U)

)′
= f′(U)U′ = f′(U)w. (16.4)

Hence τ1 ≤ 0, by using w as a trial function in the Rayleigh principle for the
first eigenvalue.

Suppose τ1 = 0. Then w is an eigenfunction with eigenvalue 0, by the
condition for equality in the Rayleigh quotient (10.1). Since eigenfunctions
are smooth, one has w′(x2) = 0 by taking the derivative from the right. Then
w(x2) = w

′(x2) = 0, and so w ≡ 0 by uniqueness for the second order linear
ODE (16.4). On the other hand, w ̸≡ 0 by construction. Hence τ1 < 0.
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Motivation for the choice of trial function. The derivative U′ lies in the
nullspace of L since

LU′ = (U′)′′ + f′(U)U′ =
(
U′′ + f(U)

)′
= 0.

In other words, U′ is an eigenfunction with eigenvalue 0, which almost proves
instability, since instability would correspond to a negative eigenvalue. Of
course, U′ does not satisfy the Dirichlet boundary conditions at the end-
points, which is why we restrict to the subinterval (x1, x2) in the proof above
in order to obtain a valid trial function.

Structural conditions for linearized instability

Our next instability criterion is structural, meaning it depends on properties
of the reaction function f rather than on properties of the particular steady
state U.

Theorem 16.3 (Linear instability). Assume the steady state U is noncon-
stant, and that

f(0) = 0, f′′(0) = 0, f′′′ > 0.

Then τ1 < 0.

For example, every nonconstant steady state is unstable if f(y) = y3−y.
(The derivative f′(y) = 3y2−1 admittedly has no upper bound, but one may
make it bounded by modifying f outside a neighborhood of U; the instability
proof below is unaffected.)

Proof. First we collect facts about boundary values, to be used later when
integrating by parts:

U = 0 at x = 0, X by the Dirichlet BC,

f(U) = 0 at x = 0, X since f(0) = 0,

U′′ = 0 at x = 0, X because U′′ = −f(U),

f′′(U) = 0 at x = 0, X since f′′(0) = 0.

The Rayleigh principle for L says that

τ1 = min
{∫X

0

(
(w′)2 − f′(U)w2

)
dx∫X

0
w2 dx

: w ∈ H10(0, X)
}
.
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Choose a trial function

w = U′′

for reasons explained after the proof. Notice w is not the zero function, since
U is not linear. The numerator of the Rayleigh quotient for w is∫X
0

(
(U′′′)2 − f′(U)(U′′)2

)
dx

=

∫X
0

(
−U′′′′ − f′(U)U′′)U′′ dx by parts on the first term

=

∫X
0

f′′(U)(U′)2U′′ dx by substituting for U′′′′ from the second

derivative of steady state equation (16.2)

=
1

3

∫X
0

f′′(U)
[
(U′)3

]′
dx

= −
1

3

∫X
0

f′′′(U)(U′)4 dx by parts

< 0

since f′′′ > 0 and U is nonconstant. Hence τ1 < 0, by the Rayleigh principle.

Motivation for the choice of trial function. Our trial function w = U′′ cor-
responds to a perturbation u = U+ εϕ ≈ U+ εe−τ1tU′′, which will want to
evolve (assuming ε > 0 and the steady state U looks something like a sine
function) from the steady state towards the constant function.

Time map criteria for linearized in/stability

Next we derive structural instability criteria that are almost necessary and
sufficient. These conditions depend on the time map for a family of steady
states.

Parameterize the steady states by the slope s at the left endpoint: write
Us(x) for the steady state on R (if it exists) satisfying

Us(0) = 0, U′
s(0) = s, Us(x) = 0 for some x > 0.
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Define the time map T(s) to give the first point or “time” x at which the
steady state hits the axis:

T(s) = min{x > 0 : Us(x) = 0}.

If Us exists for some s ̸= 0 then it exists for all nearby s-values, and
Us(x) is jointly smooth in (x, s) and the time map T(s) is smooth [Schaaf2,
Proposition 4.1.1]. The time map can be determined numerically by plotting
solutions with different initial slopes, as the figures below show. In the first
figure the time map is decreasing, whereas in the second it increases.

Uxx+U3
=0

1 2 3 4 5

Uxx+tanhHU L=0

1 2 3 4 5

Monotonicity of the time maps determines stability of the steady state:

Theorem 16.4 ([Schaaf2, Proposition 4.1.3]). The steady state Us on the
interval (0, T(s)) is:

• linearly unstable if sT ′(s) < 0,

• linearly stable if sT ′(s) > 0.

Proof. We begin by differentiating the family of steady states with respect
to the parameter s. Then we treat the “instability” and “stability” parts of
the theorem separately.

Write s0 ̸= 0 for a specific value of s, in order to reduce notational con-
fusion. Let X = T(s0). Define a function

v =
∂Us

∂s

∣∣∣
s=s0

on (0, X). Then

v′′ + f′(U)v = 0 (16.5)
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as one sees by differentiating the steady state equation (16.2) with respect
to s, and writing U for Us0 .

At the left endpoint,

v(0) = 0 and v′(0) = 1

because Us(0) = 0 and U′
s(0) = s for all s by definition of the steady state.

We do not expect v to vanish at the right endpoint, but its value there
can be calculated as follows. Differentiating the identity 0 = Us(T(s)) gives

0 =
∂

∂s
Us(T(s))

=
∂Us

∂s

(
T(s)

)
+U′

s(T(s))T
′(s)

= v
(
T(s)

)
+U′

s(T(s))T
′(s).

Note the steady state Us is symmetric about the midpoint of the interval
(0, T(s)) (exercise; use that Us = 0 at both endpoints and that the steady
state equation is invariant under x 7→ −x, so that steady states must be
symmetric about any local maximum point). Thus U′

s(T(s)) = −U′
s(0) =

−s, and evaluating the last displayed formula at s = s0 then gives that
0 = v(X) − s0T

′(s0), so that v has value

v(X) = s0T
′(s0).

Proof of instability. Assume s0T
′(s0) < 0. Then v(X) < 0. Since v

′(0) = 1
we know v(x) is positive for small values of x, and so an x2 ∈ (0, X) exists at
which v(x2) = 0. Define a trial function

w =

{
v on [0, x2),

0 elsewhere.

Then w is piecewise smooth, and is continuous since v = 0 at x2. Note
w(0) = 0. Therefore w ∈ H10(0, X), and w ̸≡ 0.

Hence τ1 < 0 by arguing as in the proof of Theorem 16.2 with x1 = 0.

Motivation for the choice of trial function above. Differentiating the steady
state equation U′′ + f(U) = 0 with respect to s shows that v = ∂U/∂s is an
eigenfunction with eigenvalue zero:

Lv =
(∂U
∂s

)′′
+ f′(U)

∂U

∂s
=
∂

∂s

(
U′′ + f(U)

)
= 0.



122 CHAPTER 16. REACTION–DIFFUSION STABILITY

In other words, v lies in the nullspace of the linearized operator. Although v
does not satisfy the Dirichlet boundary condition at the right endpoint, we
handled that issue in the proof above by restricting to the subinterval (0, x2),
in order to obtain a valid trial function with w = 0 at the right endpoint.

Proof of stability. Assume s0T
′(s0) > 0, so that v(X) > 0. Define σ =

−v′(X)/v(X). Then

v(0) = 0, v′(X) + σv(X) = 0,

which is a mixed Dirichlet–Robin boundary condition. We will show later
that v is a first eigenfunction for L, under this mixed condition, with eigen-
value ρ1 = 0 (since Lv = 0 by (16.5)).

By adapting our Dirichlet-to-Robin monotonicity result (Theorem 11.1)
one deduces that

τ1 ≥ ρ1 = 0,

which gives linearized stability of the steady state U.
To show v is a first eigenfunction for L, as used above, we start by showing

v is positive on (0, X). Apply the steady state equation (16.2) to Us, and
multiply by U′

s and integrate to obtain the energy equation

1

2
(U′

s)
2 + F(Us) =

1

2
s2, (16.6)

where F is an antiderivative of f chosen with F(0) = 0. Differentiating with
respect to s at s = s0 gives that

U′v′ + f(U)v = s0.

Hence if v vanishes at some x∗ ∈ (0, X) then U′(x∗)v
′(x∗) = s0 ̸= 0. Thus

at any two successive zeros of v, we know v′ is nonzero and has opposite
signs, and so U′ is nonzero has opposite signs too. It is straightforward to
show from (16.6) that if s0 > 0 then U increases on [0, X/2] and decreases
on [X/2, X], while if s0 < 0 then U decreases on [0, X/2] and increases on
[X/2, X]. Either way, in order for U′(x) to change sign, x must increase past
X/2. Thus after the zero of v at x = 0, the next zero (if it exists) must be
greater than X/2, and the one after that (if it exists) must be greater than
X. Since we know v(x) is positive for small x and that v(X) > 0, we conclude
v has no zeros in (0, X) and hence is positive there.
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The first eigenfunction of L with mixed Dirichlet–Robin boundary condi-
tion is positive, and it is the unique positive eigenfunction (adapt the argu-
ment in [Gilbarg and Trudinger, Theorem 8.38]). Since the eigenfunction v
is positive, we conclude that it is the first Dirichlet–Robin eigenfunction, as
desired.

Notes and comments

Monotonicity criteria for the time map (or “period map”) can be found in
[Chicone, Schaaf1, Schaaf2]. See the overview and extensions in [Laugesen and Pugh 1,
Section 7]. These monotonicity criteria combine with Theorem 16.4 to pro-
vide structural stability results for steady states of reaction–diffusion equa-
tions.

Exercises

16.1 — Show that Theorem 16.3 (linear instability for nonconstant steady
states) continues to hold under the alternative assumptions

f(0) = 0, f(y)f′′(y) > 0 for all y ̸= 0.

Verify those assumptions when

f(y) = 2y−

∫y
0

e−z
2

dz,

and show f′′′ changes sign in this example, so that Theorem 16.3 does not
apply.
16.2 — Prove linear instability of every nonconstant steady state of the
reaction-diffusion equation under the Neumann boundary conditions u′(0) =
u′(X) = 0, assuming either

f′′′ > 0 or f(y)f′′(y) > 0 for all y ̸= 0.
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Chapter 17

Case study: stability of steady
states for thin fluid film PDEs

Goal

To linearize a particular fourth order nonlinear PDE around a steady state,
and develop the spectral theory of the linearized operator.

Thin fluid film PDE

The evolution of a thin layer of fluid (such as paint) on a flat substrate (such
as the ceiling) can be modeled using the thin fluid film PDE :

ht = −
(
f(h)hxxx

)
x
−
(
g(h)hx

)
x

where h(x, t) > 0measures the thickness of the fluid, and the positive smooth
coefficient functions f and g represent surface tension and gravitational effects
(or substrate-fluid interactions), respectively. For simplicity we assume f ≡ 1,
so that the equation becomes

ht = −hxxxx −
(
g(h)hx

)
x
. (17.1)

We will treat the case of general g, but readers are welcome to focus on the
special case g(y) = yp for some p ∈ R.

