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ABSTRACT

We consider in this chapter a class of two-player nonzero-sum stochastic games with

incomplete information, which is inspired by recent applications of game theory in

network security. We develop fully distributed reinforcement learning algorithms,

which require for each player a minimal amount of information regarding the other

player. At each time, each player can be in an active mode or ina sleep mode. If
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2 HYBRID LEARNING IN STOCHASTIC GAMES AND ITS APPLICATION IN NETWORK SECURITY

a player is in an active mode, she updates her strategy and estimates of unknown

quantities using a specific pure or hybrid learning pattern.The players’ intelligence

and rationality are captured by the weighted linear combination of different learning

patterns. We use stochastic approximation techniques to show that, under appro-

priate conditions, the pure or hybrid learning schemes withrandom updates can be

studied using their deterministic ordinary differential equation (ODE) counterparts.

Convergence to state-independent equilibria is analyzed for special classes of games,

namely, games with two actions, and potential games. Results are applied to network

security games between an intruder and an administrator, where the noncooperative

behaviors are well characterized by the features of distributed hybrid learning.

14.1 INTRODUCTION

In recent years, game-theoretic methods have been applied to study resource allo-

cation problems in communication networks [2], security mechanisms for network

security and privacy [1, 17], and economic pricing in power networks [9]. Most

frameworks have assumed the rationality of the agents or thedecision-makers as

well as the complete information about their payoffs and strategies. However, in

practice, due to the noise and the uncertainties in the environment, agents often have

information limitations in their knowledge not only of other players’ payoffs and

strategies, but also of their own. For this reason, we must consider the learning

aspects of the decision-makers and address their estimation and assessment of the

payoff and strategy based on the information accessible to them.

In this chapter, we consider a class of two-player nonzero-sum stochastic games

with incomplete information. We develop fully distributedpayoff and strategy re-

inforcement learning (CODIPAS-RL) algorithms, which require for each player a

minimal amount of information regarding the other player. At each time, each player

can be in an active mode or in a sleep mode. If a player is in an active mode, she up-

dates her strategy and estimates of unknown quantities using a specific pure or hybrid

learning pattern. In contrast to the standard reinforcement learning algorithms which

focus only on either strategy or payoff reinforcement for the equilibrium learning,
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INTRODUCTION 3

the algorithm that couples the payoff reinforcement learning together with strategy-

reinforcement learning allows an immediate prediction andupdates the strategies by

updated estimations based on recent experiences. The payoff reinforcement learn-

ing in our proposed algorithms bears a connection with the Q-learning algorithms

in [23, 26], which have been commonly applied to learn the Q-functions of Markov

decision processes (MDPs).

We specifically discuss five pure CODIPAS-RL algorithms and use stochastic ap-

proximation techniques to show that, under appropriate conditions, the pure or hybrid

learning schemes with random updates can be studied using their deterministic or-

dinary differential equation (ODE) counterparts. Convergence to state-independent

equilibria is analyzed under specific payoff functions suchas those in games with

two actions, and Lyapunov games.

We apply the learning algorithms to a class of security gameswhere an attacker

and an intrusion detection system (IDS) strategically choose their actions to optimize

their payoffs. Many forms of security games have been formulated to provide quanti-

tative security and dependability analysis of networked systems [1,17,32]. However,

technical difficulties in quantifying appropriate security metrics or payoff functions

render it difficult to specify the utility functions for the attacker and the defender. In

addition, the inevitable false positive and false negativeerrors in the detection of-

ten lead to incomplete information in a dynamic network environment. Our hybrid

learning framework for the two-person game with incompleteinformation provides

an appropriate theoretical basis for the on-line implementation of game-theoretic al-

gorithms.

14.1.1 Related Work

Learning in games has been investigated in several papers inthe recent literature. In

[10, 22], a fictitious-play algorithm is used to find Nash equilibrium in a nonzero-

sum game. Players observe opponents’ actions and update their strategies in reaction

to others’ actions in a best-response fashion. The authors in [18] propose a modi-

fied version of the fictitious play called joint fictitious play with inertia for potential

games, in which players alternate their updates at different time slots. In all these
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4 HYBRID LEARNING IN STOCHASTIC GAMES AND ITS APPLICATION IN NETWORK SECURITY

learning schemes, players have to monitor the actions of every other player and need

to know their own payoff so as to find their optimal actions. Inthis chapter, we are

interested in fully distributed learning procedures, where players do not need any

information about the actions or payoffs of the other players, and, moreover, they do

not need to have complete information of their own payoff structure.

Young proposes in [29] such a completely uncoupled learningrule, called inter-

active trial and error learning. Players occasionally try out new actions and accept

them if they lead to higher payoffs. If a player experiences adecrease in payoff due

to strategy changes by some other players, he initiates a random search for a new

strategy and settles on one with a probability that increases monotonically with its

realized payoff. When used by all players, the learning scheme yields pure-strategy

Nash equilibrium behavior under an interdependency condition. However, in games

without pure-strategy Nash equilibrium, it fails to yield Nash equilibrium strategies.

In [25, 28], strategy reinforcement learning in finite gameshas been studied.

The ordinary differential equation (ODE) approximation ofthe learning algorithm is

shown to be equivalent to an adjusted replicator dynamics [24]. In [15], a multiple-

time scale model-free algorithm is introduced and it is shown to be asymptotically

equivalent to the smooth fictitious play algorithm. In [31,32], we introduce a class of

combined distributed payoff and strategy reinforcement learning schemes (CODIPAS-

RL), and propose a heterogeneous learning algorithm for two-person zero-sum stochas-

tic games with incomplete information, where different players can adopt different

learning schemes and learning rates. In [30], we propose a Q-learning algorithm

for zero-sum stochastic games and apply it to dynamic configuration problems of

intrusion detection systems.

14.1.2 Contribution

In this chapter, we consider a class of general-sum two-person games and introduce

the new paradigm ofhybrid learningunder the frameworks of combined distributed

payoff and strategy reinforcement learning (CODIPAS-RL),where in order to render

the learning algorithm practical to implement in the context of network security, we

introduce the following features of the game.
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(F1) In addition to exogenous environment uncertainties, we introduce inherent mode

uncertainties in players. Each player can be in anactivemode or asleeping

mode. Players learn their strategies and average payoffs only when they are in

anactivemode.

