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Abstract

This paper studies a variety of forms of regret minimization as the criteria with
which traders choose their bids/asks in a double auction. Unlike the expected utility
maximizers that populate typical market models, these traders do not determine their
actions using a single prior. The analysis proves that minimax regret traders will not
converge to price-taking as the number of traders in the market increases, contrary
to standard economic intuition. In fact, minimax regret traders’ bids and asks are
invariant to the number of other traders in the market. However, not all regret-based
decision rules fail to respond to market size. Introducing priors over some part of the
decision problem to minimize expected maximum regret, or multiple priors to minimize
maximum expected regret, have different effects. The robustness of the sealed bid
double auction is limited by the need to avoid priors that eliminate traders incentive
to truthfully reveal their redemption values.
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1 Introduction

Perfectly competitive markets are efficient only if traders act as price takers1, behavior that
can be induced in large markets if traders recognize that the size of the market attenuates
each individual trader’s influence. The double auction models that formally prove this
familiar reasoning typically attribute a great deal of knowledge to their traders. Traders
are assumed to be capable of coordinating on an equilibrium in which each trader maxi-
mizes expected utility, something that is only possible because they know the distribution
of traders’ bids and asks. But are these strong assumptions on traders’ knowledge and
capabilities necessary, or could traders who do not know the distribution of bids and asks
still converge to price-taking behavior as the market grows? Our confidence in a market’s
robustness may depend on the answer.

This paper replaces the expected utility maximizers that populate a conventional double
auction model with regret minimizing traders. “Regret” here is the difference between one’s
actual payoff (a function of one’s action and the realized state of the world), and the best
possible payoff that could have been achieved in the realized state (Savage, 1951; Linhart
and Radner, 1989). Regret minimization can be defined in a variety of ways, and this
paper examines three separate versions of regret minimization. What all three versions of
the regret minimizing trader have in common is that none of them determines his action
by referring to a specific belief (a prior) about the distribution of other traders’ bids and
asks.

Because this paper’s regret minimizers do not rely on a particular prior, they are
equipped to handle a type of uncertainty that conventional models do not address: Knigh-
tian uncertainty (Knight, 1912). Under Knightian uncertainty, the set of possible states of
the world (and the outcome in each state) is known to the decision-maker, but the proba-
bility of each state of the world is not. For example, if a person does not trust that a coin
being tossed is a fair coin, then that person faces Knightian uncertainty: the possible states
of the world are known to be Heads and Tails, but the probability of each state is unknown.
In this paper, traders face Knightian uncertainty regarding other traders’ strategies, and
perhaps also the distribution of other traders’ underlying redemption values.

An expected utility maximizer’s response to Knightian uncertainty is to adopt a sub-
jective prior, this approach can be problematic, leading us to seek an alternative approach.
Each of the three problems discussed below relates to a specific version of regret minimiza-
tion and a separate result in this paper. Taken together, the paper’s three results reveals
how some priors can prevent convergence to price-taking.

The first problem with relying on a single subjective prior applies when the decision
maker is very unfamiliar with the decision problem. Complete ignorance cannot be ade-
quately reflected by any prior, even a uniform prior that treats each possible outcome as
equally likely, because even adopting a uniform prior asserts some knowledge about the

1By “price takers,” I mean that each buyer and seller truthfully reports their utility-maximizing quantity
to produce or consume at a given price, rather than attempting to manipulate prices.
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specification of the decision problem. If the decision maker’s ignorance is so complete that
he does not know which characteristics of events are relevant and which are extraneous,
then his decision rule ought not to depend on the way he has chosen to specify the problem
(Arrow and Hurwicz, 1972). Minimax regret, the first version of regret minimization that
this paper considers, is well-suited to situations of complete ignorance because it essen-
tially accommodates all priors at once. This paper finds that minimax regret traders do
not converge to price-taking behavior.

The second reason against a single subjective prior extends to cases other than complete
ignorance. Even supposing that the trader does have a sense of the distribution of the
other buyers’ and sellers’ redemption values, the trader may face Knightian uncertainty
regarding those traders’ strategies. The multiplicity of Bayes Nash equilibria in a double
auction makes this concern especially acute. A trader that allows for the full range of
rationalizable strategies on the part of his rivals to calculate maximum regret, but then
applies a prior over the rivals’ valuations and costs, is said to be minimizing expected
maximum regret. Linhart and Radner (1989) have examined this decision rule in the case
of bilateral trade; the present paper extends their analysis to larger markets, and finds
that the decision rule does not induce convergence to price-taking. On the contrary, such
a bidder will shade his bid more, not less, as the size of the market increases, approaching
the minimax regret bid.

The third reason against a single subjective prior is that real decision makers are not
always willing to commit to a single prior, even when they have a basis to do so. De
Finetti (as quoted by Dempster (1975)) explained that in many situations a decision-
maker’s subjective prior will only be “vaguely acceptable”. Therefore “it is important not
only to know the exact answer for an exactly specified initial position, but what happens
changing in a reasonable neighborhood the assumed initial opinion.” This justifies the use
of decision rules that involve multiple priors. A well-known example of such a decision
rule is maxmin expected utility with a non-unique prior (Gilboa and Schmeidler, 1989).
Similarly, a decision maker can use multiple priors to minimize maximum expected regret.
The third and final result of this paper is that a trader who minimizes maximum expected
regret may converge to price-taking behavior as the market grows – even though such a
trader may not evaluate the possible bids according to a single prior, as an expected utility
maximizer would. However, the set of priors must satisfy certain conditions in order for
minimax expected regret traders to converge to price-taking.

Taken together, the paper’s three results indicate the significance that individual beliefs
may have for the efficiency of the entire market. Traders whose decision rule is consistent
with every prior fail to converge to price-taking (Theorem 1). The failure to converge
suggests that restricting the priors is key to inducing price-taking behavior. But it is
not enough to restrict only one aspect of the decision problem: introducing prior beliefs
about redemption values but not strategies does not ensure convergence to price-taking
(Theorem 2). Still, traders can converge to price-taking as long as the set of priors they
consult is restricted from the priors that would prevent convergence for even expected

3



utility maximizers (Theorem 3). Whether bidders are expected utility maximizers or regret
minimizers, eliminating “bad priors” is essential for markets to function efficiently.

The following sections begin with an explanation of the traders, double auction rules,
and profit functions of the model (section 2), followed by a further exploration of the
information structure (section 3). The next three sections provide formal definition of the
decision rule, and analysis of the resulting outcome in the double auction, for each of the
three versions of regret minimization. Section 7 concludes.

