Hilbert's 5th Problem and NSA Part II

Rocco Davino

March 2021

Review

- A Lie group is a topological group with an additional smooth structure. Hilbert's 5th Problem is about characterizing Lie groups without referring to this smooth structure.
- In particular, we want to show: locally Euclidean \Rightarrow Lie.
- A few other relevant definitions are NSS, NSCS, etc. To achieve our implication above, we pass through the NSS condition, so

locally Euclidean \Rightarrow NSS \Rightarrow Lie.

Review, cont.

- The most important objects in this story are 1-parameter subgroups and L(G), the set of 1-parameter subgroups of G. Motivated by our Lie group knowledge, we want to establish L(G) as a substitute tangent space at 1 towards finding a compatible smooth manifold structure.
- We found a reasonable addition on L(G) and showed that assuming it works, L(G) is an \mathbb{R} -vector space, a first step towards the goal in the previous point.
- We introduced the adjoint representation $a \mapsto \operatorname{Ad}(a) : G \to \operatorname{Aut}(L(G))$ and discussed how $\operatorname{Aut}(L(G))$ will eventually act like $GL_n(\mathbb{R})$, allowing a continuous group homomorphism from G to $GL_n(\mathbb{R})$.

Note on Defining X + Y in L(G)

When G is a Lie group, X(t) for $t \approx 0$ is like moving in the direction of X'(0), similarly with Y(t) and Y'(0). Writing things additively in G, for large s and $t \approx 0$

$$[st](X(1/s) + Y(1/s))$$

is like alternating small steps in the X'(0) direction and the Y'(0) direction many times over, i.e. like moving in the X'(0) + Y'(0) direction. Thus in defining

$$(X+Y)(t) = \lim_{s\to\infty} (X(1/s)Y(1/s))^{[st]}$$

we replicate this addition of tangent vectors.

Looking Forward

We want to use nonstandard analysis to show that $X + Y \in L(G)$ actually exists for all $X, Y \in L(G)$. We now make some definitions towards this goal, establish an important lemma, and discuss some of its consequences.

The Nonstandard Setting I

Let S be a Hausdorff space and $s \in S$.

Definition

The monad of s, denoted $\mu(s)$, is the intersection of all $U^* \subseteq S^*$ with U a neighborhood of s in S.

- These are the points that are "infinitely close" to s.
- A set $U \subseteq S$ is open if and only if for all $x \in U$, $\mu(x) \subseteq U^*$.

Definition

The points of S^* that are infinitely close to some $s \in S$ are called nearstandard. Let $S_{\rm ns}$ be the set of nearstandard points, i.e.

$$S_{\mathrm{ns}} := \bigcup_{s \in S} \mu(s).$$

- Since S is Hausdorff, $\mu(s) \cap \mu(s') = \emptyset$ if $s \neq s'$. Thus we can define a map $\operatorname{st}: S_{\operatorname{ns}} \to S$ by declaring $\operatorname{st}(x)$ to be the unique $s \in S$ such that $x \in \mu(s)$.
- We have an equivalence relation \sim on $S_{\rm ns}$ whose equivalence classes are the monads:

$$x \sim y :\Leftrightarrow \operatorname{st}(x) = \operatorname{st}(y).$$

In the group setting,

- $G_{ns} = \bigcup_{g \in G} \mu(g)$ is a subgroup of G^* .
- $\operatorname{st}: G_{\operatorname{ns}} \to G$ is a group homomorphism that is the identity on G with $\mu:=\mu(1)=\ker\operatorname{st}$, the normal subgroup of infinitesimals of G_{ns} .
- ullet \sim on $G_{
 m ns}$ is given by

$$a \sim b \Leftrightarrow ab^{-1} \in \mu$$
.

Useful Nonstandard Topological Facts

Let S, S' be Hausdorff spaces and $s, t \in S$.

- Robinson's characterization of compactness: $K \subseteq S$ is compact if and only if for every $t \in K^*$ there is $s \in K$ with $t \in \mu(s)$.
- Nonstandard characterization of closedness: $C \subseteq S$ is closed if and only if whenever $s \in S$ and $t \in C^*$ are such that $t \in \mu(s)$ then $s \in C$.
- Nonstandard characterization of continuity: if $f: S \to S'$ is continuous, then $t \in \mu(s) \Rightarrow f(t) \in \mu(f(s))$.

The Nonstandard Setting II

In the following everything ranges over its natural nonstandard counterpart, with the exception that $n \in \mathbb{N}$. We fix σ a positive infinite element of \mathbb{R}^* and adopt "big O" and "little o" notations as follows.

- \mathbb{R}^* : for $x, y \in \mathbb{R}^*$ with y > 0, x = o(y) means |x| < y/n for all n > 0 and x = O(y) means |x| < ny for some n > 0.
- G*:

$$O[\sigma] := \{ a \in \mu : (\forall i = o(\sigma)) \ a^i \in \mu \}$$

$$o[\sigma] := \{ a \in \mu : (\forall i = O(\sigma)) \ a^i \in \mu \}$$

$$= \{ a \in \mu : (\forall i \le \sigma) \ a^i \in \mu \}$$

We can think of $o[\sigma]$ as the "very small infinitesimals" and $O[\sigma]$ as the "small infinitesimals".