(F2) We allow the interaction between the players to occur atrandom times unknown

to the players.

We use stochastic approximation techniques to show that thehybrid learning schemes

with random updates can be studied using their deterministic ODE counterparts. The

ODE obtained for hybrid learning is a linear combination of ODEs from pure learn-

ing schemes. We show the convergence properties of the learning algorithms for

special classes of games, namely, games with two actions, and potential games, and

demonstrate their applications in a network security environment.

14.1.3 Organization of the Chapter

The chapter is structured as follows. In Section 14.2, we formulate the two-player

nonzero-sum stochastic game with incomplete information and introduce the solu-

tion concept of state-independent Nash equilibrium. In Section 14.3, we present a

number of distinct learning schemes and discuss their properties. In Section 14.4, we

present main results on learning for general-sum games. In Section 14.5, we apply

the learning algorithms to a network security application.Section 14.6 concludes the

chapter. In Table 14.1, we summarize the notation used in thechapter for reader’s

convenience.

14.2 TWO-PERSON GAME

In this section, we consider a finite two-person nonzero-sumgame (NZSG) in which

each player has stochastic payoffs and the interactions between the players are ran-

dom. LetΞ := 〈N , {Si}i∈N , {Ωi}i∈N , {Ai}i∈N , {Ui(s,B
2, .)}s∈S,b∈B,i∈N 〉 be

the stochastic NZSG, whereN = {1, 2} is the set of players P1 and P2 who max-

imize their payoffs, andA1,A2 are the finite sets of actions available to players P1

and P2, respectively. The setSi := [si,1, si,2, · · · , si,Ni
S
] comprises all possibleN i

S
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6 HYBRID LEARNING IN STOCHASTIC GAMES AND ITS APPLICATION IN NETWORK SECURITY

Table 14.1 Table of Notations

Symbol Meaning

ai,t ∈ Ai Action of playeri (Pi) at timet

xi,t ∈ Xi Mixed strategy of Pi at t

Bi ∈ {0, 1} Active or sleep mode of Pi

si ∈ Si External state of Pi

ui,t ∈ R Observed payoff by Pi at t

ûi,t ∈ R
|Ai| Estimated payoff vector of Pi at t

Ui ∈ R Mixed extension of the payoffUi.

βi(ûi,t) ⊆ Ai Best response

β̃i,ǫ(ûi,t) ∈ R
|Ai| Boltzmann-Gibbs (B-G) strategy

β̃I
i (xi,t, ûi,t) ∈ R

|Ai| Imitative B-G strategy

β̃W
i (xi,t, ûi,t) ∈ R

|Ai| Weighted imitative B-G strategy

β̃F
i (ûi,t) ∈ R

|Ai| Weakened fictitious-play strategy

νi,t ∈ R+ Payoff learning rates of Pi at t

λi,t ∈ R+ Strategy learning rates of Pi at t

eai
∈ R

|Ai| The unit vector with1 at the position

of ai and0 otherwise

external states of Pi, which describes the environment where Pi resides. We assume

that the state spaceS :=
∏

i∈N Si and the probability transition on the states are

both unknown to the players. A statesi is randomly and independently chosen at

each time from the setSi. We assume that the action spaces are the same in each

state.

In addition, players do not interact at all times. A player can be in one of the

two modes:active modeor sleep mode, denoted by modeBi = 1 andBi = 0,

respectively. LetBi, i ∈ N , be an i.i.d. random variable onΩi := {0, 1} whose

probability mass function is given by

ρiB =





pi, Bi = 1,

1− pi, Bi = 0
, i ∈ N . (14.1)

D R A F T October 2, 2011, 1:59am D R A F T



TWO-PERSON GAME 7

The player modes can be viewed as internal states that are governed by the inherent

randomness of the player. The system modeB2 ∈ Ω := Ω1 × Ω2 is a set of

independent modes of the players and we denote byB2 ⊆ N as the set of active

players corresponding toB2.

The NZSG is characterized by utility functionsUi : S ×Ωi ×A1 ×A2 → R. Pi

collects a payoffUi(s,B
2, a1, a2) when P1 choosesa1 ∈ A1 and P2 usesa2 ∈ A2

at states ∈ S and modeB2.

The preceding game model can be viewed as a special class of stochastic games in

which the state transitions are independent of the player actions as well as the current

state.

We have slotted time,t ∈ {0, 1, . . .}, when players pick their mixed strategies as

functions of what has transpired in the past, to the extent the information available to

them allows. Toward this end, we letxi,t(ai) denote the probabilities of Pi choosing

ai ∈ Ai at timet, and letxi,t = [xi,t(ai)]ai∈Ai
be the mixed strategies of Pi at time

t, where more precisely,

xi,t ∈ Xi :=

{
xi ∈ R

|Ai| : xi(ai) ∈ [0, 1],
∑

ai∈Ai

xi(ai) = 1

}
.

In particular, we defineeai
∈ R

|Ai|, with ai ∈ Ai, as unit vectors of sizes|Ai| ,

whose entry that corresponds toai is 1 while others are zeros. We assume that the

mixed strategies of the players are independent of the current states and the player

modeBi. For any given pair of mixed strategies,(x1,x2) ∈ X1×X2, and for a fixed

si ∈ Si, B
2 ∈ Ω, we define the expected utility (as expected payoff to Pi) as

Ui(s,B
2,x1,x2) := Ex1,x2

Ui(s,B
2, a1, a2),

whereEx1,x2
Ui denotes expectation ofUi over the action sets of the players under

the given mixed strategies. A further expectation of this quantity over the statess

andB2, denotedEs,B2 , yields the performance index of theexpected game. We now

define the equilibrium concept of interest for this game, that is the equilibrium of the

expected game.
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8 HYBRID LEARNING IN STOCHASTIC GAMES AND ITS APPLICATION IN NETWORK SECURITY

Definition 14.1 (State-independent equilibrium) A strategy profile(x∗
1,x

∗
2) ∈ X1×

X2 is a state-independent equilibrium of the gameΞ if it is equilibrium of the ex-

pected game, i.e.,∀x1 ∈ X1,x2 ∈ X2,

Es,B2U1(s,B
2,x∗

1,x
∗
2) ≥ Es,B2U1(s,B

2,x1,x
∗
2),

Es,B2U2(s,B
2,x∗

1,x
∗
2) ≥ Es,B2U2(s,B

2,x∗
1,x2).