2 Traders and Auction Rules

This section describes the models traders, institution, and traders’ profit functions, all of
which follow the standard approach to a private value sealed-bid double auction.

2.1 Traders with Private Values

There are m buyers and n sellers. Each buyer i has a valuation vi ∈ [v, v] ⊂ R+, which is
the buyer’s maximum willingness to pay for a single unit of the good. Each seller j has a
cost cj ∈ [c, c] ⊂ R+ of producing a single unit of the good. We will refer to both valuations
and costs as the traders’ redemption values. Agents do not supply or demand more than
one unit of the homogeneous and indivisible good.

2.2 k-Double Auction Rules

Agents submit sealed bids (denoted bi) and asks (aj) to the auctioneer. We assume that the
submitted bids (b1, b2, ..., bm) are positive real numbers that cannot exceed the maximum
valuation v. We assume that sellers submit asks (a1, a2, ..., an) that cannot be less than the
minimum cost c. For simplicity of notation, we will assume that the range of acceptable
bids and the range of acceptable asks is Z = [c, v], where c < v.

These bids and asks determine a single price at which all units are traded and identifies
which buyers and sellers will trade. The price p is set within the interval [x, y] of prices such
that the number of buyers whose bids exceed the price equals the number of sellers whose
ask is less than the price. The exact price selected within this interval of market-clearing
prices depends on the exogenous parameter k ∈ [0, 1]:

p = (1− k)x+ ky. (1)

Example 1 Suppose that there are m = 3 buyers who submit bids (b1 = 4.50, b2 =
2.12, b3 = 7.00) and n = 4 sellers who submit asks (a1 = 1.00, a2 = 3.45, a3 = 10.30, a4 =
5.87). Then the market clears at any price between 3.45 and 4.50. If k = .8, then the price
set by the k-double auction is 4.29. Buyers 1 and 3 will trade with sellers 1 and 2. Since
the units of the good are identical, and all traded units are traded at the same price, it is
irrelevant which buyer trades with which seller.
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It is useful to note that the price in the market depends on the mth and m+ 1st-lowest
bid or ask. Let (z(1), z(2), ..., z(m+n)) ∈ Zm+n be the ordered set of bids and asks, with z(1) <
z(2) < ... < z(m+n). In our example above, z = (z(1) = 1.00, z(2) = 2.12, z(3) = 3.45, z(4) =
4.50, z(5) = 5.87, z(6) = 7.00, z(7) = 10.30). The two values that determined the price were
z(3) and z(4). In fact, the interval of market-clearing prices is always [z(m), z(m+1)].

In the case that z(m) = z(m+1), the interval of market clearing prices consists of a single
price, p = z(m). The number of sellers asking less than this price may not equal the number
of buyers bidding above this price. In that case, a fair lottery may determine which of the
traders on the long side of the market with bids (or asks) equal to p will be allowed to
trade (Satterthwaite and Williams 1993).

2.3 Profit Functions

The relationship between the trader’s profit and the outcome of the auction is straightfor-
ward. Buyer i’s profit is vi − p if he trades and zero otherwise. Seller j’s profit is p − cj
if he trades and zero otherwise. Thus, given a trader’s redemption value, a bid or ask
determines a set of possible payoffs, the realization of which depends on the bids and asks
submitted in the double auction by other traders. Let ζ denote the ordered set of the bids
and asks submitted by those other traders in the auction. Then if a buyer with valuation
v submits bid b in the auction, his corresponding profit function ΠB is

ΠB(b, v, ζ) =


v − [(1− k)ζ(m) + kζ(m+1)] if ζ(m+1) < b

v − [(1− k)ζ(m) + kb] if ζ(m) < b < ζ(m+1)

0 if b < ζ(m)

. (2)

Likewise, if a seller with cost c submits ask a in the auction, his corresponding profit
function ΠA is

ΠA(a, c, ζ) =


[(1− k)ζ(m) + kζ(m+1)]− c if a < ζ(m)

[(1− k)a+ kζ(m+1)]− c if ζ(m) < a < ζ(m+1)

0 if ζ(m+1) < a

. (3)

The levels of profit, as it relates to the rival bids and asks ζ(m) and ζ(m+1), are shown
in figures 1 and 2. Note that ζ(m) is always less than ζ(m+1), so that the possible outcomes
all lie above the 45 degree line. The bidder’s profit depends on ζ(m) and ζ(m+1) relative to
his bid b (and likewise the seller for his ask a).
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ζ(m)

ζ(m+1)

45o

ΠB = v − [(1− k)ζ(m) + kζ(m+1)]

ΠB = v − [(1− k)ζ(m) + kb]

ΠB = 0

b

b

Figure 1: Bidder’s Profit from bid b

ζ(m)

ζ(m+1)

ΠA = [(1− k)ζ(m) + kζ(m+1)]− c

ΠA = [(1− k)a+ kζ(m+1)]− c

ΠA = 0

a

a

Figure 2: Sellers Profit from ask a
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3 Information Structure

In analyzing the market described in section 2, it is typical to think of the auction as a
game of incomplete information and to seek a solution in the form of a Bayesian Nash
equilibrium. In contrast, this paper treats the trader’s situation as a decision problem
under Knightian uncertainty Knight (1912). This section provides a notational framework
for the decision rules that the rest of the paper will examine, and discusses how this paper’s
approach to Knightian uncertainty compares to the typical approach.

3.1 Defining a Decision Problem Under Knightian Uncertainty

Decision problems involve a set of acts A available to the decision-maker, the set of possible
states of the world S, and the outcome u ∈ U that results in the state s ∈ S given the
decision-maker’s action a ∈ A. We may find it useful to think of the decision-maker as
having a payoff function u : S ×A → R.

A decision rule specifies what a decision maker will do given a menu A of possible
actions. In the following sections, we will characterize various decision rules using axioms
that apply to decision makers’ preferences %. Let %A denote a preference relation over the
actions available in the menu A. A preference relation is defined to be a binary relation
% that is reflexive (a % a for all actions a) and transitive (if a1 % a2 and a2 % a3, then
a1 % a3) (Fishburn, 1970). From % we can derive relations � and ∼ in the usual way.