Intuitively, the fourth order term in the PDE is stabilizing (since ht =
−hxxxx is the standard fourth order diffusion equation) whereas the second
order term is destabilizing (since ht = −hxx is the time-backwards heat

125
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equation). Thus the thin film PDE features a competition between stabilizing
and destabilizing effects such as surface tension and gravity. This competition
leads to nonconstant steady states, and interesting stability behavior.

Positivity preservation

Solutions of the PDE are known to exist for small time, given positive smooth
initial data. Films can rupture in finite time, though, meaning that h(x, t)↘
0 as t ↗ T . That is, the minimum principle can fail for these fourth order
equations: a solution that starts out positive need not remain positive. For
example, the 2π-periodic function

h(x, t) =
4

5
− e−t cos x+

1

4
e−16t cos 2x

satisfies the fourth order diffusion equation ht = −hxxxx and is positive ev-
erywhere at t = 0. By time t = 1/10, the solution has become negative at
x = 0. Then as t→∞, the solution relaxes to its mean value 4/5 and regains
positivity. The key to this example is the observation that ht(0, 0) = −3 < 0,

t=0

t=1

t=∞

-π π

1

and so the solution is pushed downward initially before relaxing to the mean
as t→∞.

Positivity can be preserved if the diffusion slows down sufficiently when
the film thickness approaches 0. The fourth order porous medium type equa-
tion ht = −(h4hxxx)x was shown by [Bernis and Friedman] to preserve pos-
itivity of initial data. Their intuition is that because the diffusivity h4 ap-
proaches 0 as the film thickness h approaches 0, nearby fluid has enough
time to diffuse and prevent the film from rupturing.
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Periodic BCs and conservation of fluid

The thin fluid film PDE is derived from the Navier–Stokes equation via the
lubrication approximation. Thus one would expect the equation to conserve
the total volume of fluid. Indeed, if we fix X > 0 and assume h is X-periodic
with respect to x, then

d

dt

∫X
0

h(x, t)dx = −

∫X
0

(
hxxx + g(h)hx

)
x
dx

= −
(
hxxx + g(h)hx

)∣∣∣x=X
x=0

= 0

by periodicity.

Stability of constant steady states

Let H > 0. The constant function H is a steady state, whose stability is
determined as follows.

Linearizing (17.1) with h = H + εϕ, where ϕ(x, t) is X-periodic in x,
gives

ϕt = −ϕxxxx − g(H)ϕxx

= −Lϕ

where the fourth order, constant coefficient, symmetric linear operator L is
defined by

Lw = wxxxx + g(H)wxx.

Separation of variables gives (formally) solutions of the form

ϕ(x, t) =
∑
j

cje
−τjtwj(x),

where the eigenvalues τj and X-periodic eigenfunctions wj satisfy

Lwj = τjwj.

The constant steady state H is

• linearly stable if τ1 ≥ 0,
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• linearly unstable if τ1 < 0.

Our task is to investigate the spectrum of L and the sign of τ1.
The eigenfunctions of L are the Fourier modes

vk(x) = exp(2πikx/X), k ∈ Z \ {0},

noting k ̸= 0 because our perturbations must have mean value zero in order
to conserve fluid volume (that is, to insure

∫X
0
ϕ(x, t)dx = 0). The corre-

sponding eigenvalues are

τk =
(2πk
X

)2((2πk
X

)2
− g(H)

)
, k ̸= 0.

If g ≤ 0 (in which case the second order term in the thin film PDE
behaves like a forwards heat equation), then τ ≥ 0 for each k, and so all
constant steady states are linearly stable.

If
(
2π
X

)2 ≥ g(H) > 0 then τ ≥ 0 for each k, and so the constant steady

state H is linearly stable.

If
(
2π
X

)2
< g(H) then the constant steady state H is linearly unstable with

respect to the k = ±1 modes (and possibly other modes too). In particular,
this occurs if X is large enough. Hence the thin film PDE is “long-wave
unstable” if g > 0, because constant steady states are unstable with respect
to perturbations of sufficiently long wavelength X.

Nonconstant steady states — existence

To find nonconstant steady states, substitute h = H(x) and solve:

−Hxxxx − (g(H)Hx)x = 0 (17.2)

Hxxx + g(H)Hx = α

Hxx +G(H) = β+ αx

where G is an antiderivative of g. In fact, α = 0 because the left side of
the equation (which is Hxx+G(H)) is periodic and so the right side must be
periodic also. Thus

H′′ +G(H) = β.

This equation describes a nonlinear oscillator. To construct solutions one
multiplies by H′ and integrates, as explained in Chapter 16.

Assume from now on thatH(x) is a nonconstant steady state with period X.
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Linearized PDE

Perturb the nonconstant steady state H by considering

h = H+ εϕ

where the perturbation ϕ(x, t) is assumed to be X-periodic in x and have

mean value zero (
∫X
0
ϕ(x, t)dx = 0), so that fluid volume is conserved. Sub-

stituting h into the equation (17.1) gives

0+ εϕt = −(Hxxxx + εϕxxxx) −
(
g(H+ εϕ)(Hx + εϕx)

)
x

= −Hxxxx −
(
g(H)Hx

)
x
− ε
[
ϕxxx + g(H)ϕx + g

′(H)Hxϕ
]
x
+O(ε2).

The terms of order ε0 equal zero by the steady state equation for H. We
discard terms of order ε2 and higher. The remaining terms, of order ε1, give
the linearized equation:

ϕt = −
(
ϕxx + g(H)ϕ

)
xx
. (17.3)

The fourth order operator on the right side is not symmetric, meaning it
does not equal its formal adjoint. To make it symmetric, we “integrate up”
the equation as follows. Write

ψx = ϕ

and notice ψ is X-periodic: integrating the equation from x to x+ X gives

ψ(x+ X, t) −ψ(x, t) =

∫ x+X
x

ϕ(x̃, t)dx̃ = 0

since ϕ has mean value zero at each time. We may also suppose ψ has mean
value zero at each time, by subtracting from it a suitable function of t (which
does not affect the condition ψx = ϕ).

Substituting ϕ = ψx into (17.3) gives that

ψtx = −
(
ψxxx + g(H)ψx

)
xx

ψt = −
(
ψxxx + g(H)ψx

)
x

where we note the constant of integration must equal 0 since d
dt

∫X
0
ψ(x, t)dx =

0. Thus
ψt + Lψ = 0
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where L is the fourth order symmetric linear operator

Lw = wxxxx +
(
g(H)wx

)
x
.

Separation of variables gives (formally) solutions of the form

ψ =
∑
j

cje
−τjtwj(x), ϕ =

∑
j

cje
−τjtw′

j(x),

where the eigenvalues τj and periodic eigenfunctions wj satisfy

Lwj = τjwj.

The steady state H is

• linearly stable if τ1 ≥ 0,

• linearly unstable if τ1 < 0.

Recall this definition of stability relates only to zero-mean (volume preserv-
ing) perturbations of H.

To determine the stability of the steady state H, we investigate the eigen-
value problem for L.

Spectrum of linearized operator L

We take:
Ω = T = R/(XZ) = torus of length X, meaning functions are X-periodic,

H = L2(T), inner product ⟨u, v⟩L2 =
∫X
0
uvdx,

K = H2(T), with inner product

⟨u, v⟩H2 =

∫X
0

(u′′v′′ + u′v′ + uv)dx.

Compact imbedding K ↪→ H1(T) ↪→ L2 is compact by a suitable adapta-
tion of Rellich’s Theorem B.6.

Symmetric sesquilinear form

a(u, v) =

∫X
0

(
u′′v′′ − g(H)u′v′ + Cuv

)
dx
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where C > 0 is a sufficiently large constant to be chosen below.
Coercivity: The quantity a(u, u) has a term of the form −(u′)2, whereas

for ∥u∥2
H2 we need +(u′)2. To get around this obstacle we “hide” the −(u′)2

term inside the terms (u′′)2 and u2. Specifically,∫X
0

(u′)2 dx = −

∫X
0

u′′udx

≤
∫X
0

(
δ2(u′′)2 +

1

4δ2
u2
)
dx (17.4)

whenever δ > 0 by “Cauchy-with-δ”, which says:

0 ≤
(
αδ∓ β/2δ

)2
=⇒ ±αβ ≤ δ2α2 + 1

4δ2
β2

for all α,β ∈ R. Hence

a(u, u)

≥
∫X
0

(
(u′′)2 −

(
∥g(H)∥L∞ +

1

2

)
(u′)2 +

1

2
(u′)2 + Cu2

)
dx

≥
∫X
0

([
1−

(
∥g(H)∥L∞ +

1

2

)
δ2
]
(u′′)2 +

1

2
(u′)2 +

[
C−

(
∥g(H)∥L∞ +

1

2

) 1
4δ2

]
u2
)
dx

by (17.4)

≥ 1

2
∥u∥2H2

provided we choose δ sufficiently small, depending on g(H), and then choose
C sufficiently large. Thus coercivity holds.

The discrete spectral Theorem 4.1 now yields an ONB of eigenfunctions
{wj} with eigenvalues γj such that

a(wj, v) = γj⟨wj, v⟩L2 ∀v ∈ K.

Writing γj = τj + C we get∫X
0

(
w′′
j v

′′ − g(H)w′
jv

′)dx = τj ∫X
0

wjv dx ∀v ∈ H2(T).

These eigenfunctions satisfy Lwj = τjwj weakly, and hence also classically
(by elliptic regularity, since H and g are smooth).
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Zero eigenvalues: the constant, and translational symmetry

The constant function 1 is an eigenfunction with eigenvalue 0, since L1 = 0.
This constant mode is irrelevant, since the ψ’s in which we are interested
have mean value zero and thus are orthogonal to the constant.

More interestingly, τ = 0 has another eigenfunction w = H − H, where
H is the mean value of the steady state H. Indeed,

Lw = L(H−H) = Hxxxx +
(
g(H)Hx

)
x
= 0

by the steady state equation (17.2). Notice this w is orthogonal in L2 to the
constant function 1.

This zero mode w = H−H arises from a translational perturbation of the
steady state, because choosing

H(x+ ε) = H(x) + εH′(x) +O(ε2)

corresponds to a perturbation ϕ = H′, which integrates up to give ψ = H−H.

Instability of nonconstant steady state H

Theorem 17.1 ([Laugesen and Pugh 2, Th. 3]). If g′′ > 0 then τ1 < 0.

For example, if g(y) = yp with p > 1 or p < 0 then the theorem
shows that each nonconstant steady state is unstable with respect to volume-
preserving perturbations.

The theorem is essentially the same as Theorem 16.3 for the reaction–
diffusion PDE, by writing g instead of f′ and noting that periodicity handles
all boundary terms in the integrations by parts, in the argument below.