Notice:

- $o[\sigma] \subseteq O[\sigma] \subseteq \mu \subseteq G_{ns}$.
- $o[\sigma]$ and $O[\sigma]$ are closed under $a \mapsto a^{\ell}$, for each $\ell \in \mathbb{Z}$. In particular, they are symmetric.
- Let $a \in G_{\rm ns}, b \in O[\sigma], c \in o[\sigma]$. Then $aba^{-1} \in O[\sigma]$ and $aca^{-1} \in o[\sigma]$, so they are almost normal subgroups of $G_{\rm ns}$. Later we will see that they are.

Lemma

If $a \in O[\sigma]$ then $a^i \in G_{ns}$ for all $i = O(\sigma)$.

Idea: suppose $a \in O[\sigma]$ and $a^j \in G_{\rm ns}$ for some j comparable to σ , i.e. $j = O(\sigma)$ and $\sigma = O(j)$. Then any $i = O(\sigma)$ is bounded by nj for some $n \in \mathbb{N}^{>0}$ and $a^i = (a^j)^n$ is again nearstandard.

Lemma

Let $a \in O[\sigma]$. Then the map $X_a : \mathbb{R} \to G$ defined by $X_a(t) := \operatorname{st}(a^{[\sigma t]})$ is a 1-ps of G. Moreover

- **2** $b \in \mu \Rightarrow X_{bab^{-1}} = X_a$.
- $3 X_a = O \Leftrightarrow a \in o[\sigma].$
- **4** $L(G) = \{X_b : b \in O[\sigma]\}.$

Proof:

- The map is a group homomorphism since the standard part map is a group homomorphism.
- We now show continuity at 0, so let U be a neighborhood of 1 in G. Take a neighborhood V of 1 in G such that $\operatorname{cl}(V) \subseteq U$.

- Now $a^k \in \mu \subseteq V^*$ for all $k = o(\sigma)$ by definition, i.e. for any n > 0, $a^k \in V^* \subseteq \operatorname{cl}(V)^*$ for all $|k| < \sigma/n$. Also $a^k \in G_{\operatorname{ns}}$ for such k meaning $\operatorname{st}(a^k) \in \operatorname{cl}(V) \subseteq U$ whenever $|k| < \sigma/n$ by the nonstandard characterization of closedness.
- Therefore $X_a(t) = \operatorname{st}(a^{[\sigma t]}) \in U$ for |t| < 1/n.

- For (4), let $X \in L(G)$. Letting $b := X(1/\sigma)$, we want to show that $b \in O[\sigma]$ and $X = X_b$, i.e. $b^i \in \mu$ for $i = o(\sigma)$ and $X = X_b$.
- If $i = o(\sigma)$ then $|i| < \sigma/n$ for all n > 0 and $|i/\sigma| < 1/n$ for all n > 0, so that i/σ is infinitesimal. But

$$b^i = X(1/\sigma)^i = X(i/\sigma) \in \mu$$

since $i/\sigma \in \mu(0) \Rightarrow X(i/\sigma) \in \mu(1)$ by continuity of X.

Lastly,

$$X_b(t) = \operatorname{st}(X(1/\sigma)^{[\sigma t]}) = \operatorname{st}(X([\sigma t]/\sigma)) = X(t)$$

since $\sigma t - 1 \le [\sigma t] \le \sigma t + 1$ yields $[\sigma t]/\sigma \in \mu(t)$, hence $X([\sigma t]/\sigma) \in \mu(X(t))$.

Applications of the Previous Lemma

- The previous lemma is crucial for showing L(G) is a topological vector space. Recall L(G) is an \mathbb{R} -vs assuming X+Y exists for all $X,Y\in L(G)$.
- To show this we consider a map

$$ao[\sigma] \mapsto X_a : O[\sigma]/o[\sigma] \to L(G).$$

It takes some technical work in Section 5 of this paper to show that it is well-defined.

- $L(G) = \{X_a : a \in O[\sigma]\}$ from the last lemma shows that it is surjective.
- We need another technical result from Section 5: for $a, b \in O[\sigma]$, if $X_a = X_b$ then $ab^{-1} \in o[\sigma]$. This gives the injectivity of the map, so it is bijective.

Applications of the Previous Lemma, cont.

• From here, define an operation $+_{\sigma}$ on L(G) making it into an abelian group (see Theorem 5.8) and this bijection $O[\sigma]/o[\sigma] \to L(G)$ into a group isomorphism, i.e.

$$X_a +_{\sigma} Y_b := X_{ab}$$

for all $a, b \in O[\sigma]$.

With this, the goal is the following:

Lemma

Let $X, Y \in L(G)$. Then X + Y exists and equals $X +_{\sigma} Y$.

Why $O[\sigma]/o[\sigma]$?

- We are trying to turn L(G) into a kind of tangent space, so we must deal with infinitesimal notions like limits when defining X + Y, for example. This is why we work with elements in $O[\sigma]$.
- We look at $O[\sigma]/o[\sigma]$ because it can be viewed as a standard object: take $G=\mathbb{R}$ and write things additively. If $a\in O[\sigma]$, then $\sigma a\in \mathbb{R}_{\mathrm{ns}}$ by the first lemma in this talk. Define a map

$$a\mapsto \operatorname{st}(\sigma a):O[\sigma]\to\mathbb{R},$$

which is a homomorphism. Observe that a is in the kernel iff σa is infinitesimal iff $a \in o[\sigma]$. Therefore

$$O[\sigma]/o[\sigma] \cong \mathbb{R}.$$

• Thus we can use the nice properties of $O[\sigma]$ for dealing with infinitesimals and "standardize" to make it behave like a tangent space.