3.2 Contrasting Incomplete Information and Knightian Uncertainty

In an incomplete information game, the bidder does not know the costs and valuations
of the other traders. However, the bidder does know the distribution from which these
redemption values are drawn. This distribution, together with some equilibrium belief
about the traders’ strategies, is the bidder’s source for his beliefs about the distribution
of others’ bids and asks. Using this distribution of others’ bids and asks, the bidder can
calculate the expected profit of each of his own possible bids. An expected utility maximizer
chooses a bid that yields the greatest expected profit.

In contrast, this paper treats the agent’s situation as a decision problem under ambi-
guity, which is also known as Knightian uncertainty after Knight (1912). In this approach,
the set of possible states of the world (and the outcome in each state) is known to the
decision-maker, but the probability of each state of the world is not. In our model, the
traders know the range of possible valuations and costs for the other traders. They know
their own valuation/cost with certainty. However, they do not know the distribution of
other traders’ valuations and costs.

Two possible approaches to this decision problem under Knightian uncertainty are
depicted in Figures 4 and 5. The crucial difference between these figures and Figure 3
is that knowledge about “Distributions of Other Agents’ Valuations” has been removed.
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Instead, traders know the range of possible valuations of other traders – the support of the
distribution, rather than the distribution itself.

3.3 The Double Auction as a Decision Problem Under Knightian Un-
certainty

Approaching the double auction as a decision problem under Knightian Uncertainty is a
more general approach than studying the situation as a game. As pictured in Figure 4,
the agent could choose to resolve the decision problem by selecting an equilibrium strategy
given his subjective prior about the distribution of redemption values and the strategies of
other traders. But it is also possible to resolve the decision problem using another decision
rule.

One example of a decision rule that does not calculate expected profit, or use a prior
at all, is minimax regret. As pictured in Figure 5, a minimax regret bidder in a k-double
auction will choose his bid by analyzing the regret function associated with each bid. No
prior is used; all that is needed to make a decision is to know the set of possible outcomes.

In analyzing the agent’s problem as a decision problem under Knightian uncertainty,
rather than as a game, it is important that this is a sealed-bid auction with private valu-
ations. Because this is a situation in which traders act once (submitting sealed bids), the
traders need not consider how their actions will reveal information to other traders, and
thus alter their rivals’ future behavior. Furthermore, private valuations mean that traders
will not revise their own estimate of an item’s true value based on the revelation of other
traders’ valuations. The only reason that the other traders’ redemption values matter is
that it affects how the other traders may be expected to bid.
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Figure 3: Bidder Decision in Private-Value k-Double Auction: Game of Incomplete Infor-
mation

Figure 4: Bidder Decision in Private-Value k-Double Auction: Decision Problem Under
Knightian Uncertainty (Bayesian Approach)
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Figure 5: Bidder Decision in Private-Value k-Double Auction: Decision Problem Under
Knightian Uncertainty (Minimax Regret))

4 First approach: minimizing maximum regret

This section formally defines minimax regret, and shows that minimax regret traders bid
and ask functions do not reflect the traders true redemption values, and do not converge
to truthful bidding no matter how large the market grows.

4.1 Minimax Regret defined

The action(s) minimizing maximum regret are identified by calculating the maximum regret
that could be incurred under each action. The regret for a particular action in a particular
state is calculated by comparing that action’s payoff to the maximum possible payoff in
the same state.

Definition 1 An action a attains minimax regret if

a ∈ arg min
a∈A

max
s∈S
{max
a∗∈A

u(a∗, s)− u(a, s)}} (4)

From the standpoint of a person accustomed to working with expected payoffs, it may
seem that minimax regret operates by choosing a “pessimistic” prior – a prior that assigns
higher probability to events with very low or very high payoffs. The truth is subtly differ-
ent. The decision rule does not stick to a single pessimistic prior by which each action is
evaluated. Instead, a minimax regret trader evaluates each action by focusing exclusively
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on the state in which regret is highest for that action. Of course, this is equivalent to using
a prior that assigns probability 1 to the event that corresponds to this extreme outcome.
However, the prior that is used to evaluate action a1 may be very different from the prior
that is used to evaluate action a2.

4.2 Minimax Regret in a k-Double Auction

The figure below shows a bidder’s regret if his private valuation is v and he chooses to
submit bid b. Note that the bidder’s regret decreases as the rival bid ζ(m) approaches his
bid (since there is less regret from overbidding in that case) and again as it approaches his
own valuation.

ζ(m)

ζ(m+1)

RB = k(ζ(m+1) − ζ(m))

RB = k(b− ζ(m))

RB = 0

RB = v − ζ(m)

v

v

b

b

Regret OverbiddingRegret Underbidding

Figure 6: Bidder’s Profit from bid b

Theorem 1 In a k-double auction, the bid bi that minimizes maximum regret for a buyer
with private valuation vi is bi = vi

1+k . The ask ai that minimizes maximum regret for a

seller with private cost ci is ai = ci+(1−k)
1+(1−k)

The closer k is to 0, the less influence the buyer’s bid has on the price, and consequently
the closer the buyer minimax regret strategy will be to truthful revelation of his value.
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The closer k is to 1, the greater the potential influence of the buyer’s bid on the price, and
consequently the further the buyer minimax regret strategy will be from truthful revelation
of his value. It is the opposite for a seller.

For k = 1
2 , these results are identical to the minimax regret strategies found by Linhart

and Radner using their first approach to the incomplete information bilateral case.

4.3 Large Markets and Efficiency

The minimax regret bids do not depend on the number of rivals. No matter how many
buyers and sellers participate in the auction, a trader minimizing maximum regret under
this approach will submit the same bid or ask. The strategies are also unaffected by the
number of buyers relative to the number of sellers.

Figure 4 illustrates how this will affect the expected number of trades, the price, and the
gains from trade when redemption values are uniformly distributed over [0, 1] as n,m→∞.
The thin lines represent the truthful demand and supply in the market. The thick lines
show the demand and supply curves that result from aggregating the minimax regret bids
and asks. Depending on k, one side of the market or the other may misrepresent their
redemption values more. But whatever the value of k, the demand and supply curves meet
at a quantity smaller than the quantity where the true valuations meet the true costs.
Furthermore, the price may differ from the efficient price; it will favor the side of the
market that has greater influence on the price.