Proof. The Rayleigh principle for L says that

τ1 = min
{∫X

0

(
(w′′)2 − g(H)(w′)2

)
dx∫X

0
w2 dx

: w ∈ H2(T) \ {0}
}
.

We choose

w = H′,
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which is not the zero function since H is nonconstant. The numerator of the
Rayleigh quotient for w is∫X

0

(
(H′′′)2 − g(H)(H′′)2

)
dx

=

∫X
0

(
−H′′′′ − g(H)H′′)H′′ dx by parts

=

∫X
0

g′(H)(H′)2H′′ dx by the steady state equation (17.2)

=
1

3

∫X
0

g′(H)
[
(H′)3

]′
dx

= −
1

3

∫X
0

g′′(H)(H′)4 dx by parts

< 0

by strong convexity of g and since H′ ̸≡ 0. Hence τ1 < 0, by the Rayleigh
principle.

Motivation for the choice of trial function. Our trial function w = H′ cor-
responds to ϕ = H′′. This perturbation H + εϕ = H + εH′′ tends to push
the periodic steady state towards the constant function. The opposite per-
turbation H− εH′′ would tend to push the steady state towards a “droplet”
solution that is supported on some interval. Thus our instability proof in
Theorem 17.1 suggests (in the language of dynamical systems) that a hetero-
clinic connection might exist between the nonconstant steady state and the
constant steady state, and similarly between the nonconstant steady state
and a droplet steady state. Such connections are explored numerically in
[Laugesen and Pugh 4].

Stability of nonconstant steady states

It is more difficult to prove stability results, because lower bounds on the
first eigenvalue are generally more difficult to prove than upper bounds. See
[Laugesen and Pugh 2, §3.2] for some stability results when g(y) = yp, 0 <

p ≤ 3/4, based on time-map monotonicity ideas from the theory of reaction
diffusion equations, similar to Chapter 16.
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Notes and comments

This chapter is drawn from [Laugesen and Pugh 1] and [Laugesen and Pugh 2],
which treat steady states and their stability. For the dynamics of thin fluid
film equations and existence of heteroclinic connections, see [Laugesen and Pugh 3]
and [Laugesen and Pugh 4]. The references in those papers provide an entry
point into the vibrant literature of this field.



Part II

Continuous Spectrum
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Looking ahead to continuous
spectrum

The discrete spectral theory in Part I of the course generated, in each appli-
cation:

• eigenfunctions {uj} with “discrete” spectrum λ1, λ2, λ3, . . . satisfying
Luj = λjuj where L is a symmetric differential operator, together with

• a spectral decomposition (or “resolution”) of each f ∈ L2 into a sum of
eigenfunctions: f =

∑
j⟨f, uj⟩uj.

These constructions depended heavily on symmetry of the differential opera-
tor L (which ensured symmetry of the sesquilinear form a) and on compact-
ness of the imbedding of the Hilbert space K into H.

For the remainder of the course we retain the symmetry assumption on
the operator, but drop the compact imbedding assumption. The resulting
“continuous” spectrum leads to a decomposition of f ∈ L2 into an integral of
“almost eigenfunctions”.

We begin with examples, and later put the examples in context by de-
veloping some general spectral theory for unbounded, selfadjoint differential
operators.
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Chapter 18

Computable example:
Laplacian (free Schrödinger) on
all of space

Goal

To develop a spectral decomposition of L2(Rd) associated with the Laplacian,
determine the continuous spectrum [0,∞), and introduce Weyl sequences.

Spectral decomposition

The Laplacian L = −∆ on a domain of finite volume has discrete spectrum,
as we saw in Chapters 2 and 5. When the domain expands to all of space, the
Laplacian has no eigenvalues at all. For example in 1 dimension, solutions
of −u′′ = λu are linear combinations of e+i

√
λx and e−i

√
λx, which oscillate if

λ > 0, or are constant if λ = 0 (with the other solution being x), or grow in
one direction or the other if λ ∈ C \ [0,∞). In none of these situations can
u belong to L2.

In any dimension, the non-existence of L2-eigenfunctions can be seen
as follows. If −∆u = λu and u ∈ L2 then by taking Fourier transforms,
4π2|ξ|2û(ξ) = λû(ξ) a.e., and so the only place û can be nonzero is on the
sphere {|ξ| =

√
λ/2π}, which has measure zero; hence û = 0 a.e. and so u = 0

a.e. and thus no L2-eigenfunction exists.

A fundamental difference between the case of finite-volume domains and
the whole space case is that the imbedding H1(Rd) ↪→ L2(Rd) is not compact.
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For example, given a nonzero function f ∈ H1(R), the translated functions
f(x−k) form a bounded sequence in L2(R) but have no L2-convergent subse-
quence as k → ∞. Hence the discrete spectral theorem (Theorem 4.1) does
not apply.

Nevertheless, the Laplacian −∆ on Rd has generalized eigenfunctions
and a spectral decomposition:

1. Generalized eigenfunctions:

vω(x) = e
2πiω·x, ω ∈ Rd.

Note vω is bounded and satisfies the eigenfunction equation

−∆vω = λvω

with generalized eigenvalue

λ = λ(ω) = 4π2|ω|2,

but is not an eigenfunction since vω ̸∈ L2.

Generalized eigenfn: Re v2HxL

2. Spectral decomposition:

f =

∫
Rd

⟨f, vω⟩ vω dω, ∀f ∈ L2(Rd).

Proof.

⟨f, vω⟩ =
∫
Rd

f(x)e−2πiω·x dx = f̂(ω),

and so the spectral decomposition simply says

f(x) =

∫
Rd

f̂(ω)e2πiω·x dω,

which is the Fourier inversion formula on L2.
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Application of spectral decomposition

One may solve evolution equations by separating variables: for example, the
heat equation ut = ∆u with initial condition h(x) has solution

u(x, t) =

∫
Rd

ĥ(ω)e−λ(ω)tvω(x)dω.

Notice the analogy to the series solution obtained by separation of variables,
in the case of discrete spectrum.

Aside. One can evaluate the last integral (an inverse Fourier transform)
as the convolution of the initial data h with the fundamental solution of the
heat equation, which is the inverse transform of e−λ(ω)t.

Continuous spectrum = [0,∞)

The generalized eigenvalue λ ≥ 0 is “almost” an eigenvalue, in two senses:

• the eigenfunction equation (−∆ − λ)u = 0 does not have a solution
in L2, but it does have a solution vω ∈ L∞ where ω is chosen with
λ = 4π2|ω|2,

• λ has a Weyl sequence: as we will prove, a sequence of functions
wn ∈ L2 exists such that

(W1) ∥(−∆− λ)wn∥L2 → 0 as n→∞,

(W2) ∥wn∥L2 = 1,
(W3) wn ⇀ 0 weakly in L2 as n→∞.

See Proposition 18.1 below. Later we will define the continuous spectrum
to consist of those λ ∈ C for which a Weyl sequence exists.

Remark. Existence of a Weyl sequence ensures that (−∆− λ) does not have
a bounded inverse from L2 → L2, for if we write fn = (−∆− λ)wn then

∥(−∆− λ)−1fn∥L2
∥fn∥L2

=
∥wn∥L2

∥(−∆− λ)wn∥L2
→∞

as n→∞, by (W1) and (W2). In this way, existence of a Weyl sequence is
similar to existence of an eigenfunction, which also prevents invertibility of
(−∆− λ).
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specH-DL

C

Proposition 18.1 (Weyl sequences for negative Laplacian). A Weyl se-
quence exists for −∆ and λ ∈ C if and only if λ ∈ [0,∞).

Thus the continuous spectrum of −∆ consists of precisely the nonnegative
real axis. Those values λ ≥ 0 featured in our spectral decomposition earlier
in the chapter.

Proof. “⇐=” Fix λ ∈ [0,∞) and choose ω ∈ Rd with

λ = 4π2|ω|2.

Take a cut-off function κ ∈ C∞
0 (Rd) such that κ ≡ 1 on the unit ball B(1) and

κ ≡ 0 on Rd \B(2). Define a cut-off version of the generalized eigenfunction,
by

wn = cnκ(
x

n
)vω(x)

where the normalizing constant is

cn =
1

nd/2∥κ∥L2
.

Then (W2) holds because |vω(x)| = 1 pointwise and so ∥wn∥L2 = 1 by a
change of variable, using the definition of cn.

Next we prove (W1). We have

(λ+ ∆)wn

= cn(λvω + ∆vω)κ(
x

n
) + 2

cn

n
∇vω(x) · (∇κ)(

x

n
) +

cn

n2
vω(x)(∆κ)(

x

n
).

The first term vanishes because ∆vω = −4π|ω|2vω = −λvω. In the third
term, note vω is a bounded function and a change of variable shows

cn

n2
∥(∆κ)( x

n
)∥L2 =

1

n2
∥∆κ∥L2
∥κ∥L2

→ 0.
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Weyl approx. eigenfn. w4HxL

The second term similarly vanishes in the limit, as n → ∞. Hence (λ +
∆)wn → 0 in L2, which is (W1).

To prove (W3), take an arbitrary f ∈ L2. Let R > 0 and decompose f into
“near” and “far” components as f = g+h where g = f1B(R) and h = f1Rd\B(R).
Then

⟨f,wn⟩L2 = ⟨g,wn⟩L2 + ⟨h,wn⟩L2 .

We have ∣∣⟨g,wn⟩L2∣∣ ≤ cn∥κ∥L∞∥g∥L1 → 0

as n→∞, since cn → 0. Also, by Cauchy–Schwarz and (W2) we see

lim sup
n→∞

∣∣⟨h,wn⟩L2∣∣ ≤ ∥h∥L2 .

This last quantity can be made arbitrarily small by letting R → ∞, and so
limn→∞⟨f,wn⟩L2 = 0. That is, wn ⇀ 0 weakly.

“=⇒ by contrapositive” Assume λ ∈ C \ [0,∞), and let

δ = dist
(
λ, [0,∞)

)
so that δ > 0. Suppose (W1) holds for some functions wn ∈ L2. Write
gn = (−∆− λ)wn so that ∥gn∥L2 → 0 by (W1). Then

ĝn(ξ) = (4π2|ξ|2 − λ)ŵn(ξ)

ŵn(ξ) =
1

(4π2|ξ|2 − λ)
ĝn(ξ)

|ŵn(ξ)| ≤ δ−1|ĝn(ξ)|
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and hence

∥wn∥L2 = ∥ŵn∥L2 ≤ δ−1∥ĝn∥L2
= δ−1∥gn∥L2→ 0.

Thus (W2) does not hold, completing our proof that if λ /∈ [0,∞) then λ has
no Weyl sequence.

(Aside. The calculations above show, in fact, that (−∆−λ)−1 is bounded
from L2 → L2 with norm bound δ−1.)