Since the expected game is a two-player game with finite actions for each player, we

can show the existence of the equilibrium using Nash’s existence theorem [20] and

state the following lemma.

Lemma 14.1 (Existence)The stochastic NSZGΞ with unknown states and chang-

ing modes admits a state-independent equilibrium.

14.3 LEARNING IN NZSGS

In this section, we introduce different learning schemes for the stochastic NZSGs

introduced in Section 14.2 and discuss the stochastic approximation of the learning

schemes with ODEs.

14.3.1 Learning Procedures

In many practical applications, the players in the two-person NZSGs do not have

the complete knowledge of their payoff functions and the state of their environ-

ment. Moreover, they do not know whether they interact with the other player or

not. Hence, the equilibrium strategy has to be learned online by observing the pay-

offs at each time slot. A general learning procedure is outlined as follows. At each

time slott ∈ Z+, each player generates an internal modeBi to determine whether

to participate in the game or not. If both players are active,they interact and receive

a payoff after the play. If only one of the players is active, then the active player

receives his payoff as an outcome of his action att only without the interaction with

the other player. If players do not have the knowledge of their active mode proba-

bility pi, then each player keeps count of its interaction with othersby updating its
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LEARNING IN NZSGS 9

vectorsθij,t ∈ R
2, i, j ∈ {1, 2}, as follows.

θij,t = θij,t−1 + 1l{Bj=1},

whereθij,t is Pi’s count of Pj’s number of activities sincet ≥ 0 and the initial

condition is given byθij = 0, ∀i, j ∈ {1, 2}. The active players choose an action

ai,t ∈ Ai at timet and observe or measure an outputuj,t ∈ R as an outcome of

their actions. Players estimate their payoffs by updating the entry of the estimated

payoff vectorûi,t+1 ∈ R
|Ai| that corresponds to the chosen actionai,t. In a similar

way, players update their strategy vectorsxi,t+1 based on a specific learning scheme

(to be introduced later). The update of the strategy vectorscan exploit the payoff

information ûi,t from the previous time step. In this case, we say the learningis

coupled; otherwise, we say that it is uncoupled.

The general coupled learning updates on the strategy and utility vectors take the

following form:




xi,t+1 = xi,t +Πi,t(λi,t, ai,t, ui,t, ûi,t,xi,t),

ûi,t+1 = ûi,t +Σi,t(νi,t, ai,t, ui,t, ûi,t,xi,t),
(14.2)

whereΠi,t,Σi,t, i ∈ N , are properly chosen functions for strategy and utility up-

dates, respectively. The parametersλi,t, νi,t are learning rates indicating players’

capabilities of information retrieval and update. The vectorsxi,t ∈ Xi are mixed

strategies of the players at timet. ûi,t, i ∈ N , are estimated average payoffs updated

at each iterationt, andui,t, i ∈ N , are the observed payoffs received by players at

time t. The learning ratesλi,t, νi,t ∈ R+ need to satisfy the conditions

(C1)
∑

t≥0 |λi,t|2 < ∞,
∑

t≥0 |νi,t|
2 < ∞.

(C2)
∑

t≥0 |λi,t| = +∞,
∑

t≥0 |νi,t| = +∞.

The learning rate of Pi is relative to its frequency of activity. In general, the

learning rates are functions ofθii, i ∈ N , and can be written asλi,θii(t), νi,θii(t). We

need to adopt a time reference for the game using maximum learning rates among

the active players, i.e.,λ∗
t := maxi∈B2(t) λi,θii(t), ν

∗
t := maxi∈B2(t) νi,θii(t). It can

be verified that the reference learning ratesλ∗
t , ν

∗
t satisfy (C1) and (C2) ifλi,t, νi,t
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10 HYBRID LEARNING IN STOCHASTIC GAMES AND ITS APPLICATION IN NETWORK SECURITY

satisfy the conditions for everyi ∈ N . The learning ratesλ∗
t , ν

∗
t , as we will see later,

affect the ODE approximation.

We call the learning in (14.2) a COmbined DIstributed PAyoffand Strategy Re-

inforcement Learning (CODIPAS-RL) [31]. The players can have different learning

rates for their utility and strategy updates. The payoff learning rate is on a faster time

scale than strategy learning rate ifλi,t/νi,t → 0 ast → ∞; it is on a slower time

scale ifνi,t/λi,t → 0 ast → ∞. In the former case, the payoff learning can be seen

as quasi-static compared to the strategy learning andvice versafor the latter.

14.3.2 Learning Schemes

We introduce different learning schemes in the form of (14.2) for the stochastic

NZSG. LetL = {Lk, k = 1, 2, · · · , 5} be a set of five pure learning schemes.

A player Pi chooses a learning schemesPi from the setL. We call the learningho-

mogeneousif both players use the same pure learning schemes andheterogeneousif

players use different learning schemes, i.e.,P1 6= P2.

14.3.2.1 Bush-Mosteller-based CODIPAS-RL L1 Let Γi ∈ R be a reference

level of Pi and

Γ̃i,t :=
ui,t − Γi

sups,B2,a |Ui(s,B2, a)− Γi|
. (14.3)

The learning patternL1 is given by




xi,t+1(ai) = xi,t(ai) + λi,t1l{i∈B2(t)}Γ̃i,t

(
1l{ai,t=ai} − xi,t(ai)

)
,

ûi,t+1(ai) = ûi,t(ai) + νi,t1l{ai,t=ai,i∈B2(t)} (ui,t − ûi,t(ai)) .