Since the buyers and sellers do not report their true valuations/costs, some opportuni-
ties for profitable trade will be missed. Since the strategies do not converge to price-taking
as the size of the market increases, the outcome will not approach efficiency either.
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Figure 7: The Distribution of Bids and Asks Depends on k
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5 Second Approach: minimizing expected maximum regret

In this section, I find the bid and ask functions for traders that minimize expected maximum
regret. As the name of their decision rule implies, these traders apply a prior to some
part of their decision problem, unlike the minimax regret traders in the previous section.
Constraining priors in part – but not all – of the decision problem clarifies the relationship
between beliefs and outcomes. Although strategies are not invariant to market size, traders
still do not converge to price-taking behavior, indicating the regret minimization can be
troublesome if priors are unconstrained in any part of the decision problem.

5.1 Minimizing expected maximum regret in a k-Double Auction

This decision rule supposes that traders have some information about the trading envi-
ronment, but do not know how other traders will choose to respond to that environment.
Suppose that each trader knows the distribution of other sellers’ costs and other bidders’
valuations, unlike a minimax regret bidder. However, each trader remains in a state of
Knightian uncertainty regarding the traders’ strategies. Any rationalizable2 strategy is
considered plausible, and the trader does not wish to distinguish between probable and
improbable strategies, nor to assume that all traders are coordinating on one of the auc-
tion’s multiple equilibria.

When the bidder faces Knightian uncertainty about other traders’ strategies but not
their redemption values, then bidder i can calculate the expected maximum regret of a bid
bi in the following way. First, calculate the maximum regret conditional on the realization
of the other traders’ valuations and costs, RB(bi|v, c). Then, take the expectation of
maximum regret, R̄(vi, bi) given the distribution of the other trader’s valuations and costs.

The intuition for why the bid that minimizes expected maximum regret is generally
different from the minimax regret bid has to do with the two sources of regret for a bidder.
A bidder may regret bidding too high, and winning at an unnecessarily high price. This
regret occurs if enough of the other traders’ bids and asks turn out to be low, so that the
lower bound on the range of market clearing prices is lower than the bidder’s bid. On the
other hand, the bidder may regret bidding too low, and missing a profitable trade. This
regret occurs if enough of the other traders’ bids and asks are relatively high, so that the
lower bound on the range of market clearing prices is greater than the bidder’s bid (but
less than the bidder’s valuation).

Taking expectations affects the calculations of the bidders’ two sources of regret dif-
ferently. It is always possible under any realization of others’ redemption values for the
bidder’s bid to be too low, since the sellers could conceivably submit asks that are higher
than the bidder’s bid. On the other hand, a bid can only turn out to be too high if at least

2For a seller with cost ci, any ask ai ∈ [ci, c] is rationalizable. For a buyer with cost vi, any bid bi ∈ [b, vi]
is rationalizable.
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one seller submitted an ask lower than v. But since no seller will submit an ask below his
actual cost, this is only possible under certain realizations of others’ redemption values.

The consequence is that traders’ bids and asks will be closer to their redemption values
under this decision rule than they would under minimax regret, as stated in the second
result.

Theorem 2 Let F̃ denote the cumulative distribution function of the lowest cost among
the n sellers in the market. The bid bi that minimizes expected maximum regret for bidder
i with valuation vi satisfies

F̃ ( (k+1)bi−vi
k ) = F̃ (bi)

1+k

Such a bid bi exists on the interval
[
vi

1+k , v
i
]
.

Similarly, let G̃ denote the cumulative distribution function of the highest valuation
among the m sellers in the market. The ask ai that minimizes expected maximum regret
for seller i with cost ci satisfies

G̃(a
i(1+(1−k))−ci

1−k ) = G̃(ai)+(1−k)
1+(1−k)

Such a bid ai exists on the interval
[
ci, c

i+(1−k)
1+(1−k)

]
.

If the auction rule k is strictly between 0 and 1, then the bid that minimizes expected
maximum regret will be strictly greater than vi

1+k , and the ask that minimizes expected

maximum regret will be strictly less than ci+(1−k)
1+(1−k) . Contrast this result with the minimax

regret bids and asks (when the traders do not use beliefs about the distribution of other
traders’ valuations and costs). Minimizing expected maximum regret results in strategies
closer to so-called “sincere bidding”.

5.2 Minimizing Expected Maximum Regret in Large Markets

This decision rule results in strategies closer to sincere bidding, but that effect diminishes
as the size of the market grows. The reason that minimizing expected maximum regret
results in more truthful bids and asks is that this approach puts less weight on scenarios
in which it is possible to regret bidding too high or asking to little. But the more sellers
there are in the market, the more likely it is that at least one seller will have a cost lower
than a given bid. And the more buyers there are in the market, the more likely it is that
at least one buyer will have a valuation greater than a given ask.

As the number of traders on the other side the market increases, the trader minimizing
expected maximum regret misrepresents his redemption value more. In the limit, the
trader’s bid or ask converges to the fraction of his valuation or cost that we found using
the first approach.
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Corollary 1 Let b(v;n) denote the bid that minimizes expected maximum regret in a k-

double auction with n sellers. Then lim
n→∞

b(v;n) =
v

1 + k
.

Figure 8 demonstrate this point in the case that an equal number of buyers and sellers
with redemption values uniformly distributed over [0, 1] participate in a 1

2 -double auction.
Each bold line in the left-hand figure denotes a bidding function given a certain number
of sellers. If there is only one seller, then the bidding function is significantly closer to
truth-telling (the dashed line showing the function V = v) than it is to the minimax regret
bid, V = v

1+k = 2v
3 . The bidding function approaches 2v

3 rapidly as the number of sellers
increases. Likewise, the right-hand figure shows how a seller will overstate his cost for any
number of bidders, and the amount of overstatement increases to 2(c+1)

3 as the number of
buyers increases.

Figure 8: Bids and asks for traders that minimize expected maximum regret, at various
market sizes

6 Third Approach: minimizing maximum expected regret

In this section, I find sufficient conditions for price-taking behavior when traders use mul-
tiple priors to minimize maximum expected regret. Unlike the traders examined in the
previous two sections, these new regret-minimizers do not have completely unconstrained
priors in any part of the decision problem. This difference is key to the possibility of
convergence to price-taking behavior.
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6.1 Minimizing Maximum Expected Regret defined

This decision rule Stoye (2011b) refers to as Γ-minimax regret; he defines it in this way:

Definition 2 Let Γ denote a set of probability distriubtions on S. An action a attains
Γ-minimax regret if

a ∈ arg min
a∈A
{max
π∈Γ
{
∫

max
a∗∈A

u(a∗, s)− u(a, s)dπ}}} (5)

This decision rule bridges the gap between expected utility maximization and minimax
regret, via the choice of the set of priors Γ. If Γ includes all possible priors, then the
prior(s) π that will maximize the expected regret of action a will be the prior(s) assigning
probability 1 to the event that u(a, s) = mins∈S u(a, s). Then minimax expected regret
will correspond to minimax regret. On the other hand, if Γ is a singleton π, then the
maximum expected regret of each action is simply the expected payoff under π. Then
minimax expected regret will correspond to expected utility maximization.