Chapter 19

Computable example:
Schrödinger with a bounded
potential well

Goal

To show that the 1-dimensional Schrödinger operator

L = −d2

dx2
− 2 sech2 x

has both continuous and discrete spectrum, with a single negative eigenvalue
and nonnegative continuous spectrum [0,∞). The spectral decomposition
will show the potential is reflectionless.

-3 3

-1

-2

-2 sech2x potential

specHLL
´

-1

C
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Discrete spectrum = {−1}

We claim −1 is an eigenvalue of L with eigenfunction sech x. This fact can
be checked directly, but we will proceed more systematically by factoring the
Schrödinger operator with the help of the first order operators

L+ = −
d

dx
+ tanh x,

L− =
d

dx
+ tanh x.

We compute

L+L− − 1 =
(
−
d

dx
+ tanh x

)( d
dx

+ tanh x
)
− 1

= −
d2

dx2
− (tanh x)′ + tanh2 x− 1

= −
d2

dx2
− 2 sech2 x

= L

since (tanh)′ = sech2 and 1− tanh2 = sech2. Thus

L = L+L− − 1. (19.1)

It follows that functions in the kernel of L− are eigenfunctions of L with
eigenvalue λ = −1. To find the kernel we solve:

L−v = 0

v′ + (tanh x)v = 0

(cosh x)v′ + (sinh x)v = 0

(cosh x)v = const.

v = c sech x

Clearly sech x ∈ L2(R), since sech decays exponentially. Thus −1 lies in the
discrete spectrum of L, with eigenfunction sech x.

Are there any other eigenvalues? No! Argue as follows. By composing
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sechHxL
-3 3

-1

Bound state, with energy -1

L+ and L− in the reverse order we find

L−L+ − 1 =
( d
dx

+ tanh x
)(

−
d

dx
+ tanh x

)
− 1

= −
d2

dx2
+ (tanh x)′ + tanh2 x− 1

= −
d2

dx2
. (19.2)

From (19.1) and (19.2) we deduce

−
d2

dx2
L− = L−L.

Thus if Lv = λv then −d2

dx2
(L−v) = L−Lv = λ(L−v). By solving for L−v in

terms of e±i
√
λx, and then integrating to obtain v, we conclude after some

thought (omitted) that the only way for v to belong to L2(R) is to have
L−v = 0 and hence v = c sech x, so that λ = −1.

Continuous spectrum ⊃ [0,∞)

Let λ ∈ [0,∞). Generalized eigenfunctions with Lv = λv certainly exist:
choose ω ∈ R with λ = 4π2ω2 and define

v(x) = L+(e2πiωx) = (tanh x− 2πiω)e2πiωx,
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which is bounded but not square integrable. We compute

Lv = (L+L− − 1)L+(e2πiωx) by (19.1)

= L+(L−L+ − 1)(e2πiωx)

= −L+
d2

dx2
(e2πiωx) by (19.2)

= L+(4π2ω2e2πiωx)

= λv,

which verifies that v(x) is a generalized eigenfunction.
We can further prove existence of a Weyl sequence for L and λ by adapting

Lemma 18.1 “⇐=”, using the same Weyl functions wn(x) as for the free
Schrödinger operator −∆. The only new step in the proof, for proving ∥(L−
λ)wn∥L2 → 0 in (W1), is to observe that

|2 sech2 xwn(x)| = 2cn|κ(
x

n
)e2πiωx| sech2 x

≤ 2cn∥κ∥L∞ sech2 x→ 0

in L2(R) as n → ∞, because cn → 0. (Note. This part of the proof works
not only for the sech2 potential, but for any potential belonging to L2.)

We have shown that the continuous spectrum contains [0,∞). We will
prove the reverse inclusion at the end of the chapter.

Generalized eigenfunctions as traveling waves

The eigenfunction (“bound state”) v(x) = sech x with eigenvalue (“energy”)
−1 produces a standing wavefunction

u = eit sech x

satisfying the time-dependent Schrödinger equation

iut = Lu.

The generalized eigenfunction

v(x) = (tanh x− 2πiω)e2πiωx (19.3)
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Gen. eigenfn, Ω=
1

16
: Re vHxL

with generalized eigenvalue λ = 4π2ω2 similarly produces a standing wave

u = e−i4π
2ω2t(tanh x− 2πiω)e2πiωx.

More usefully, we rewrite this formula as a traveling plane wave multiplied
by an x-dependent amplitude:

u = (tanh x− 2πiω)e2πiω(x−2πωt). (19.4)

The amplitude factor serves to quantify the effect of the potential on the
traveling wave: in the absence of a potential, the amplitude would be identi-
cally 1, since the plane wave e2πiω(x−2πωt) solves the free Schrödinger equation
iut = −∆u.

Reflectionless nature of the potential, and a nod to scattering the-
ory. One calls the potential −2 sech2 x “reflectionless” because the right-
moving wave in (19.4) passes through the potential with none of its energy
reflected into a left-moving wave. In other words, the generalized eigenfunc-
tion (19.3) has the form ce2πiωx both as x → −∞ and as x → ∞ (with
different constants, it turns out, although the constants are equal in magni-
tude).

This reflectionless property is unusual. A typical Schrödinger potential
would produce generalized eigenfunctions equalling approximately

cIe
2πiωx + cRe

−2πiωx as x→ −∞
and

cTe
2πiωx as x→∞

(or similarly with the roles of ±∞ interchanged). Here |cI| is the amplitude
of the incident right-moving wave, |cR| is the amplitude of the left-moving
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wave reflected by the potential, and |cT | is the amplitude of the right-moving
wave transmitted through the potential. Conservation of L2-energy demands
that

|cI|
2 = |cR|

2 + |cT |
2.

For a gentle introduction to this “scattering theory” see [Keener, Section 7.5].
Then one can proceed to the book-length treatment in [Reed and Simon 3].

Spectral decomposition of L2

Analogous to an orthonormal expansion in terms of eigenfunctions, we have:

Theorem 19.1.

f =
1

2
⟨f, sech⟩ sech+

∫
R
⟨f, L+vω⟩L+vω

dω

1+ 4π2ω2
, ∀f ∈ L2(R),

where L+vω(x) = (tanh x − 2πiω)e2πiωx is the generalized eigenfunction at
frequency ω.

The discrete part of the decomposition has the same form as the contin-
uous part, in fact, because sech = −L+(sinh).

Proof. We will sketch the main idea of the proof, and leave it to the reader
to make the argument rigorous.

By analogy with an orthonormal expansion in the discrete case, we assume
that f ∈ L2(R) has a decomposition in terms of the eigenfunction sech x and
the generalized eigenfunctions L+vω in the form

f = c⟨f, sech⟩ sech+
∫
R
mf(ω)⟨f, L+vω⟩L+vω dω,

where the coefficient c and multiplier mf(ω) are to be determined.
Taking the inner product with sech x implies that c = 1

2
, since ∥sech∥2

L2(R) =

2 and ⟨L+vω, sech⟩ = ⟨vω, L− sech⟩ = 0.
Next we annihilate the sech term by applying L− to both sides:

L−f = L−
( ∫

R
mf(ω)⟨f, L+vω⟩L+vω dω

)
.

Note that by integration by parts,

⟨f, L+vω⟩ = ⟨L−f, vω⟩ = (̂L−f)(ω).
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Hence

L−f = L−
( ∫

R
mf(ω)(̂L−f)(ω)L+vω dω

)
=

∫
R
mf(ω)(̂L−f)(ω)L−L+vω dω

=

∫
R
mf(ω)(̂L−f)(ω)(1+ 4π2ω2)vω dω

by (19.2). Thus the multiplier should be mf(ω) = 1/(1 + 4π2ω2), in order
for Fourier inversion to hold. This argument shows the necessity of the
formula in the theorem, and one can show sufficiency by suitably reversing
the steps.

The theorem implies a Plancherel type identity.

Corollary 19.2.

∥f∥2L2 =
1

2
|⟨f, sech⟩|2 +

∫
R
|⟨f, L+vω⟩|2

dω

1+ 4π2ω2
, ∀f ∈ L2(R).

Proof. Take the inner product of f with the formula in Theorem 19.1.

Continuous spectrum = [0,∞)

Earlier we showed that the continuous spectrum contains [0,∞). For the
reverse containment, suppose λ /∈ [0,∞) and λ ̸= −1. Then L−λ is invertible
on L2, with

(L− λ)−1f = −
1

λ+ 1

1

2
⟨f, sech⟩ sech+

∫
R

⟨f, L+vω⟩
4π2ω2 − λ

L+vω
dω

1+ 4π2ω2

as one sees by applying L − λ to both sides and recalling Theorem 19.1. To
check the boundedness of this inverse, note that

∥(L− λ)−1f∥2L2 =
1

|λ+ 1|2
1

2
|⟨f, sech⟩|2 +

∫
R

|⟨f, L+vω⟩|2

|4π2ω2 − λ|2
dω

1+ 4π2ω2

≤ 1

|λ+ 1|2
1

2
|⟨f, sech⟩|2 + 1

dist
(
λ, [0,∞)

)2 ∫
R
|⟨f, L+vω⟩|2

dω

1+ 4π2ω2

≤ (const.)∥f∥2L2 ,
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where we used Corollary 19.2.
The boundedness of (L−λ)−1 implies that the Weyl conditions (W1) and

(W2) cannot both hold. Thus no Weyl sequence can exist for λ, so that λ
does not belong to the continuous spectrum.

Next suppose λ = −1. If a Weyl sequence wn exists, then

⟨wn, sech⟩L2 → 0 as n→∞,

by the weak convergence in (W3). Hence if we project away from the λ = −1
eigenspace by defining

yn = wn −
1

2
⟨wn, sech⟩L2 sech and zn = yn/∥yn∥L2 ,

then we find ∥yn∥L2 → 1 and ∥zn∥L2 = 1, with ⟨zn, sech⟩L2 = 0. Also

(L+ 1)zn = (L+ 1)yn/∥yn∥L2 = (L+ 1)wn/∥yn∥L2 → 0

in L2. Thus zn satisfies (W1) and (W2) and lies in the orthogonal com-
plement of the eigenspace spanned by sech. A contradiction now follows
from the boundedness of (L+ 1)−1 on that orthogonal complement (with the
boundedness being proved by the same argument as above for λ ̸= −1). This
contradiction shows that no such Weyl sequence wn can exist, and so −1
does not belong to the continuous spectrum.

Note. The parallels with our derivation of the continuous spectrum for
the Laplacian in Chapter 18 are instructive.

Notes and comments

The treatment in this chapter was drawn from [Keener] Section 7.5.



Chapter 20

Selfadjoint, unbounded linear
operators

Goal

To develop the theory of unbounded linear operators on a Hilbert space, and
to define selfadjointness for such operators.

References [Gustafson and Sigal] Sections 1.5, 2.4
[Hislop and Sigal] Chapters 4, 5

Motivation

Now we should develop some general theory, to provide context for the ex-
amples computed in Chapters 18 and 19.