The updates on the strategy and the estimated payoff are decoupled. The strategy

update does not exploit the knowledge of estimated payoff but only relies on the

observed payoffs at each time slot. The strategy update ofL1 is widely studied in

machine learning and has been initially proposed by Bush andMosteller in [8]. Com-

bined with the payoff update, we obtain a COPIDAS-RL based onBush-Mosteller

learning. WhenΓi = 0, we obtain the learning schemes in [3,6].
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14.3.2.2 Boltzmann-Gibbs-based CODIPAS-RL L2 Let β̃i,ǫ : R|Ai| → R
|Ai|

be the Boltzmann-Gibbs (B-G) strategy mapping given by

β̃i,ǫ(ûi,t)(ai) :=
e

1

ǫ
ûi,t(ai)

∑
a′
i
∈Ai

e
1

ǫ
ûi,t(a′

i
)
, ai ∈ Ai. (14.4)

It is also known as the soft-max function. Whenǫ → 0, the B-G strategy yields a

(pure) strategy that picks the maximum entry of the payoff vector ûi,t. The learning

patternL2 is given by




xi,t+1(ai) = xi,t(ai) + λi,t1l{i∈B2(t)}

(
β̃i,ǫ(ûi,t)(ai,t)− xi,t(ai)

)
,

ûi,t+1(ai) = ûi,t(ai) + νi,t1l{ai,t=ai,i∈B2(t)} (ui,t − ûi,t(ai)) .

The strategy and the estimated payoff are updated in a coupled fashion. The

numerical value of experiment is used in the estimation, andthe estimated payoffs

are used to built the strategy (here the estimations are crucial since a player does not

know the numerical value of the payoff corresponding to the other actions that he

did not use). The strategy update is a B-G based reinforcement learning. Combined

together one gets the B-G based CODIPAS-RL. The rest pointL2 can be seen as the

equilibrium for a modified game with the perturbed payoffEs,B2Ui + ǫiHi, where

Hi is the extra entropy term as discussed in [22].

14.3.2.3 Imitative B-G CODIPAS-RL L3 Let βI
i,ǫ,t : Xi×R

|Ai| → R
|Ai| be the

imitative B-G strategy mapping given by

β̃I
i,ǫ,t(xi,t, ûi,t)(ai) =

xi,t(ai)e
1

ǫ
ûi,t(ai)

∑
a′
i
∈Ai

xi,t(a′i)e
1

ǫ
ûi,t(a′

i
)
, ai ∈ Ai. (14.5)

The learning patternL3 is given by





xi,t+1(ai) = xi,t(ai) + λi,t1l{i∈B2(t)}

(
β̃I
i,ǫ,t(ûi,t)(ai)− xi,t(ai)

)
,

ûi,t+1(ai) = ûi,t(ai) + νi,t1l{ai,t=ai,i∈B2(t)} (ui,t − ûi,t(ai)) .

The imitative B-G learning weights the B-G strategy with thecurrent strategy vector

xi,t and the strategy mapping̃βI
i,ǫ,t is time-dependent. It allows the learning strate-

gies to be attained at the boundary of the simplexXi.
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12 HYBRID LEARNING IN STOCHASTIC GAMES AND ITS APPLICATION IN NETWORK SECURITY

14.3.2.4 Weighted Imitative B-G CODIPAS-RL L4 Let β̃W
i,t : Xi×R×R

|Ai| →

R
|Ai| be the imitative weighted B-G strategy mapping given by

β̃W
i,t (xi,t, λi,t, ûi,t)(ai) :=

xi,t(ai)(1 + λi,t)
ûi,t(ai)

∑
a′
i
∈Ai

xi,t(a′i)(1 + λi,t)ûi,t(a′
i
)
, (14.6)

for every ai ∈ Ai. The learning patternL4 is given by




xi,t+1(ai) = xi,t(ai) + 1l{i∈B2(t)}

(
β̃W
i,t (xi,t, λi,t, ûi,t)(ai)− xi,t(ai)

)
,

ûi,t+1(ai) = ûi,t(ai) + νi,t1l{ai,t=ai,i∈B2(t)} (ui,t − ûi,t(ai)) .

Note that the exploitation function learning̃βW
i,t is time dependent inL4 and is in-

dependent of parameterǫ. If the learning yields an interior point as the equilibrium,

then it is the exact equilibrium of the expected game, while the equilibrium inL2 is

an approximated one for theǫ−perturbed game.

14.3.2.5 Weakened Fictitious-Play L5 Let β̃F
i,t : R

|Ai| → 2R
|Ai| be a point-to-

set mapping (correspondence)

β̃F
i,t(ûi,t) := (1− ǫ)δβi(ûi,t) +

ǫ

|Ai|
1, (14.7)

where1 ∈ R
|Ai| is a vector with all its entries being1; βi : R

|Ai| → 2Ai is the best

response correspondence:

βi(ûi,t) ∈ arg max
a′
i
∈Ai

ûi,t(a
′
i) (14.8)

andδZ ,Z ⊆ Ai, denotes a set of unit vectors{eai
, ai ∈ Z}.

The learning patternL5 is given by




xi,t+1(ai) = xi,t(ai) ∈ 1l{i∈B2(t)}

(
β̃F
i,t(ûi,t)− xi,t(ai)

)
,

ûi,t+1(ai) = ûi,t(ai) + νi,t1l{ai,t=ai,i∈B2(t)} (ui,t − ûi,t(ai)) .

The weakened fictitious playL5 has been discussed in [15, 18]. Different from

the classical fictitious play, a player does not observe the action played by the other

player at the previous step and the payoff function is unknown. Each player estimates

its payoff by updatinĝui,t using perceived payoffs. The strategy update equation is
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composed of two parts. A player chooses one of his optimal actions with probability

(1−ǫ) by optimizing the up-to-date payoff estimateûi,t, and plays an arbitrary action

with equal probabilityǫ.

Remark 14.1 We note that the average payoff-learning in the five pure learning

schemes can be seen as the reinforcement learning of Q-functions in MDPs, which

have been introduced in [23, 26]. Since we have considered a stochastic game with

state transitions that are independent of the actions of theplayers, the Q-function in

MDPs is reduced to the average-payoff functionûi,t.

14.4 MAIN RESULTS

In this section, we introduce the new paradigm of hybrid learning, present the main

results on learning in two-person general-sum games, and discuss their convergence

properties for some special classes of games.