6.2 Sufficient Conditions for Convergence to Truthful Bidding by Max-
imum Expected Regret Minimizers

Convergence to price-taking under this decision rule will depend on which priors the trader
includes in his set of priors Γ. This is clear from the range of decision rules that are
included in minimax expected regret. Minimax expected regret includes minimax regret,
which does not induce convergence to price-taking, when all priors are included in Γ. It
also includes expected utility maximization, which can induce convergence to price-taking,
when Γ is a singleton. The conditions on Γ that allow for convergence is the subject of this
section.

We introduce some additional notation here, in order to discuss clearly the possibility
of convergence to price-taking under a set of priors Γ. Converge will take place (or fail) as
the market grows, so we must specify how the market grows, as well as the prior(s) that
the agent applies to each market.

Let {(mi, ni)}∞i=1 be a sequence of markets. Market i has mi buyers and ni sellers. Let
Γ = {Γi}∞i=1 be the sequence of the bidder’s set of priors over the rival bids and asks. Γi
is the set of priors over ζ for market i. A typical member of Γ is Gγ = {Gγ,i}∞i=1 where
Gγ,i ∈ Γi is a joint distribution of the mth

i and mi + 1th order statistics in the market of
size (mi, ni).

Theorem 3 Suppose that the following conditions hold for Γ = {Γi}∞i=1:

1. For each sequence of priors {Gγ,i} ∈ {Γi}∞i=1, for every ε ∈ (0, v), there exists
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N(ε,Gγ) ∈ N such that for all i ≥ N(b,Gγ):∫
u(v − ε, ζ(mi), ζ(mi+1))dFγ,i(ζ(mi), ζ(mi+1))

>

∫
u(b′, ζ(mi), ζ(mi+1))dGγ,i(ζ(mi), ζ(mi+1)) (6)

for all b′ < v−ε. That is, under each prior {Gγ}∞i=1 ∈ {Γi}∞i=1, the utility-maximizing
bid converges to v over the sequence of markets.

2. There exists a well-defined function

N(ε) = max
Gγ∈Γ

{N(ε,Gγ)} (7)

Then the bid that minimizes maximum expected regret under {Γi}∞i=1 converges to truth-
ful bidding over the sequence of markets {(mi, ni)}∞i=1.

This Theorem states that if the growth of the market, and the priors over the distri-
bution of bids and asks as the market grows, are such that an expected utility maximizer
would converge to truthful bidding under each of the priors in the set (and the priors are
bounded away from any priors which would fail to satisfy that condition), then a minimax
expected regret bidder will also converge to price-taking behavior. Note that the growth
of the market has been purposefully left undetermined, as has been the ratio of buyers to
sellers in the limit.

These are sufficient conditions for convergence to truthful bidding by traders that min-
imize expected maximum regret. Are these conditions “easy” or “hard” to satisfy? Some
examples of straightforward priors easily satisfy the conditions.

For example, if the trader believes that all of the bids and asks are iid draws from
some distribution f(·) which is bounded away from zero, then the regret minimizing bid
will approach truthful bidding as the number of other bidders becomes large. From the
theorem above, we can therefore conclude that a maximum expected regret minimizer
will converge to truthful bidding in any market in which the number of bidders increases
without bound, so long as each prior f in the set of priors Γ satisfies f(x) > ε for some
positive ε, for all x in the range of possible bids and asks.

Lemma 1 Let {(mi, ni)}∞i=1 be a sequence of markets in which the mi buyers approaches
infinity. Let each Gγ = {Gγ,i}∞i=1 in Γ be a joint distribution of the mth

i and mi+1th order
statistics in which all bids and asks are treated as (mi+ni−1) iid draws from a distribution
fγ(x), where fγ(x) > ε > 0.

Then the bid that minimizes the maximum expected regret will approach truthful bidding
as i→∞.
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7 Conclusion

This exploration of regret minimizing traders’ behavior in k-double auctions suggests that
including even one “bad” prior can wreak havoc on a trader’s tendency to converge to price-
taking behavior. If permitted to take into account any and all such pathological priors, as
in minimax regret, then traders will misrepresent their redemption values, and never adjust
their bids and asks in response to the market. Restricting traders’ beliefs only regarding
the other traders’ valuations and costs, but imposing no beliefs or equilibrium condition
on traders’ strategies beyond rationalizability, does nothing to improve market outcomes.
Minimax expected regret using multiple priors can induce convergence to price-taking, if
the “bad” priors are avoided.

Proofs

Theorem 1 In a k-double auction, the bid bi that minimizes maximum regret for a buyer
with private valuation vi is bi = vi

1+k . The ask ai that minimizes maximum regret for a

seller with private cost ci is ai = ci+(1−k)
1+(1−k)

Proof: Buyer i’s profit is his valuation minus the price if he wins a unit of the good,
and zero if he does not win. In the case that he wins, the price that he pays will be
kζ(m+1) + (1− k)ζ(m) if his own bid is greater than ζ(m+1), or kbi + (1− k)ζ(m) if his own
bid is between ζ(m) and ζ(m+1):

ΠB =


vi − (kζ(m+1) + (1− k)ζ(m)) if ζ(m+1) < bi

vi − (kbi + (1− k)ζ(m)) if ζ(m) < bi < ζ(m+1)

0 if bi < ζ(m)

(8)

For any set of rival bids and offers ζ, the supremum of buyer i’s possible profit is

Π∗B =

{
vi − ζ(m) if ζ(m) ≤ vi

0 if ζ(m) > vi
(9)

Then the buyer’s regret function is

RB =


k(ζ(m+1) − ζ(m)) if ζ(m) ≤ vi and ζ(m+1) < bi

k(bi − ζ(m)) if ζ(m) ≤ vi and ζ(m) < bi < ζ(m+1)

vi − ζ(m) if ζ(m) ≤ vi and bi < ζ(m)

0 if ζ(m) > vi and bi < ζ(m)

(10)

19



In the first two cases, the buyer’s regret is from winning at a higher price than necessary;
in the third case, the buyer regrets failing to win a unit when the price is less than his
valuation. The buyer’s regret is zero if ζ(m) is higher than his valuation. We omit the case
that the buyer wins at a price higher than his own valuation, because the regret resulting
from that action will always be at least as great as bidding vi, and sometimes greater, so
we eliminate the possibility of bidding more than vi.