We begin with a basic principle of calculus:

integration makes functions better, while differentiation makes
them worse.

More precisely, integral operators are bounded (generally speaking), while
differential operators are unbounded. For example, e2πiinx has norm 1 in
L2[0, 1] while its derivative d

dx
e2πiinx = 2πine2πinx has norm that grows with

n. The unboundedness of such operators prevents us from applying the
spectral theory of bounded operators on a Hilbert space.

Further, differential operators are usually defined only on a (dense) sub-
space of our natural function spaces. In particular, we saw in our study
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of discrete spectra that the Laplacian is most naturally studied using the
Sobolev space H1, even though the Laplacian involves two derivatives and
H1-functions are guaranteed only to possess a single derivative.

To meet these challenges, we will develop the theory of densely defined,
unbounded linear operators, along with the notion of adjoints and selfad-
jointness for such operators.

Domains and inverses of (unbounded) operators

Take a complex Hilbert space H with inner product ⟨·, ·⟩. Suppose A is a
linear operator (not necessarily bounded) from a subspace D(A) ⊂ H into
H:

A : D(A)→ H.

Call D(A) the domain of A.
An operator B with domain D(B) is called the inverse of A if

• D(B) = Ran(A), D(A) = Ran(B), and

• BA = idRan(B), AB = idRan(A).

Write A−1 for this inverse, if it exists. Obviously A−1 is unique, if it exists,
because in that case A is bijective.

Further say A is invertible if A−1 exists and is bounded on H (mean-
ing that A−1 exists, Ran(A) = H, and A−1 : H → H is a bounded linear
operator).

Example. Consider the operator A = −∆+1 with domain H2(Rd) ⊂ L2(Rd).
Invertibility is proved using the Fourier transform: let D(B) = L2(Rd), and
define a bounded operator B : L2 → L2 by

B̂f(ξ) = (1+ 4π2|ξ|2)−1f̂(ξ).

One can check that Ran(B) = H2(Rd) = D(A). Notice BA = idH2 , AB =
idL2 . The second identity implies that Ran(A) = L2 = D(B).

Adjoint of an (unbounded) operator

Call A symmetric if

⟨Af, g⟩ = ⟨f,Ag⟩, ∀f, g ∈ D(A). (20.1)
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Symmetry is a simpler concept than selfadjointness, which requires the
operator and its adjoint to have the same domain, as we now explain.

First we define a subspace

D(A∗) = {f ∈ H : the linear functional g 7→ ⟨f,Ag⟩ is bounded on D(A)}.

Assume from now on that A is densely defined, meaning D(A) is dense in
H. Then for each f ∈ D(A∗), the bounded linear functional g 7→ ⟨f,Ag⟩ is
defined on a dense subspace of H and hence extends uniquely to a bounded
linear functional on all of H. By the Riesz Representation Theorem, that
linear functional can be represented as the inner product of g against a unique
element of H, which we call A∗f. Hence

⟨f,Ag⟩ = ⟨A∗f, g⟩, ∀f ∈ D(A∗), g ∈ D(A). (20.2)

Clearly this operator A∗ : D(A∗)→ H is linear. We call it the adjoint of A.

Lemma 20.1. If A is a densely defined linear operator and λ ∈ C, then
(A− λ)∗ = A∗ − λ.

We leave the (easy) proof to the reader. Implicit in the proof is that
domains are unchanged by subtracting a constant: D(A − λ) = D(A) and
D
(
((A− λ)∗

)
= D(A∗).

The kernel of the adjoint complements the range of the original operator,
as follows.

Proposition 20.2. If A is a densely defined linear operator then Ran(A)⊕
ker(A∗) = H.

Proof. Clearly ker(A∗) ⊂ Ran(A)⊥, because if f ∈ ker(A∗) then A∗f = 0 and
so for all g ∈ D(A) we have

⟨f,Ag⟩ = ⟨A∗f, g⟩ = 0.

To prove the reverse inclusion, Ran(A)⊥ ⊂ ker(A∗), suppose h ∈ Ran(A)⊥.
For all g ∈ D(A) we have ⟨h,Ag⟩ = 0. In particular, h ∈ D(A∗). Hence

⟨A∗h, g⟩ = ⟨h,Ag⟩ = 0 ∀g ∈ D(A),

and so from density of D(A) we conclude A∗h = 0. That is, h ∈ ker(A∗).
We have shown Ran(A)⊥ = ker(A∗), and so (since the orthogonal com-

plement is unaffected by taking the closure) Ran(A)
⊥
= ker(A∗). The propo-

sition follows immediately.
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We will need later that the graph of the adjoint, {(f,A∗f) : f ∈ D(A∗)},
is closed in H×H.

Theorem 20.3. If A is a densely defined linear operator then A∗ is a closed
operator.

Proof. Suppose fn ∈ D(A∗) with fn → f,A∗fn → g, for some f, g ∈ H. To
prove the graph of A∗ is closed, we must show f ∈ D(A∗) with A∗f = g.

For each h ∈ D(A) we have

⟨f,Ah⟩ = lim
n
⟨fn, Ah⟩ = lim

n
⟨A∗fn, h⟩ = ⟨g, h⟩.

Thus the map h 7→ ⟨f,Ah⟩ is bounded for h ∈ D(A). Hence f ∈ D(A∗), and
using the last calculation we see

⟨A∗f, h⟩ = ⟨f,Ah⟩ = ⟨g, h⟩

for all h ∈ D(A). Density of the domain implies A∗f = g, as we wanted.

Selfadjointness

Call A selfadjoint if A∗ = A, meaning D(A∗) = D(A) and A∗ = A on their
common domain.

Selfadjoint operators have closed graphs, due to closedness of the adjoint
in Theorem 20.3. Thus:

Corollary 20.4. If a densely defined linear operator A is selfadjoint then it
is closed.

The relation between selfadjointness and symmetry is clear:

Proposition 20.5. The densely defined linear operator A is selfadjoint if
and only if it is symmetric and D(A) = D(A∗).

Proof. “=⇒” If A∗ = A then the adjoint relation (20.2) reduces immediately
to the symmetry relation (20.1).

“⇐=” The symmetry relation (20.1) together with the adjoint relation
(20.2) implies that ⟨Af, g⟩ = ⟨A∗f, g⟩ for all f, g ∈ D(A) = D(A∗). Since
D(A) is dense in H, we conclude Af = A∗f.

For bounded operators, selfadjointness and symmetry are equivalent.
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Lemma 20.6. If a linear operator A is bounded on H, then it is selfadjoint
if and only if it is symmetric.

Proof. Boundedness of A ensures that D(A∗) = H = D(A), and so the
adjoint relation (20.2) holds for all f, g ∈ H. Thus A∗ = A is equivalent to
symmetry.

Example: selfadjointness for Schrödinger operators

Let L = −∆ + V be a Schrödinger operator with potential V(x) that is
bounded and real valued. Choose the domain to be D(L) = H2(Rd) in the
Hilbert space L2(Rd). This Schrödinger operator is selfadjoint.

Proof. Density of D(L) follows from density in L2 of the smooth functions
with compact support.

Our main task is to determine the domain of L∗. Fix f, g ∈ H2(Rd).
From the integration by parts formula ⟨f, ∆g⟩L2 = ⟨∆f, g⟩L2 (which one may
alternatively prove with the help of the Fourier transform), one deduces that

|⟨f, ∆g⟩L2 | = |⟨∆f, g⟩L2 | ≤ ∥f∥H2∥g∥L2 .

Also |⟨f, Vg⟩L2 | ≤ ∥f∥L2∥V∥L∞∥g∥L2 . Hence the linear functional g 7→ ⟨f, Lg⟩L2
is bounded on g ∈ D(L). Therefore f ∈ D(L∗), which tells us H2(Rd) ⊂
D(L∗).

To prove the reverse inclusion, fix f ∈ D(L∗). Then

|⟨f, Lg⟩L2 | ≤ (const.)∥g∥L2, ∀g ∈ D(L) = H2(Rd).

Since the potential V is bounded, the last formula still holds if we replace V
with 1, so that

|⟨f, (−∆+ 1)g⟩L2 | ≤ (const.)∥g∥L2 , ∀g ∈ H2(Rd).

Taking Fourier transforms gives

|⟨f̂, (1+ 4π2|ξ|2)ĝ⟩L2 | ≤ (const.)∥ĝ∥L2 , ∀g ∈ H2(Rd).

In particular, we may suppose ĝ = h ∈ C∞
0 (Rd), since every such ĝ gives

g ∈ H2(Rd). Hence

|⟨(1+ 4π2|ξ|2)f̂, h⟩L2 | ≤ (const.)∥h∥L2 , ∀h ∈ C∞
0 (Rd).
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Taking the supremum of the left side over all h with L2-norm equal to 1
shows that

∥(1+ 4π2|ξ|2)f̂∥L2 ≤ (const.)

Hence (1+ |ξ|)2 f̂ ∈ L2(Rd), which means f ∈ H2(Rd). Thus D(L∗) ⊂ H2(Rd).
Now that we know the domains of L and L∗ agree, we have only to check

symmetry, and that is straightforward. When f, g ∈ H2(Rd) we have

⟨Lf, g⟩ = −⟨∆f, g⟩L2 + ⟨Vf, g⟩L2
= −⟨f, ∆g⟩L2 + ⟨f, Vg⟩L2
= ⟨f, Lg⟩L2

where we integrated by parts and used that V(x) is real valued.



Chapter 21

Spectra: discrete and
continuous

Goal

To develop the spectral theory of selfadjoint unbounded linear operators.

References [Gustafson and Sigal] Sections 2.4, 5.1
[Hislop and Sigal] Chapters 1, 5, 7
[Rudin] Chapter 13

Resolvent set, and spectrum

Let A be a densely defined linear operator on a complex Hilbert space H,
as in the preceding chapter. The operator A− λ has domain D(A), for each
constant λ ∈ C. Define the resolvent set

res(A) = {λ ∈ C : A− λ is invertible (has a bounded inverse defined on H)}.

For λ in the resolvent set, we call the inverse (A − λ)−1 the resolvent op-
erator.

The spectrum is defined as the complement of the resolvent set:

spec(A) = C \ res(A).

For example, if λ is an eigenvalue of A then λ ∈ spec(A), because if Af = λf
for some f ̸= 0, then (A − λ)f = 0 and so A − λ is not injective, and hence
is not invertible.
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Proposition 21.1 ([Hislop and Sigal, Theorem 1.2]). The resolvent set is
open, and hence the spectrum is closed.

We omit the proof.
The next result generalizes the fact that Hermitian matrices have only

real eigenvalues.

Theorem 21.2. If A is selfadjoint then its spectrum is real: spec(A) ⊂ R.