14.4.1 Stochastic approximation of the pure learning schemes

The pure learning schemes introduced in Section 14.3 share the same learning struc-

ture for average utility but differ in their strategy learning. Denote byΠ(l)
i,t the strat-

egy learning function forl ∈ L in the general form (14.2). Following the multiple

time-scale stochastic approximation framework developedin [5, 7, 14, 16], one can

write the pure learning schemes into the form




xi,t+1 − xi,t ∈ qi,t

(
f
(l)
i (xi,t, ûi,t) +M

(l)
i,t+1

)

ûi,t+1 − ûi,t ∈ q̄i,t
(
Es,x−i,t,B2Ui − ûi,t + M̄i,t+1

) ,

wheref (l)
i = E[Π

(l)
i,t+1|Ft], l ∈ L, is a learning pattern in the form of stochastic

approximation.qi,t is a time-scaling factor which is a function of the learning rates

λi,t and the probability of Pi in active mode at timet, denoted byP(i ∈ B2(t)); q̄i,t

is the time-scaling factor for̂ui,t. To use ODE approximation, we check first the con-

ditions given in the Appendix. The termM (l)
i,t+1 is a bounded martingale difference

because the strategies are in the product of simplices whichare convex and compact,

and the conditional expectation ofMi,t+1 given the sigma-algebra generated by the
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14 HYBRID LEARNING IN STOCHASTIC GAMES AND ITS APPLICATION IN NETWORK SECURITY

random variablesst′ ,xt′ , ut′ , ût′ , t′ ≤ t, is zero. Similar properties hold for̄Mt+1.

The functionf is a regular function, and hence Lipschitz over a compact set, which

implies linear growth. Note that the case of constant learning rates can be analyzed

under the same setting but the convergence result is weaker.Thus, the asymptotic

pseudo-trajectories for the non-vanishing time-scale ratio, i.e., λi,t/νi,t → γi for

someγi ∈ R++ are




d
dt
xi,t ∈ gi,t

(
f
(l)
i (xi,t, ûi,t)

)

d
dt
ûi,t = ḡi,t

(
Es,x−i,t,B2Ui − ûi,t

) ,

wheregi,t (resp.ḡi,t) are the asymptotic functions ofqi,t, λ∗
t , pi (resp.q̄i,t, , ν∗t , pi).

If the learning rates have the vanishing ratio, i.e.,λt

µt
→ 0, the asymptotic pseudo-

trajectories are




d
dt
xi,t ∈ gi,t

(
f
(l)
i (xi,t,Es,x−i,t

Ui)
)

ûi,t −→ Es,x−i,B2Ui.

14.4.2 Stochastic approximation of the hybrid learning scheme

Players can choose different patterns at different time slots. Consider the hybrid and

switching learning




xi,t+1 − xi,t ∈ qi,t

(∑
l∈L 1l{li,t=l}f

(l)
i (xi,t, ûi,t) +M

(l)
i,t+1

)

ûi,t+1 − ûi,t ∈ q̄i,t
(
Es,x−i,t

Ui − ûi,t + M̄i,t+1

) ,

whereli,t ∈ L is the learning pattern chosen by Pi at timet.

Theorem 14.1 Assume that each player Pi, i ∈ N , adopts one of the CODIPAS-

RLs inL with probabilityωi = [ωi,l′ ]l′∈L ∈ ∆(L) and the learning rates satisfy

conditions (C1) and (C2). Then, the asymptotic pseudo-trajectories of the hybrid

and switching learning can be written into the form





d
dt
xi,t ∈ gi,t

(∑
l∈L ωi,lf

(l)
i (xi,t, ûi,t)

)

d
dt
ûi,t = ḡi,t

(
Es,x−i,t

Ui − ûi,t

)
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Table 14.2 Asymptotic pseudo-trajectories of pure learning

Learning Patterns Class of ODE

L1 Adjusted replicator dynamics

L2 Smooth best response dynamics

L3 Imitative BG dynamics

L4 Time-scaled replicator dynamics

L5 Perturbed best response dynamics

for the non-vanishing time-scale learning ratioλi,t/νi,t; and,






d
dt
xi,t ∈ gi,t

(∑
l∈L ωi,lf

(l)
i (xi,t,Es,x−i,t,B2Ui)

)

ûi,t −→ Es,x−i,B2Ui

for the vanishing learning ratioλi,t/νi,t.

Proof : We first examine the strategy learning given by

xi,t+1 − xi,t ∈ 1l{i∈B2(t)}λi,t

(
∑

l∈L

1l{li,t=l}f
(l)
i (xt) +M

(l)
i,t+1

)

By takingλt as the reference learning rate, the drift (expected change in one step)

can be computed via

lim
λi,t−→0

E

(

xi,t+1 − xi,t

λi,t

∣

∣ Ft

)

= P(i ∈ B2(t))

(

∑

l∈L

ωi,lf
(l)
i (xt)

)

where we used the fact thatE
(
M

(l)
i,t+1 | Ft

)
= 0. The drift has the form

gi,t
∑

l∈L

ωi,lf
(l)
i (xt).

We check that the assumptions A1-A4 given in the Appendix areall met. The asymp-

totic pseudo-trajectory reduces to

d

dt
xi,t = gi,t

∑

l∈L

ωi,lf
(l)
i (xt).

For two time-scales CODIPAS-RL, we use the same lines as in [7,31].
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16 HYBRID LEARNING IN STOCHASTIC GAMES AND ITS APPLICATION IN NETWORK SECURITY

In Table 14.2, we give the asymptotic pseudo-trajectory of the pure learning when

the rate of payoff learning is faster than that of strategy learning. LetUj(x) :=

Es,B2Uj(s,B
2,x), j ∈ N . In Table 14.2, the replicator dynamics are given by

ẋj(aj) = qjxj(aj)


Uj(eaj

,x−j)−
∑

a′
j
∈Aj

Uj(ea′
j
,x−j)xj(a

′
j)


 .

The smooth best response dynamics are given by

ẋj(aj) = qj




e
1

ǫ
Uj(eaj

,x−j)

∑
a′
j
e

1

ǫ
Uj(ea′

j
,x−j)

− xj(aj)


 .

The best response dynamics are given by

ẋj ∈ qj(βj(x−j)− xj),

and the payoff dynamics are

d

dt
ûj(aj) = q̄jxj(aj)(Uj(eaj

,x−j)− ûj(aj)).

The imitative Boltzman-Gibbs dynamics are given by

ẋj(aj) = qj




xj(aj)e
1

ǫ
Uj(eaj

,x−j)

∑
a′
j
xj(a′j)e

1

ǫ
Uj(ea′

j
,x−j)

− xj(aj)


 .