The supremum of the buyer’s regret function is

supRB = max(kbi, vi − bi, 0) (11)

The first term is increasing in buyer i’s bid bi; the second term is decreasing in bi. (Each of
the first two terms are greater than zero for all bi < vi.) The maximum regret is minimized
when kbi = vi − bi. Therefore, a buyer choosing his bid pj to minimize this function will

bid vi

1+k .
The calculations for the seller’s minimax regret ask are similar to the calculations for

the buyer.

ΠS =


(kζ(m+1) + (1− k)ζ(m))− ci if ai < ζ(m+1)

(kζ(m+1) + (1− k)ai)− ci if ζ(m) < ai < ζ(m+1)

0 if ai > ζ(m+1)

(12)

For any set of rival bids and offers ζ, the supremum of seller i’s possible profit is

Π∗S =

{
ζ(m+1) − ci if ci ≤ ζ(m+1)

0 if ζ(m+1) < ci
(13)

Then the seller’s regret function is

RS =


(1− k)(ζ(m+1) − ζ(m)) if ζ(m+1) ≥ ci and ai < ζ(m+1)

(1− k)(ζ(m+1) − ai) if ζ(m+1) ≥ ci and ζ(m) < ai < ζ(m+1)

ζ(m+1) − ci if ζ(m+1) ≥ ci and ai > ζ(m+1)

0 if ζ(m+1) < ci and ai > ζ(m+1)

(14)

The supremum of the seller’s regret function is

supRB = max((1− k)(1− ai), ai − ci, 0) (15)

The first term is decreasing in the seller’s ask ai; the second term is increasing in ai.
(Each of the first two terms are greater than zero for all ai > ci.) The maximum regret is
minimized when (1−k)(1−ai) = ai−ci. Therefore, a seller choosing his ask ai to minimize

this function will choose ai = ci+(1−k)
1+(1−k) . �
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Theorem 2 Let F̃ denote the cumulative distribution function of the lowest cost among
the n sellers in the market. The bid bi that minimizes expected maximum regret for bidder
i with valuation vi satisfies

F̃ ( (k+1)bi−vi
k ) = F̃ (bi)

1+k

Such a bid bi exists on the interval
[
vi

1+k , v
i
]
.

Similarly, let G̃ denote the cumulative distribution function of the highest valuation
among the m sellers in the market. The ask ai that minimizes expected maximum regret
for seller i with cost ci satisfies

G̃(a
i(1+(1−k))−ci

1−k ) = G̃(ai)+(1−k)
1+(1−k)

Such a bid ai exists on the interval
[
ci, c

i+(1−k)
1+(1−k)

]
.

Proof: Each seller’s ask is bounded below by his cost. Each bidder’s bid is bounded
above by his valuation. It follows that:

• The lower bound of ζ(m) is the lowest realized cost, c(1). Since there are m buyers,
the lowest m bids not including bidder i’s bid must include at least one seller. The
m−1 buyers can submit arbitrarily low bids. In every state of the world, it is possible
for all of the rival bidders to submit bids of 0 - however “farfetched” that may seem.
The lowest ask, however, cannot be less than c(1).

• The upper bound of ζ(m+1) is 1. It is possible for n − 1 sellers to all submit asks of
1, since their asks are bounded above only by the highest price that any buyer could
conceivably be willing to accept.

For this reason, we need only consider the distribution of the lowest realized cost, c(1),
when we calculate the expected maximum regret3. The maximum regret for a bid bi < vi

given the realization of costs c and values v is

RB(bi|v, c) =


0 if c(1) > vi

max{vi − bi, k(bi − c(1))} if vi ≥ bi ≥ c(1)

vi − c(1) if vi ≥ c(1) > bi
(16)

In the second case, where the lowest realized cost c(1) is less than the bidder’s bid bi, the
maximum regret could result from bidding more than necessary or from bidding less than

3The following discussion follows Linhardt and Radner (1989) closely.
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necessary, depending on the value of c(1):

vi − bi < k(bi − c(1))

⇒ c(1) <
(k + 1)bi − vi

k

Since costs of the sellers are independently and identically distributed with cdf F , the
smallest cost realized by n sellers is has cdf F̃ (c) = 1− (1− F (c))n. Therefore,

RB(bi|vi) =

∫ b∗

0
k(bi − c)dF̃ (c) +

∫ bi

b∗
(vi − bi)dF̃ (c) +

∫ vi

bi
(vi − c)dF̃ (c) (17)

Where b∗ = (k+1)bi−vi
k . If bi ≤ vi

1+k , then the first term disappears:

RB(bi|vi) =

∫ bi

0
(vi − bi)dF̃ (c) +

∫ vi

bi
(vi − c)dF̃ (c) (18)

Integrating by parts,

RB(bi|vi) =


k

∫ (k+1)bi−vi
k

0
F̃ (c)dc+

∫ vi

bi
F̃ (c)dc if bi > vi

1+k∫ vi

bi
F̃ (c)dc if bi ≤ vi

1+k

(19)

Differentiating the expected regret function with respect to bidder i’s bid bi,

d

dbi
RB =

{
(k + 1)F̃ ( (k+1)bi−vi

k )− F̃ (bi) if vi

1+k ≤ b
i ≤ vi

−F̃ (bi) if 0 ≤ bi ≤ vi

1+k

(20)

This derivative is continuous, and it is non-positive for bi = vi

1+k and non-negative for

bi = vi. Then there exists a bid bi such that the derivative of the expected regret function
is zero, where the expected maximum regret is minimized.