Proof. We prove the contrapositive. Suppose λ ∈ C has nonzero imaginary
part, Im λ ̸= 0. We will show λ ∈ res(A).

The first step is to show A− λ is injective. For all f ∈ D(A),

∥(A− λ)f∥2 = ∥Af∥2 − 2(Re λ)⟨f,Af⟩+ |λ|2∥f∥2

and so

∥(A− λ)f∥2 ≥ ∥Af∥2 − 2|Re λ|∥f∥∥Af∥+ |λ|2∥f∥2

=
(
∥Af∥− |Re λ|∥f∥

)2
+ | Im λ|2∥f∥2

≥ | Im λ|2∥f∥2. (21.1)

The last inequality implies that A−λ is injective, using here that | Im λ| > 0.
That is, ker(A− λ) = {0}.

Selfadjointness (A∗ = A) now gives ker(A∗−λ) = 0, and so Ran(A− λ) =
H by Proposition 20.2. That is, A− λ has dense range.

Next we show Ran(A− λ) = H. Let g ∈ H. By density of the range, we
may take a sequence fn ∈ D(A) such that (A − λ)fn → g. The sequence fn
is Cauchy, in view of (21.1). Hence the sequence (fn, (A − λ)fn) is Cauchy
in H × H, and so converges to (f, g) for some f ∈ H. Note each ordered
pair (fn, (A − λ)fn) lies in the graph of A − λ, and this graph is closed
by Corollary 20.4 (relying here on selfadjointness again). Therefore (f, g)
belongs to the graph of A− λ, and so g ∈ Ran(A− λ). Thus A− λ has full
range.

To summarize: we have shown A− λ is injective and surjective, and so it
has an inverse operator

(A− λ)−1 : H→ D(A) ⊂ H.

This inverse is bounded with

∥(A− λ)−1g∥ ≤ | Im λ|−1∥g∥, ∀g ∈ H,

by taking f = (A−λ)−1g in estimate (21.1). The proof is thus complete.
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Characterizing the spectrum

We will characterize the spectrum in terms of approximate eigenfunctions.
Given a number λ ∈ C and a sequence wn ∈ D(A), consider three conditions:

(W1) ∥(A− λ)wn∥H → 0 as n→∞,

(W2) ∥wn∥H = 1,

(W3) wn ⇀ 0 weakly in H as n→∞.

(We considered these conditions in Chapter 18 for the special case of the
Laplacian).

Condition (W1) says wn is an “approximate eigenfunction”, and condi-
tion (W2) simply normalizes the sequence. These conditions characterize the
spectrum, for a selfadjoint operator.

Theorem 21.3. If A is selfadjoint then

spec(A) = {λ ∈ C : (W1) and (W2) hold for some sequence wn ∈ D(A)}.

Proof. “⊃” Assume (W1) and (W2) hold for λ, and that A−λ has an inverse
defined on H. Then for fn = (A− λ)wn we find

∥(A− λ)−1fn∥H
∥fn∥H

=
∥wn∥H

∥(A− λ)wn∥H
→∞

as n → ∞, by (W1) and (W2). Thus the inverse operator is not bounded,
and so λ ∈ spec(A).

“⊂” Assume λ ∈ spec(A), so that λ is real by Theorem 21.2. If λ is an
eigenvalue, say with normalized eigenvector f, then we simply choose wn = f
for each n, and (W1) and (W2) hold trivially.

Suppose λ is not an eigenvalue. Then A − λ is injective, hence so is
(A− λ)∗, which equals A− λ by selfadjointness of A and reality of λ. Thus
ker
(
(A− λ)∗

)
= {0}, and so Ran(A− λ) is dense in H by Proposition 20.2.

Injectivity ensures that (A−λ)−1 exists on Ran(A−λ). If it is unbounded
there, then we may choose a sequence fn ∈ Ran(A−λ) with ∥(A−λ)−1fn∥H =
1 and ∥fn∥H → 0. Letting wn = (A−λ)−1fn gives (W1) and (W2) as desired.
Suppose on the other hand that (A− λ)−1 is bounded on Ran(A− λ). Then
the argument in the proof of Theorem 21.2 shows that Ran(A − λ) = H,
which means λ belongs to the resolvent set, and not the spectrum. Thus this
case cannot occur.
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Discrete and continuous spectra

Define the discrete spectrum

specdisc(A)

= {λ ∈ spec(A) : λ is an isolated eigenvalue of A having finite multiplicity},

where “isolated” means that some neighborhood of λ in the complex plane
intersects spec(A) only at λ. By “multiplicity” we mean the geometric mul-
tiplicity (dimension of the eigenspace); if A is not selfadjoint then we should
use instead the algebraic multiplicity [Hislop and Sigal].

Next define the continuous spectrum

speccont(A)

= {λ ∈ C : (W1), (W2) and (W3) hold for some sequence wn ∈ D(A)}.

The continuous spectrum lies within the spectrum, by Theorem 21.3. The
characterization in that theorem required only (W1) and (W2), whereas the
continuous spectrum imposes in addition the “weak convergence” condition
(W3).

A Weyl sequence for A and λ is a sequence wn ∈ D(A) such that (W1),
(W2) and (W3) hold. Thus the preceding definition says the continuous
spectrum consists of λ-values for which Weyl sequences exist.

The continuous spectrum can contain eigenvalues that are not isolated
(“imbedded eigenvalues”) or which have infinite multiplicity.

A famous theorem of Weyl says that for selfadjoint operators, the entire
spectrum is covered by the discrete and continuous spectra.

Theorem 21.4. If A is selfadjoint then

spec(A) = specdisc(A) ∪ speccont(A).

(Further, the discrete and continuous spectra are disjoint.)

We omit the proof. See [Hislop and Sigal, Theorem 7.2].

Applications to Schrödinger operators

The continuous spectrum of the Laplacian −∆ equals [0,∞), and the spec-
trum contains no eigenvalues, as we saw in Chapter 18.
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The hydrogen atom too has continuous spectrum [0,∞), with its Schrödinger
operator L = −∆−2/|x| on R3 having domain H2(Rd) ⊂ L2(Rd); see [Taylor,
Section 8.7]. The discrete spectrum {−1/n2 : n ≥ 1} of the hydrogen atom
was stated in Chapter 3.

As the hydrogen atom example suggests, potentials vanishing at infinity
generate continuous spectrum that includes all nonnegative numbers:

Theorem 21.5. Assume V(x) is real valued, continuous, and vanishes at
infinity (V(x)→ 0 as |x|→∞).

Then the Schrödinger operator −∆+V is selfadjoint (with domain H2(Rd) ⊂
L2(Rd)) and has continuous spectrum = [0,∞).

For a proof see [Hislop and Sigal, Corollary 14.10], where a stronger theo-
rem is proved that covers also the Coulomb potential −2/|x| for the hydrogen
atom. Note the Coulomb potential vanishes at infinity but is discontinuous
at the origin, where it blows up. The stronger version of the theorem re-
quires (instead of continuity and vanishing at infinity) that for each ε > 0,
the potential V(x) be decomposable as V = V2 + V∞ where V2 ∈ L2 and
∥V∞∥L∞ < ε. This decomposition can easily be verified for the Coulomb
potential, by “cutting off” the potential near infinity.

Theorem 21.5 implies that any isolated eigenvalues of L must lie on the
negative real axis (possibly accumulating at 0). For example, the −2 sech2

potential in Chapter 19 generates a negative eigenvalue at −1.

Connection to generalized eigenvalues and eigenfunctions

Just as the discrete spectrum is characterized by eigenfunctions in L2, so the
full spectrum is characterized by existence of a generalized eigenfunction that
grows at most polynomially at infinity.

Theorem 21.6. Assume V(x) is real valued and bounded on Rd. Then the
Schrödinger operator −∆+ V has spectrum

spec(−∆+ V) =

closure of {λ ∈ C : (−∆+ V)u = λu for some polynomially bounded u}.

We omit the proof; see [Gustafson and Sigal, Theorem 5.22].
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Further reading

A wealth of information on spectral theory, especially for Schrödinger op-
erators, can be found in the books [Gustafson and Sigal, Hislop and Sigal,
Reed and Simon 2, Reed and Simon 4].



Chapter 22

Discrete spectrum revisited

Goal

To fit the discrete spectral Theorem 4.1 (from Part I of the course) into
the spectral theory of selfadjoint operators and, in particular, to prove the
absence of continuous spectrum in that situation.

Discrete spectral theorem

The discrete spectral Theorem 4.1 concerns a symmetric, coercive, bounded
sesquilinear form a(u, v) on an infinite dimensional Hilbert space K, where
K imbeds compactly and densely into the Hilbert space H. The theorem
guarantees existence of an ONB for H consisting of eigenvectors of a:

a(uj, v) = γj⟨uj, v⟩H ∀v ∈ K,

where the eigenvalues satisfy

0 < γ1 ≤ γ2 ≤ γ3 ≤ · · ·→∞.
We want to interpret these eigenvalues as the discrete spectrum of some
selfadjoint, densely defined linear operator on H. By doing so, we will link
the discrete spectral theory in Part I of the course with the spectral theory
of unbounded operators in Part II.

Our tasks are to identify the operator A and its domain, to prove A is
symmetric, to determine the domain of the adjoint, to conclude selfadjoint-
ness, and finally to show that the spectrum of A consists precisely of the
eigenvalues γj.
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Operator A and its domain

In the proof of Theorem 4.1 we found a bounded, selfadjoint linear operator
B : H→ K ⊂ H with eigenvalues 1/γj and eigenvectors uj:

Buj =
1

γj
uj.

We showed B is injective (meaning its eigenvalues are nonzero). Notice B
has dense range because its eigenvectors uj span H.

(Aside. This operator B relates to the sesquilinear form a by satisfying
a(Bf, v) = ⟨f, v⟩H for all v ∈ K. We will not need that formula below.)

Define
A = B−1 : Ran(B)→ H.

Then A is a linear operator, and its domain

D(A) = Ran(B)

is dense in H.

Symmetry of A

Let u, v ∈ D(A). Then

⟨Au, v⟩H = ⟨Au,BAv⟩H since BA = Id,

= ⟨BAu,Av⟩H since B is selfadjoint,

= ⟨u,Av⟩H since BA = Id.

Domain of the adjoint

First we show D(A) ⊂ D(A∗). Let u ∈ D(A). For all v ∈ D(A) we have

|⟨u,Av⟩H| = |⟨Au, v⟩H| by symmetry

≤ ∥Au∥H∥v∥H.

Hence the functional v 7→ ⟨u,Av⟩H is bounded on D(A) with respect to the
H-norm, so that u belongs to the domain of the adjoint A∗.

Next we show D(A∗) ⊂ D(A). Let u ∈ D(A∗) ⊂ H. We have

|⟨u,Av⟩H| ≤ (const.)∥v∥H ∀v ∈ D(A) = Ran(B).