14.4.3 Connection with equilibria of the expected game

We study the convergence properties of the dynamics and their connection with the

state-independent Nash equilibrium for three special classes of games.

14.4.3.1 Games with two actions For two-player games with two actions, i.e,

A1 = {a11, a
2
1},A2 = {a12, a

2
2}, one can transform the system of ODEs of the

strategy-learning into a planar system under the form

α̇1 = Q1(α1, α2), α̇2 = Q2(α1, α2), (14.9)
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MAIN RESULTS 17

where we letαi = xi(a
1
i ). The dynamics for Pi can be expressed in terms ofα1, α2

only asx1(a
2
1) = 1− x1(a

2
1), andx2(a

2
2) = 1− x2(a

2
2).

We use the Poincaré-Bendixson theorem and the Dulac criterion [11] to establish

a convergence result for (14.9).

Theorem 14.2 ( [11]) For an autonomous planar vector field as in (14.9), the Du-

lac’s criterion states as follows: Letγ(.) be a scalar function defined on the unit

square[0, 1]2 . If ∂[γ(α))α̇1]
∂α1

+ ∂[γ(α)α̇2]
∂α2

is not identically zero and does not change

sign in [0, 1]2, then there are no cycles lying entirely in[0, 1]2.

Corollary 14.1 Consider a two-player two-action game. Assume that each of the

players adopts the Boltzmann-Gibbs CODIPAS-RL withλi,t

νi,t
= λt

νt
−→ 0. Then, the

asymptotic pseudo-trajectory reduces to a planar system inthe form

α̇1 = β1,ǫ(u1(ea1
, α2))− α1; α̇2 = β2,ǫ(u2(α1, ea2

))− α2.

Moreover, the system satisfies the Dulac’s criterion.

Proof : We apply Theorem 14.2 withγ(·) ≡ 1 and find the divergence to be equal

to−2, which is strictly negative. Hence, the result follows.

Note that for the replicator dynamics, the Dulac criterion reduces to

(1− 2α1)(U1(ea1

1

, α2)− U1(ea2

1

, α2)) + (1− 2α2)(U2(α1, ea1

2

)− U2(α1, ea2

2

)),

which vanishes for(α1, α2) = (1/2, 1/2). It is possible to have limit cycles in repli-

cator dynamics and hence the Dulac criterion does not apply.However, the stability

of the replicator dynamics can be directly studied in the two-action case by iden-

tifying the game as one of four types: coordination, anti-coordination, prisoner’s

dilemma, hawk-and-dove [21,27].

The following corollary now follows from Corollary 14.1.

Corollary 14.2 Consider a two-player two-action game.

(CR1) Heterogeneous learning: If P1 is with Boltzmann-Gibbs CODIPAS-RL and

P2’s learning leads to replicator dynamics, then the convergence condition reduces

to (1 − 2α2)(u2(α1, ea1

2

)− u2(α1, ea2

2

)) < 1 for all (α1, α2).
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18 HYBRID LEARNING IN STOCHASTIC GAMES AND ITS APPLICATION IN NETWORK SECURITY

(CR2) Hybrid learning: If the players use hybrid learning obtained by combining

Boltzmann-Gibbs CODIPAS-RL with weightωi,1 and the replicator dynamics with

weight1− ωi,1 then the Dulac criterion reduces to

ω1,2[(1− 2α1)(u1(ea1

1

, α2)− u1(ea2

1

, α2))]

+ ω2,2[(1− 2α2)(u2(α1, ea1

2

)− u2(α1, ea2

2

))]
< w1,1 + w2,2

for all (α1, α2).

Remark 14.2 (Symmetric games with three actions)If the expected game is a sym-

metric game with three actions per player, then, the symmetric game dynamics re-

duce to the two-dimensional dynamical system. This allows us to apply the Dulac

criterion.

14.4.3.2 Lyapunov games We say that a gameΞ is a Lyapunov gameunder a

given hybrid dynamics if the resulting dynamics has an associated Lyapunov function

V (x) : ∆ ⊆ R
∑

i
|Ai| → R+. Note that a Lyapunov functionV (x) is positive

definite onR
∑

i
|Ai| for everyx 6= x∗ ∈ ∆, and its time-derivative is negative,

dV
dt

< 0, for all x 6= x∗, wherex∗ is a stationary point of the dynamics [13]. The

Lyapunov function can also defined to be negative definite as in [12]; in this case,

the time derivative will need to be positive.

Theorem 14.3 Consider a Lyapunov game under the learning schemesL1,L4. Then,

the learning procedure has convergence to the set of equilibria of the expected robust

game for all interior initial conditions.

Proof : Lyapunov functionV provides the stability of the set of rest points. Since

the dynamics are positively correlated for adjusted replicator dynamics [21, 27], the

state-independent equilibria are rest points of the dynamics obtained fromL1 and

L4. The stability of any convex combination of these dynamics follows.

Note that Theorem 14.3 says that starting from interior initial points, the hybrid

dynamics lead to one of the equilibria, which we do not know which one in advance.

The set can have either a finite number or a continuum of equilibria. This result holds

also forn−player stochastic games with random updates.
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14.4.3.3 Potential games We say that the stochastic gameΞ is anexpected ro-

bust potential gameif the expected payoff derives from a potential function. Potential

games are a special class of games where the payoff functionsof the players are gov-

erned by a potential functionΦ : R
∑

i∈N |Ai| → R, i.e.,Ui(eai
,x−i) =

∂Φ(x)
∂xi(ai)

, i ∈

N , ai ∈ Ai. We use a Lyapunov approach to show the global convergence ofhybrid

learning for potential games.

Lemma 14.2 Assume that the stochastic NZSGΦ has a potential functionΦ. Then,

there exists a Lyapunov functionV R(x1,x2) : R
|A1|+|A2| → R for learning schemes

L1,L4-associated replicator dynamics and it is given by its potential V R = Φ.

Hence, the replicator dynamics converge to a rest point. In addition, if starting from

an interior point of the simplex, the dynamics converge to the Nash equilibrium of

the gameΞ.