The maximum regret for a bid ai > ci given the realization of costs c and values v is

RS(ai|v, c) =


0 if v(m) < ci

max{ai − ci, (1− k)(v(m) − ai)} if ai ≥ v(m)

v(m) − ci if ci ≥ v(m) < ai
(21)

In the second case, where the highest realized valuation v(m) is less than the seller’s ask
ai, the maximum regret could result from asking more than necessary or from asking less
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than necessary, depending on the value of v(m):

ai − ci < (1− k)(v(m) − Ci)

⇒ v(m) >
(1 + (1− k))ai − ci

1− k

Since costs of the buyers are independently and identically distributed with cdf G, the
highest valuation realized by m sellers is has cdf G̃(v) = G(v)n. Therefore,

RS(ai|ci) =

∫ ai

ci
(v − ci)dG̃(v) +

∫ C∗

ai
(ai − ci)dG̃(v) +

∫ 1

C∗
(1− k)(v − ai)dG̃(v) (22)

Where C∗ = (1+(1−k))ai−ci
1−k . If ai ≥ ai+(1−k)

1+(1−k) , then the last term disappears:

RS(ai|ci) =

∫ ai

ci
(v − ci)dG̃(v) +

∫ 1

ai
(ai − ci)dG̃(c) (23)

Integrating by parts,

RS(ai|ci) =


(1− k)(1− ai)−

∫ ai

ci
G̃(v)dv −

∫ 1

C∗
(1− k)G̃(v)dv if ai > ci+(1−k)

1+(1−k)

(ai − ci)−
∫ ai

ci
G̃(v)dv if ai < ci+(1−k)

1+(1−k)

(24)

Differentiating the expected regret function with respect to seller i’s asm ai,

dRS(ai|ci)
dai

=

{
−(1− k)− G̃(ai) + (2− k)G̃( (1+(1−k))ai−ci

1−k ) if ai > ci+(1−k)
1+(1−k)

1− G̃(ci) if ai < ci+(1−k)
1+(1−k)

(25)

This derivative is continuous, and it is non-negative for ai = ci+(1−k)
(1+(1−k) and non-positive for

ai = ci. Then there exists a bid ai such that the derivative of the expected regret function
is zero, where the expected maximum regret is minimized. �

Corollary 1 Let b(v;n) denote the bid that minimizes expected maximum regret in a k-

double auction with n sellers. Then lim
n→∞

b(v;n) =
v

1 + k
.

Proof: Suppose not. Then there exists some valuation v and ε > 0 such that

lim
n→∞

b(v;n) >
v

1 + k
+ ε

Since the derivative of expected maximum regret at b(v;n) is zero, and since the derivative
of the expected maximum regret is strictly increasing, v

1+k + ε < b(v;n) implies that the
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derivative of expected maximum regret at v
1+k + ε is less than zero in the limit:

lim
n→∞

[
(k + 1)F̃

(
(k + 1)( v

1+k + ε)− v
k

)
− F̃

(
v

1 + k
+ ε

)]
< 0 (26)

(k + 1) lim
n→∞

F̃

(
(k + 1)ε

k

)
− lim
n→∞

F̃

(
(k + 1)ε

k + 1

)
< 0 (27)

(k + 1)(1)− 1 < 0 (28)

This is a contradiction. �

Theorem 3 Suppose that the following conditions hold for Γ = {Γi}∞i=1:

1. For each sequence of priors {Gγ,i} ∈ {Γi}∞i=1, for every ε ∈ (0, v), there exists
N(ε,Gγ) ∈ N such that for all i ≥ N(b,Gγ):∫

u(v − ε, ζ(mi), ζ(mi+1))dFγ,i(ζ(mi), ζ(mi+1))

>

∫
u(b′, ζ(mi), ζ(mi+1))dGγ,i(ζ(mi), ζ(mi+1)) (29)

for all b′ < v−ε. That is, under each prior {Gγ}∞i=1 ∈ {Γi}∞i=1, the utility-maximizing
bid converges to v over the sequence of markets.

2. There exists a well-defined function

N(ε) = max
Gγ∈Γ

{N(ε,Gγ)} (30)

Then the bid that minimizes maximum expected regret under {Γi}∞i=1 converges to truth-
ful bidding over the sequence of markets {(mi, ni)}∞i=1.

Proof: (30) implies that for i ≥ N(ε),

∫
max
b∗∈[0,v]

u(b∗, ζ)− u(v − ε, ζ(mi), ζ(mi+1))dGγ,i(ζ(mi), ζ(mi+1))

<

∫
max
b∗∈[0,v]

u(b∗, ζ)− u(b′, ζ(mi), ζ(mi+1))dGγ,i(ζ(mi), ζ(mi+1)), ∀b′ < v − ε (31)
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holds for each Gγ ∈ Γ. In other words, for markets subsequent to (mN(ε), nN(ε)), expected
regret is minimized at a bid within ε of truthful bidding, for each prior Gγ ∈ Γ.∫

R(v − ε, ζ(mi), ζ(mi+1))dFγ,i(ζ(mi), ζ(mi+1))

<

∫
R(b′, ζ(mi), ζ(mi+1))dGγ,i(ζ(mi), ζ(mi+1)), ∀b′ < v − ε (32)

Therefore, for i > N(ε),

max
Gγ,i∈Γi

∫
R(v − ε, ζ(mi), ζ(mi+1))dFγ,i(ζ(mi), ζ(mi+1))

< max
Gγ,i∈Γi

∫
R(b′, ζ(mi), ζ(mi+1))dFγ,i(ζ(mi), ζ(mi+1)), ∀b′ < v − ε (33)

For suppose not. Then there would exist G∗ ∈ Γ such that for some j ≥ N(ε), for some
b′ < v − ε,∫

R(v − ε, ζ(mj), ζ(mj+1))dG∗,j(ζ(mi), ζ(mi+1))

> max
Gγ,j∈Γj

∫
R(b′, ζ(mj), ζ(mj+1))dGγ,j(ζ(mi), ζ(mi+1)) (34)

implying∫
R(v − ε, ζ(mj), ζ(mj+1))dG∗,j(ζ(mi), ζ(mi+1))

>

∫
R(b′, ζ(mj), ζ(mj+1))dG∗,j(ζ(mi), ζ(mi+1)) (35)

which contradicts (32).
We conclude that the maximum expected regret-minimizing bid can be arbitrarily close

to bidding v, given a sufficient number of competitors. For (37) establishes that for a
number of bidders greater than or equal to N(ε), the optimal bid must be within ε of
bidding one’s true valuation. �

Lemma 1 Let {(mi, ni)}∞i=1 be a sequence of markets in which the mi buyers approaches
infinity. Let each Gγ = {Gγ,i}∞i=1 in Γ be a joint distribution of the mth

i and mi+1th order
statistics in which all bids and asks are treated as (mi+ni−1) iid draws from a distribution
fγ(x), where fγ(x) > ε > 0.

Then the bid that minimizes the maximum expected regret will approach truthful bidding
as i→∞.
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Proof:
If the rival bids and asks in a market of size (mi, ni) are independently and identically

distributed according to some distribution with cdf F and pdf f , then the joint distribution
of the mt

ih and mi + 1th order statistics is

f(mi)(mi+1)(x, y) =
(mi + ni − 1)!