167

Writing v = Bg gives

|⟨u, g⟩H| ≤ (const.)∥Bg∥H ∀g ∈ H.

One can express u in terms of the ONB as u =
∑

j djuj. Fix J ≥ 1 and

choose g =
∑J

j=1 γ
2
jdjuj ∈ H, so that Bg =

∑J
j=1 γjdjuj. We deduce from

the last inequality that

J∑
j=1

γ2j |dj|
2 ≤ (const.)

( J∑
j=1

γ2j |dj|
2
)1/2
,

and so
J∑
j=1

γ2j |dj|
2 ≤ (const.)2

Letting J→∞ implies that∑
j

γ2j |dj|
2 ≤ (const.)2

and so the sequence {γjdj} belongs to ℓ2. Put f =
∑

j γjdjuj ∈ H. Then
Bf =

∑
j djuj = u, and so u ∈ Ran(B) = D(A), as desired.

Selfadjointness, and discreteness of the spectrum

Theorem 22.1. A is selfadjoint, with domain

D(A) = Ran(B) =
{∑

j

γ−1
j cjuj : {cj} ∈ ℓ2

}
.

Furthermore, spec(A) = specdisc(A) = {γj : j ≥ 1}.

Proof. We have shown above that A is symmetric and D(A∗) = D(A), which
together imply that A is selfadjoint.

We will show that if

λ ∈ C \ {γ1, γ2, γ3, . . .}

then A−λ is invertible, so that λ belongs to the resolvent set. Thus the spec-
trum consists of precisely the eigenvalues γj. Note each eigenvalue has finite



168 CHAPTER 22. DISCRETE SPECTRUM REVISITED

multiplicity by Theorem 4.1, and is isolated from the rest of the spectrum;
hence A has purely discrete spectrum.

The inverse of A−λ can be defined explicitly, as follows. Define a bounded
operator C : H→ H on f =

∑
j cjuj ∈ H by

Cf =
∑
j

(γj − λ)
−1cjuj,

where we note that (γj − λ)
−1 is bounded for all j, and in fact approaches 0

as j → ∞, because |γj − λ| is never zero and tends to ∞ as j → ∞. This
new operator has range Ran(C) = Ran(B), because (γj− λ)

−1 is comparable
to γ−1

j (referring here to the characterization of Ran(B) in Theorem 22.1).
Thus Ran(C) = D(A).

Clearly (A − λ)Cf = f by definition of A, and so Ran(A − λ) = H.
Similarly one finds that C(A − λ)u = u for all u ∈ D(A). Thus C is the
inverse operator of A − λ. Because C is bounded on all of H we conclude
A− λ is invertible, according to the definition in Chapter 20.

Example: Laplacian on a bounded domain

To animate the preceding theory, let us consider the Laplacian on a bounded
domain Ω ⊂ Rd, with Dirichlet boundary conditions. We work with the
Hilbert spaces

H = L2(Ω), K = H10(Ω),

and the sesquilinear form

a(u, v) =

∫
Ω

∇u · ∇v dx+
∫
Ω

uvdx = ⟨u, v⟩H1 ,

which in Chapter 5 gave eigenfunctions satisfying (−∆ + 1)u = (λ + 1)u
weakly. In this setting, u = Bf means that (−∆ + 1)u = f weakly. Note
B : L2(Ω)→ H10(Ω), and recall that A = B−1.

Proposition 22.2. The domain of the operator A contains H2(Ω)∩H10(Ω),
and

A = −∆+ 1

on H2(Ω) ∩H10(Ω).
Furthermore, if ∂Ω is smooth then D(A) = H2(Ω) ∩ H10(Ω), in which

case A = −∆+ 1 on all of its domain.
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Proof. For all u ∈ H2(Ω) ∩H10(Ω), v ∈ H10(Ω), we have

⟨u, v⟩H1 = ⟨−∆u+ u, v⟩L2 by parts

= ⟨B(−∆u+ u), v⟩H1 by definition of B.

Since both u and B(−∆u+u) belong to H10(Ω), and v ∈ H10(Ω) is arbitrary,
we conclude from above that u = B(−∆u + u). Therefore u ∈ Ran(B) =
D(A), and so H2(Ω) ∩H10(Ω) ⊂ D(A).

Further, we find Au = −∆u+ u because B = A−1, and so

A = −∆+ 1 on H2(Ω) ∩H10(Ω).

Finally we note that if ∂Ω is C2-smooth then by elliptic regularity the
weak solution u of (−∆ + 1)u = f belongs to H2(Ω), so that Ran(B) ⊂
H2(Ω) ∩H10(Ω). Thus

D(A) = H2(Ω) ∩H10(Ω)

when ∂Ω is smooth enough. In that case A = −∆+1 on all of its domain.

Compact resolvents

The essence of the proof of the discrete spectral Theorem 4.1 is to show
that the inverse operator B is compact, which means for our differential
operators that the inverse is a compact integral operator. For example, in
the Neumann Laplacian application we see that (−∆+ 1)−1 is compact from
L2(Ω) to H1(Ω). So is (−∆ + α)−1 for any positive α, but α = 0 does not
give an invertible operator because the Neumann Laplacian has nontrivial
kernel, with −∆(c) = 0 for every constant c.

Thus for the Neumann Laplacian, the resolvent operator

Rλ = (−∆− λ)−1

is compact whenever λ is negative.
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Appendix A

Spectral theorem for compact
selfadjoint operators

Goal

State and prove the spectral theorem for compact selfadjoint linear operators
on a Hilbert space, as used in Chapter 4.

Let H be a Hilbert space with either real or complex scalars. We begin
with two useful lemmas about weakly convergent sequences.

Lemma A.1 (Continuous linear maps preserve weak convergence). Suppose
T : H→ H is linear and bounded. If uk ⇀ u weakly then Tuk ⇀ Tu weakly.

Proof. For all v ∈ H we have

⟨Tuk, v⟩ = ⟨uk, T ∗v⟩ where T ∗ is the Hilbert space adjoint of T→ ⟨u, T ∗v⟩ since uk ⇀ uk weakly

= ⟨Tu, v⟩.

Lemma A.2 (Compact linear maps transform weak convergence into norm
convergence). Suppose T : H → H is linear and compact. If uk ⇀ u weakly
then Tuk → Tu in norm. Also ⟨uk, Tuk⟩→ ⟨u, Tu⟩.

Proof. Consider an arbitrary subsequence {ukℓ}, which for notational simplic-
ity we write as {vℓ}. Since Tuk ⇀ Tu weakly by Lemma A.1, in particular we
have Tvℓ ⇀ Tu weakly.
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The sequence {uk} is bounded since it is weakly convergent. Compactness
of T therefore implies norm convergence of some subsequence of {Tvℓ}, say
Tvℓm → v for some v ∈ H. This norm convergence implies also the weak
convergence Tvℓm ⇀ v.

Combining the last two paragraphs shows that Tu = v, and so Tvℓm → Tu

in norm. Thus each subsequence of {uk} has a further subsequence whose
image under T converges to Tu. Therefore Tuk → Tu.

Further,

⟨uk, Tuk⟩− ⟨u, Tu⟩ = ⟨uk, Tuk − Tu⟩+ ⟨uk − u, Tu⟩.

The first inner product on the right converges to 0 because {uk} is bounded
and Tuk−Tu→ 0. The second inner product converges to 0 because uk ⇀ u

weakly.

Now comes the main result of the section, giving an ONB of eigenvectors.

Theorem A.3 (Spectral theorem for compact selfadjoint operators). As-
sume H is a separable, infinite dimensional Hilbert space, and B : H→ H is
a linear, compact, selfadjoint operator.

Then H has a countable ONB {uk}
∞
k=1 consisting of eigenvectors of B, with

Buk = βkuk,

for some real eigenvalues βk.
Further, if infinitely many of the βk are nonzero then they can be arranged

as a sequence converging to 0. In particular, each nonzero eigenvalue has
finite multiplicity (the corresponding eigenspace is finite dimensional).

The finite dimensional version of the theorem simply says that a selfad-
joint matrix (either real symmetric or complex Hermitian) possesses an ONB
of eigenvectors.

Proof. Notice ⟨u,Bu⟩ is real, because selfadjointness of B implies

⟨u,Bu⟩ = ⟨u,B∗u⟩ = ⟨Bu, u⟩ = ⟨u,Bu⟩

for each u ∈ H. Define

m = inf
u ̸=0

⟨u,Bu⟩
⟨u, u⟩

, M = sup
u ̸=0

⟨u,Bu⟩
⟨u, u⟩

,
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so that −∞ < m ≤M <∞.

Step 1 — Finding the largest eigenvalue. We will show that if M > 0 then
M is an eigenvalue of B. First we prove the supremum for M is attained at
some vector u. Then we show u is an eigenvector with eigenvalue M.

Take a supremizing sequence {uk}, normalized by ∥uk∥ = 1, such that

⟨uk, Buk⟩→M.

After passing to a subsequence we may suppose uk ⇀ u weakly for some
u ∈ H, by weak sequential compactness of the closed unit ball. Then

⟨uk, Buk⟩→ ⟨u,Bu⟩

by Lemma A.2, since B is compact. Thus ⟨u,Bu⟩ =M > 0, and so u ̸= 0.
Notice ∥u∥ ≤ 1 because

∥u∥2 = ⟨u, u⟩ = lim
k
⟨uk, u⟩ ≤ ∥u∥.

Also ∥u∥ ≥ 1 because

M ≥ ⟨u,Bu⟩
⟨u, u⟩

=
M

∥u∥2
> 0.

Hence ∥u∥ = 1, and so the supremum for M is attained at u.
Now we show that this maximizing vector u is an eigenvector with eigen-

value M. Fix v ∈ H (the “variation direction”) and define a real valued
function

g(t) =
⟨u+ tv, B(u+ tv)⟩
⟨u+ tv, u+ tv⟩

,

where we assume t ∈ R is small enough that u+ tv ̸= 0 in the denominator.
Notice g is maximal at t = 0, since the supremumM is attained at u. Hence
by the first derivative test,

0 = g′(0)

=
d

dt

⟨u,Bu⟩+ 2tRe⟨v, Bu⟩+ t2⟨v, Bv⟩
⟨u, u⟩+ 2tRe⟨v, u⟩+ t2⟨v, v⟩

∣∣∣
t=0

= 2
(
Re ⟨v, Bu⟩−MRe ⟨v, u⟩

)
where we used that ⟨u,Bu⟩ =M and ⟨u, u⟩ = 1.
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For a real Hilbert space one dispenses with the “Re” parts, getting just

⟨v, Bu⟩−M⟨v, u⟩ = 0.

The “Re” parts may be removed on a complex Hilbert space too, since one
may repeat the above argument with v replaced by iv in the definition of g,
which changes the real part to an imaginary part. Hence ⟨v, Bu−Mu⟩ = 0
for all v ∈ H, and so Bu−Mu = 0. Thus u is an eigenvector with eigenvalue
M, as we wanted to show.