Proof : Since the payoff matrix is bounded, we can study its strategically equiva-

lent game [4], [19] by subtracting a certain offset from every matrix entries so that

Ui(a) is negative for every strategy paira, and henceEs,B2Ui(eaj
, x−i,t) is nega-

tive. Without loss of generality, we can assume the game payoff matrix or its strate-

gically equivalent game payoff matrix is negative entry-wise. Therefore,V R = Φ is

negative. We take the time derivative of the Lyapunov functionV R as follows:

d

dt
V

R(x1,t,x2,t) =
∑

i∈N

∑

aj∈Ai

(

dxi,t(aj)

dt

)(

∂V R

∂xi,t(aj)

)

,

which leads to the following set of inequalities

d

dt
V

R(x1,t,x2,t) =
∑

i∈N

gi,t







∑

aj∈Ai

xi,t(aj)
(

Es,B2Ui(eaj
,x−i,t)

)2

−





∑

aj∈Ai

xi,t(aj)Es,B2Ui(eaj
,x−i,t)





2





≥
∑

i∈N

gi,t







∑

aj∈Ai

xi,t(aj)
(

Es,B2Ui(eaj
,x−i,t)

)2

−
∑

aj∈Ai

x
2
i,t(aj)

(

Es,B2Ui(eaj
,x−i,t)

)2







≥ 0.
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20 HYBRID LEARNING IN STOCHASTIC GAMES AND ITS APPLICATION IN NETWORK SECURITY

The last two inequalities result from Jensen’s inequality and the positivity and the

range ofxi,t. We havedV R

dt
≥ 0 with equality only at the equilibrium. Hence,

convergence to equilibria holds for all initial conditionsin the interior of the simplex.

Lemma 14.3 LetV B(x1,x2) : R
|A1|+|A2| → R be a Lyapunov function for learn-

ing patternLl-associated replicator dynamicsf l, l = 2, such that

V B(x1,x2) = Φ(x1,x2) + ǫ1H1(x1) + ǫ2H2(x2),

whereHi : R
|Ai| → R+ are strictly concave perturbation functions which can take

different forms depending on the pure learning schemel. The ODEs corresponding

to the learning schemes converge to a set of perturbed equilibria of the gameΞ.

Proof : Using the same argument as in the proof of Lemma 14.2, we can assumeΦ

or its strategic equivalent form is positive without loss ofgenerality, and henceV B is

nonnegative. The Lyapunov functionV B has its critical points given by∇x1
V B =

∇x2
V B = 0, i.e.,

∇xi
Φ+ ǫi∇xi

Hi = 0, i = 1, 2. (14.10)

The first-order condition (14.10) yields the perturbed equilibria of the B-G type of

learning schemes. By taking the time derivative ofV B, we arrive at

dV B

dt
=

∑

i∈N

∑

aj∈Ai

∂xi(aj)

∂t

∂Φ

∂xi(aj)
+ ǫi

∂xi(aj)

∂t

∂Hi

∂xi(aj)
.

Denote the perturbed payoff function bỹUi(x1,x2) := Es,B2Ui(s,B
2,x1,x2) +

ǫiHi(xi). The first-order condition for a maximum satisfies, for everyaj ∈ Ai,

Es,B2Ui(s,B
2, eaj

,x−i) + ǫi
∂Hi(β̄i(x−i))

∂xi(aj)
= 0 (14.11)

whereβ̄i(·) is a type of B-G strategy that corresponds to the learning type. Since the

game is assumed to be a potential game, we have

∂Φ

∂xi(aj)
= −ǫi

∂Hi(β̄i(x−i))

∂xi(aj)
. (14.12)
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Hence, we obtain from (14.11) and (14.12),

dV B

dt
=

∑

i∈N

∑

aj∈Ai

ǫigi,t

(
∂Hi(β̄(x−i))(aj)

∂xi(aj)
−

∂Hi(xi(aj))

∂xi(aj)

)

·(β̄i (x−i)(aj)− xi(aj)) . (14.13)

Due to the strict concavity of the perturbation functionsHi, we conclude thatdV
B

dt
≤

0, with equality only at the equilibrium. Hence, the pure learning dynamics converge

to the set of perturbed equilibria.

Theorem 14.4 Assume that the stochastic NZSGΞ has a potential functionΦ. The

hybrid learning withL1 andL2 converges locally to a perturbed state-independent

Nash equilibriumx∗
1,x

∗
2 of the potential gameΞ for sufficiently smallǫi .

Proof : The Lyapunov functions for replicator and G-B dynamics share the same

termΦ. For hybrid learning between these two dynamics, we can pickΦ as a Lya-

punov function. For smallǫi close to zero, the Lyapunov functionΦ for pure learning

L2 yields a strictly positive time derivative for non-equilibrium points due to conti-

nuity. Letxǫ be a maximizer ofV R(x) = Φ(x) +
∑

i ǫiHi(xi). Then, there exists

ǫh > 0 such that̃V (x) = Φ(x) +
∑

i ǫ
′
iHi(xi) is strictly positive in a neighborhood

of the considered non-equilibrium point withǫ′i = min(ǫh,
ǫi
Mi

), whereMi is the

maximum ofHi overXi. Since the maximizer of̃V is anǫ′− equilibrium where

ǫ′ = maxi ǫ
′
i, there exists a subsequence ofxǫ converging tox∗ which is an equi-

librium andx∗ maximizesΦ and this holds for any convergent subsequence. This

means the time derivative of̃V is strictly positive in all the neighborhood ofx∗ and

vanishes only atx∗. Thus, whenǫ′ = max ǫ′i goes to zero, one gets an equilibrium.

Hence, in view of Lemma 14.3, we can conclude that for sufficiently smallǫi > 0,

we have local convergence of the hybrid learning.

Note that the equilibriumx∗
1,x

∗
2 in Theorem 14.4 may not be unique, which de-

pends on the rest point of the nonlinear hybrid dynamics.
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Figure 14.1 An illustration of the network security game scenario where an attacker

attempts to breach the network security by compromising the servers and workstations

whereas the network administrator monitors the network activity to prevent possible

intrusions.

14.5 SECURITY APPLICATION

In this section, we use the learning algorithm to study a two-person security game

in a network between an intruder and an administrator. In Figure 14.1, we show

a local network connected to the Internet where an attacker attempts to launch an

internal denial-of-service attack to bring down a network server capture important

data from a workstation. Let P1 and P2 denote the administrator and the intruder,

respectively. An administrator P1 can use different levels of protection. The intruder

P2 can launch an attack that can be of high or low intensity. Let the action sets for P1

and P2 beA1 := {H,L} andA2 := {S,W}, respectively. The network administra-

tor is assumed to be always on alert while the intruder attacks with a probabilityp.