(mi − 1)!ni!
(x)f(x)f(y)Fmi−1[1− F (y)]ni (36)

The subscripts i denoting the market will be omitted in the following proof. For brevity,
let (m+n−1)!

(m−1)!n! = Cm,m+1.
We can calculate the expected regret of a bid b under the prior f :

E[RB] =

∫ b

0

∫ b

x
k(y − x)Cm,m+1f(x)f(y)F (x)m−1[1− F (y)]ndydx

+

∫ b

0

∫ 1

b
k(b− x)Cm,m+1f(x)f(y)F (x)m−1[1− F (y)]ndydx

+

∫ v

b

∫ 1

x
(v − x)Cm,m+1f(x)f(y)F (x)m−1[1− F (y)]ndydx

(37)

dE[RB]

db
=

∫ b

0
k(b− x)Cm,m+1f(x)f(b)F (x)m−1[1− F (b)]ndx

−
∫ b

0
k(b− x)Cm,m+1f(x)f(b)F (x)m−1[1− F (b)]ndx

+

∫ b

0

∫ 1

b
kCm,m+1f(x)f(y)F (x)m−1[1− F (y)]ndydx

−
∫ 1

b
(v − b)Cm,m+1f(b)f(y)F (b)m−1[1− F (y)]ndy

(38)

dE[RB]

db
=

∫ b

0

∫ 1

b
kCm,m+1f(x)f(y)F (x)m−1[1− F (y)]ndydx

−
∫ 1

b
(v − b)Cm,m+1f(b)f(y)F (b)m−1[1− F (y)]ndy

(39)
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Then the first-order condition to minimize expected regret is:

∫ b

0

∫ 1

b
kf(x)f(y)Fm−1(x)[1− F (y)]ndydx =

∫ 1

b
(v − b)f(b)f(y)Fm−1(b)[1− F (y)]ndy

(40)

k

∫ b

0
f(x)F (x)m−1dx =(v − b)f(b)F (b)m−1 (41)

k
F (b)m

m
=(v − b)f(b)F (b)m−1 (42)

kF (b)

mf(b)
=(v − b) (43)

Therefore, if f(b) > 0, the amount that the bidder shades her bid will converge to zero
as the number of other bidders grows large. �

References

Anscombe, F. J., and R. J. Aumann. 1963. “A Definition of Subjective Probability.”
The Annals of Mathematical Statistics, 34(1): 199–205.

Arrow, K. J., and L. Hurwicz. 1972. An Optimality Criterion for Decision-making
Under Complete Ignorance. A.M. Kelley.

Blin, Jean-Marie. 1976. “How Relevant are ’Irrelevant’ Alternatives?” Theory and De-
cision, 7: 95–105.

Chernoff, H. 1954. Rational Selection of Decision Functions. Vol. 22 of Cowles Commis-
sion Papers: New Series, Cowles Commission for Research in Economics.

Chiesa, Alessandro, Silvio Micali, and Zeyuan Allen Zhu. 2014. “Knightian Ro-
bustness from Regret Minimization.” CoRR, abs/1403.6409.

Cohen, Michele, and Jean-Yves Jaffray. 1980. “Rational Behavior under Complete
Ignorance.” Econometrica, 48(5): 1281–99.

Dempster, A.P. 1975. “A subjectivist look at robustness.” Bulletin of International Sta-
tistical Institute, 46: 349–374.

Fishburn, P.C. 1970. Utility Theory for Decision Making. Wiley, New York.

Gilboa, Itzhak, and David Schmeidler. 1989. “Maxmin expected utility with non-
unique prior.” Journal of mathematical economics, 18(2): 141–153.

27



Harsanyi, John C. 1967. “Games with Incomplete Information Played by Bayesian Play-
ers. Part I: The Basic Model.” Management Science, 14: 159–182.

Knight, Frank H. 1912. Risk, uncertainty and profit. Courier Dover Publications.

Kreps, D. 1988. Notes On The Theory Of Choice. Underground Classics in Economics,
Westview Press.

Linhart, Peter B, and Roy Radner. 1989. “Minimax-regret strategies for bargaining
over several variables.” Journal of Economic Theory, 48(1): 152–178.

Lubin, Benjamin, and David C. Parkes. 2012. “Approximate Strategyproofness.”
Current Science, 103(9): 10211032.

Luce, R. Duncan, and Howard Raiffa. 1957. Games and Decisions: Introduction and
Critical Survey. Dover, NY:Dover Publications.

Marschak, Jacob, and Roy Radner. 1954. Note on Some Proposed Decision Criteria.
John Wiley.

Milnor, J. 1954. “Games Against Nature.” In Decisions Processes. , ed. R. Thrall, C.
Coombs and R. Davis, 49–59. New York:Wiley.

Ray, Paramesh. 1973. “Independence of Irrelevant Alternatives.” Econometrica,
41(5): 987–91.

Reny, Philip J., and Motty Perry. 2006. “Toward a Strategic Foundation for Rational
Expectations Equilibrium.” Econometrica, 74(5): 1231–1269.

Rustichini, Aldo, Mark A. Satterthwaite, and Steven R. Williams. 1994. “Con-
vergence to Efficiency in a Simple Market with Incomplete Information.” Econometrica,
62(5): pp. 1041–1063.

Savage, L. J. 1951. “The Theory of Statistical Decision.” Journal of the American Sta-
tistical Association, 46(253): pp. 55–67.

Seidenfeld, Teddy. 1988. “Decision Theory Without “Indepdendence” or Without “Or-
dering”.” Economics and Philosophy, 4: 267–290.

Stoye, Joerg. 2011a. “Axioms for minimax regret choice correspondences.” Journal of
Economic Theory, 146(6): 2226–2251.

Stoye, Joerg. 2011b. “Statistical decisions under ambiguity.” Theory and Decision,
70(2): 129–148.

Stoye, Joerg. 2012. “New Perspectives on Statistical Decisions Under Ambiguity.” Annual
Review of Economics, 4(1): 257–282.

28



Wald, Abraham. 1945. “Statistical Decision Functions Which Minimize the Maximum
Risk.” Annals of Mathematics, 46(2): pp. 265–280.

Wilson, R. 1987. “On Equilibria of Bid-Ask Markets.” In Arrow and the Ascent of Modern
Economic Theory. , ed. G. W. Feiwel. New York University Press.

29