Similarly, one finds that if m < 0 then m is an eigenvalue of B.

Step 2 — Finding the largest-magnitude eigenvalue. Let

α1 = sup
u ̸=0

|⟨u,Bu⟩|
⟨u, u⟩

so that α1 = max(|m|, |M|). Step 1 shows that if α1 ̸= 0 then α1 or −α1
is an eigenvalue of B. Denote the eigenvalue by β1, and the corresponding
eigenvector by u1, so that Bu1 = β1u1.

Step 3 — Repeat on the orthogonal complement. Let H1 be the span of the
eigenvector u1 (that is, the subspace of all scalar multiples of u1), so that H1

is a closed subspace of H. Decompose the Hilbert space as

H = H1 ⊕H⊥
1 .

Notice B maps H⊥
1 to H⊥

1 , since if w ∈ H⊥
1 then ⟨w,u1⟩ = 0 and so

⟨Bw,u1⟩ = ⟨w,Bu1⟩ = β1⟨w,u1⟩ = 0,

where we used once again the selfadjointness of B.
Hence H⊥

1 is a separable, infinite dimensional Hilbert space and B :
H⊥
1 → H⊥

1 is a linear, compact, selfadjoint operator. Thus Step 2 ap-
plies to the operator B restricted to H⊥

1 , and in this fashion we continue
iteratively generating eigenvalues β1, β2, β3, . . . with decreasing magnitudes
|β1| ≥ |β2| ≥ |β3| ≥ · · · . The corresponding eigenvectors are orthonormal by
construction, and so at each stage of the construction

H = (H1 ⊕H2 ⊕ · · · ⊕ Hk)⊕ (H1 ⊕H2 ⊕ · · · ⊕ Hk)
⊥.

The process terminates after k ≥ 0 iterations if αk+1 = 0 where

αk+1 = sup
u⊥(H1⊕···⊕Hk)

|⟨u,Bu⟩|
⟨u, u⟩

.
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Otherwise the process continues for all k.

Step 4 — Suppose the process terminates after k ≥ 0 iterations. Let K =
(H1 ⊕ · · · ⊕ Hk)

⊥. The condition αk+1 = 0 gives

⟨u,Bu⟩ = 0, u ∈ K. (A.1)

Then

⟨v, Bu⟩ = 0, u, v ∈ K, (A.2)

because

2Re⟨v, Bu⟩ = ⟨v, Bu⟩+ ⟨Bu, v⟩
= ⟨v, Bu⟩+ ⟨u,Bv⟩ by selfadjointness of B

= ⟨u+ v, B(u+ v)⟩− ⟨u,Bu⟩− ⟨v, Bv⟩
= 0

by (A.1), with the imaginary part vanishing similarly after replacing v with
iv (in the complex case).

Choosing v = Bu in (A.2) shows Bu = 0 for all u ∈ K. Thus K is the
kernel or zero eigenspace of the operator B. It has a countable ONB, since
H is separable by hypothesis. Combining this basis with the eigenvectors
u1, . . . , uk yields an ONB for the whole space H.

Step 5 — Suppose the process continues for all k. Then βk → 0, as follows.
The orthonormal sequence {uk} converges weakly to 0 because ⟨uk, v⟩ → 0

for each v ∈ H, which follows from Bessel’s inequality∑
k

∣∣⟨uk, v⟩∣∣2 ≤ ∥v∥2.

Hence Buk converges in norm to 0, by Lemma A.2, and so

|βk| = ∥βkuk∥ = ∥Buk∥→ 0

as we wanted to show.
Let K = {u1, u2, u3, . . . }

⊥.
If K = {0} then {uk} is complete and so forms an ONB for H. Suppose

K ̸= {0}. Observe ⟨u,Bu⟩ = 0 for all u ∈ K because

|⟨u,Bu⟩|
⟨u, u⟩

≤ αk+1 → 0.
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Hence Bu = 0 by arguing as in Step 4. Thus K is the zero eigenspace. To
finish the proof one chooses a countable ONB for K and combines it with the
{uk} to get a countable ONB for H.



Appendix B

Compact imbeddings of
Sobolev space into L2

Goal

Develop compact imbedding theorems of Rellich type for H10 ↪→ L2 on do-
mains of finite volume, and H1 ↪→ L2 on bounded Lipschitz domains, as used
in Chapters 5–9.

Fourier multiplier operators

Boundedness and compactness properties of Fourier multipliers are estab-
lished in the next lemmas, to be used later when proving compact imbeddings
of Sobolev space.

All functions in this appendix are complex valued unless specified other-
wise, and L2(Ω) means L2(Ω;C) and so on.

Write Mw for the Fourier multiplier operator

Mwf = F−1(wFf)

where F is the Fourier transform.

Lemma B.1 (Boundedness). If g,w ∈ L∞(Rd) then

gMw : L2(Rd)→ L2(Rd)

is linear and bounded.

179



180 APPENDIX B. COMPACT IMBEDDINGS

Proof. Since the Fourier transform acts isometrically on L2, it is obvious from
the definition of Mwf = F−1(wFf) and boundedness of the functions g and
w that gMw is a bounded operator, with norm at most ∥g∥L∞∥w∥L∞ .
Lemma B.2 (Compactness). If g,w ∈ L2(Rd) then

gMw : L2(Rd)→ L2(Rd)

is linear and compact.

Proof. First we show the operator is well defined and bounded. Sincew ∈ L2,
the multiplier can be written as a convolution, namely

Mwf = F−1(wFf) = (F−1w) ∗ f, f ∈ L2(Rd),

and so

∥gMwf∥L2 ≤ ∥g∥L2∥Mwf∥L∞ ≤ ∥g∥L2∥w∥L2∥f∥L2 .

Thus gMw is bounded on L2. Further, it is Hilbert–Schmidt and therefore
compact, because the operator

(gMwf)(x) = g(x)

∫
Rd

(F−1w)(x− y)f(y)dy

has integral kernel K(x, y) = g(x)(F−1w)(x− y), which is square integrable:∫
Rd

∫
Rd

K(x, y)2 dxdy = ∥g∥2L2∥w∥
2
L2 .

Lemma B.3. If g ∈ L2 ∩ L∞(Rd), w ∈ L∞(Rd) and w(ξ) → 0 as |ξ| → ∞,
then

gMw : L2(Rd)→ L2(Rd)

is linear and compact.

Proof. First, gMw is bounded on L2 by Lemma B.1, since g and w are
bounded. For compactness, write

wn = w1B(n)
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where B(n) is the ball of radius n in Rd. Then wn is a bounded function
with compact support, and so belongs to L2(Rd). Since g ∈ L2 by hypothesis,
Lemma B.2 now yields compactness of gMwn .

We will show gMwn → gMw in the operator norm, so that gMw is
compact. Indeed,

∥(gMwn − gMw)f∥L2 ≤ ∥g∥L∞∥(Mwn −Mw)f∥L2
= ∥g∥L∞∥(wn −w)Ff∥L2
≤ ∥g∥L∞ sup

|ξ|≥n
|w(ξ)| ∥Ff∥L2

and so as n→∞,

∥gMwn − gMw∥L2→L2 ≤ ∥g∥L∞ sup
|ξ|≥n

|w(ξ)|→ 0.

Compactness of H10 ↪→ L2 on finite volume domains

Now comes the main result of the chapter.

Theorem B.4 (Rellich for H10). If Ω ⊂ Rd is open with finite volume then
the imbedding

H10(Ω) ↪→ L2(Ω)

is compact.

This appendix treats complex valued functions. Real valued functions are
a special case.

Proof. Step 1. Consider a bounded sequence {fk} inH
1(Rd), say with ∥fk∥H1(Rd) ≤

C. Define Fk ∈ L2(Rd) by

F Fk = (1+ 4π2|ξ|2)1/2Ffk,

where we observe
∥Fk∥L2(Rd) = ∥fk∥H1(Rd) ≤ C,

so that the sequence {Fk} is bounded in L2(Rd).
Let g = 1Ω where Ω ⊂ Rd is measurable with finite volume. (We do

not assume Ω is open, in this step of the proof.) Notice g ∈ L1 ∩ L∞(Rd)
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since Ω has finite volume, so that in particular g ∈ L2(Rd). Next let w(ξ) =
(1 + 4π2|ξ|2)−1/2, so that w ∈ L∞(Rd) and w(ξ) → 0 as |ξ| → ∞. Hence
gMw is compact on L2(Rd) by Lemma B.3.

Applying this compact operator to Fk yields existence of a subsequence
of {gMwFk} that converges in L

2(Rd). Since

gMwFk = 1Ωfk,

we have a subsequence of {fk} whose restrictions to Ω converge in L2(Ω).
Thus the restriction map from H1(Rd) to L2(Ω) is compact.

Step 2. Now take a bounded sequence {fk} in H
1
0(Ω), where Ω is open

with finite volume, and extend fk to equal 0 outside Ω so that the extended
function belongs toH1(Rd). Step 1 yields a subsequence of {fk} that converges
in L2(Ω), proving compactness of the imbedding H10(Ω) ↪→ L2(Ω).

A useful fact was established by Step 1 of the last proof.

Theorem B.5 (Restriction of H1 to L2). If Ω ⊂ Rd is measurable with finite
volume then the restriction map

H1(Rd)→ L2(Ω)

f 7→ f|Ω

is compact.

Compactness of H1 ↪→ L2 on Lipschitz domains

The imbedding of H10 implies an imbedding of H1.

Theorem B.6 (Rellich for H1). If Ω ⊂ Rd is a bounded domain with Lips-
chitz boundary then the imbedding

H1(Ω) ↪→ L2(Ω)

is compact.

Proof. Choose a bounded domain Ω0 that contains the closure of Ω, and
write

E : H1(Ω)→ H10(Ω0)

for the extension operator [Evans and Gariepy]. A bounded sequence {fk}

in H1(Ω) gives a bounded sequence {Efk} in H
1
0(Ω0). Some subsequence of

the Efk converges in L
2(Ω0) by Rellich’s Theorem B.4, and restricting to Ω

(where Efk = fk) shows convergence of the subsequence in L2(Ω).
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Notes and comments

The proof by Fourier transform and Hilbert–Schmidt operators of the com-
pact imbedding H10 ↪→ L2 (Rellich’s Theorem for finite volume domains) was
shown to me by Dirk Hundertmark.

The proof extends straightforwardly to give compactness of the imbedding
for fractional order Sobolev spaces too: Hs0(Ω) ↪→ L2(Ω) compactly for all
s > 0, whenever Ω has finite volume. Hence one obtains discrete spectrum
for the fractional Laplacian on domains of finite volume. For more on spectral
theory of the fractional Laplacian, see the review article [Frank].

Further, the proof of Theorem B.5 adapts easily to show that Hs(Rd)
restricts compactly into L2(Ω), whenever the set Ω has finite volume.
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