Hence, the setB2(t) can be of two types, i.e., (C1){P1, P2} or (C2){P1}. The for-

mer case (C1) corresponds to the scenario where the intruderand the administrator

attack and defend, respectively, whereas the latter (C2) suggests that the administra-

tor faces no threat. We represent the payoff under these two scenarios byM1 and

M2, respectively:

M1 :=




S W

H 1,−1 1, 0

L −2, 1 2, 0


 , M2 :=


 H 1

L 2


 . (14.14)
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In (C1), a successful defense against attack yields a payoffof 2 for P1 while a failure

results in a payoff of -2. A successful attack yields P2 a payoff of 1 while a failed

attack yields a zero payoff. The employment of strong defense (H) or strong attack

(S) costs an extra unit of effort as compared to the low defense (L) and the weak

attack (W) for P1 and P2, respectively. In (C2), P1 stays secure without the threat

from the intruder, and hence yields a payoff of 2. However, the high security level

costs an extra unit of energy from the player.

The payoffs inM1 andM2 are subject to exogenous noise which varies in dif-

ferent environmental statess. The state-independent equilibrium of the game is

found to be atx∗
1 = [ 12 ,

1
2 ]

T ,x∗
2 = [ 13 ,

2
3 ]

T and the optimal average payoffs are

û∗
1 = [ 23 ,

2
3 ]

T , û∗
2 = [0, 0]T . In Figures 14.2 and 14.3, we show the payoffs and

mixed strategies of both players when both players use the learning patternL1. We

can see that the replicator dynamics fromL1 do not converge. However the time av-

erage strategieslimT→∞
1
T

∫ T

0 xi,tdt converge tox∗
1,x

∗
2, respectively, and, the time

average payoffslimT→∞
1
T

∫ T

0
ûi,tdt converge tôu∗

1, û
∗
2, respectively.

In Figures 14.4 and 14.5, we show the payoffs and mixed strategies of the players

when they both adopt the learning patternL2. We chooseǫ = 1/50 and observe that

the mixed strategies converge tox̄1 = [0.5277, 0.4723]T , x̄1 = [0.3333, 0.6667]T

and the payoffs converge tô̄u1 = [0.6667, 0.6667]T , ¯̂u2 = [−0.027, 0]T , which are

in the close neighborhood of̂u∗
1, û

∗
2.

In Figures 14.6 and 14.7, we show the convergence of the heterogenous learning

scheme where P1 usesL1 and P2 usesL2. With ǫ = 1/50, we find the converging

strategies at̄x1, x̄1 and the payoffs at̂̄u1, ¯̂u2. We can see that the adoption ofL2

by P2 in the heterogenous learning facilitates the convergence of the algorithm even

though the learning exhibits high magnitude of oscillations at the beginning, which

is mainly due toL1 learning pattern adopted by P1.

In Figures 14.8 and 14.9, we show the convergence of the hybrid learning scheme

where P1 and P2 adoptL1 andL2 with equal weights. The strategies converge to

[0.5145, 0.4855]T , [0.3334, 0.6666]T for P1 and P2, respectively, whereas the pay-

offs converge to[0.6666, 0.6666]T , [−0.01459, 0]T for P1 and P2, respectively. We

can see that the hybrid mixture ofL1 andL2 learning patterns leads to convergence
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with smaller magnitude of oscillations in comparison to theones shown in Figures

14.6 and 14.7.
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P1 Avg. Payoff of Choosing a2: û1(a2)
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Figure 14.2 The payoffs to the players

with both players using L1.
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Figure 14.3 The mixed strategies of the

players with both players using L1.
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Figure 14.4 The payoffs to the players

with both players using L2.
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Figure 14.5 The mixed strategies of the

players with both players using L2.

14.6 CONCLUSIONS AND FUTURE WORKS

We have presented distributed hybrid strategic learning algorithms for a class of two-

person nonzero-sum stochastic games along with their general convergence and non-
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Figure 14.6 The payoffs to the

heterogeneous players with P1 using L1

and P2 using L2.
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Figure 14.7 The mixed strategies of

the heterogeneous players with P1 using L1

and P2 using L2.
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Figure 14.8 The payoffs to the players

with both players using hybrid learning

scheme with equal weights on L1 and L2.
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Figure 14.9 The mixed strategies of

the players with both players using hybrid

learning scheme with equal weights on L1

and L2.

convergence properties. The players are assumed to have information limitations

in their knowledge not only of other players’ payoff functions and strategies but

also of their own. In addition, the interactions among the players occur at random

times according to their modes. We have applied the framework to security games

where the noncooperative behaviors between an attacker anda defender are well
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characterized by the features of distributed hybrid learning. Interesting work that we

leave for the future is to extend this learning framework to the case of an arbitrary

(but still fixed) number of players, each of them adopting hybrid learning with a

diffusion term leading tostochastic differential equations. It is also of our interest

to capture the evolution of the players’ rationality through a time-varying ordinary

differential equation of the learning weights, which should be analyzed together with

the hybrid learning dynamics.

Appendix: Assumptions for Stochastic Approximation

Consider the difference equationxt+1 = xt + λt(f(xt) + Mt+1) in R
∑

i
|Ai| and

assume that

(A1) f is Lipschitz.

(A2) λt ≥ 0,
∑

t≥0 λt = +∞,
∑

t≥0 λ
2
t < ∞.

(A3) Mt+1 is a martingale difference sequence with respect to the increasing family

of sigma-fieldsFt = σ(xt′ , ût′ ,Mt′ , t
′ ≤ t) i.e.,E (Mt+1 | Ft) = 0.

(A4) Mt is square integrable and there is a constantc > 0 such that

E
(
‖ Mt+1 ‖2 | Ft

)
≤ c(1+ ‖ xt ‖

2)

almost surely, for allt ≥ 0.

(A5) supt ‖ xt ‖< ∞ almost surely.

Then, the asymptotic pseudo-trajectory of the difference equation is given by the

ordinary differential equation (ODE) [7,14],ẋt = f(xt), with x0 fixed.
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