PENNER: Pattern-enhanced Nested Named Entity Recognition in Biomedical Literature

Xuan Wang*, Yu Zhang*, Qi Li, Cathy H. Wu, Jiawei Han

University of Illinois at Urbana-Champaign, IL, USA

University of Delaware, DE, USA

Outline

- Introduction
- Framework
- Evaluation
- Conclusion

Nested Entity Structures

- PMID 10190572:
 - "... although each of the agents alone caused only slight increase in the [[alanine]_{CHEMICAL} aminotransferase]_{PROTEIN} activity."
 - PubTator recognizes "alanine" as a CHEMICAL but misses "alanine aminotransferase" as a PROTEIN.

Why are Nested Entities Important?

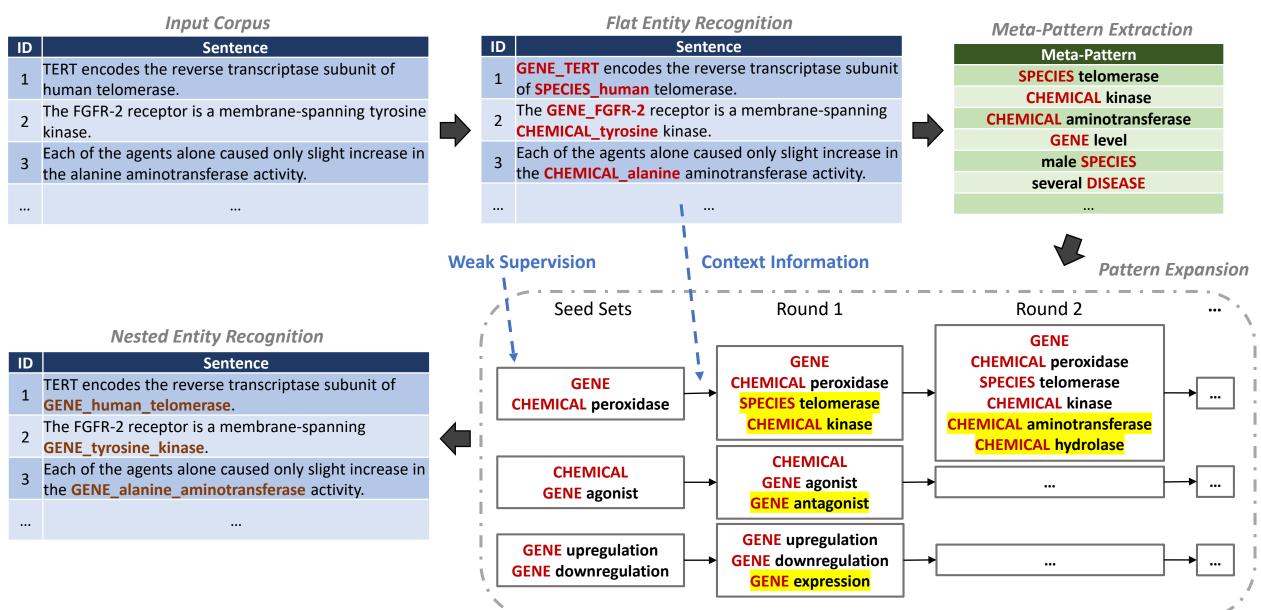
- The nested entity structure is quite common in biomedical literature.
 - 17% of the entities in the GENIA dataset are embedded with another entity.
- Many downstream tasks require us to detect not just the inner-most entity.
 - E.g., PMID 9256163:
 - "... Forskolin (10 microM), ..., also increased renin mRNA release."
 - NER (PubTator): "CHEMICAL_Forskolin (10 microM), ..., also increased GENE_renin mRNA release."
 - Result of Relation Extraction: (Forskolin, increase, renin)
 - Correct Tuple: (Forskolin, increase, renin mRNA release)
 - Incompleteness in NER causes errors in RE.

Previous Studies

- "Flat" BioNER ([1], [2], [3], etc.)
 - Common sequence modeling frameworks cannot detect entities with overlapping tokens.
- Supervised Nested BioNER ([4], [5], [6], etc.)
 - Need massive training data
 - Hard to transfer to new entity types (e.g., the GENIA corpus only contains genes/protein, DNA, RNA, cell lines and cell types. What if we need chemicals and diseases?)
- [1] PubTator: a web-based text mining tool for assisting biocuration. NAR 2013
- [2] TaggerOne: joint named entity recognition and normalization with semi-Markov Models. Bioinformatics 2016.
- [3] Cross-type biomedical named entity recognition with deep multi-task learning. Bioinformatics 2019 (To appear).
- [4] Nested named entity recognition. EMNLP 2009.
- [5] Labeling gaps between words: Recognizing overlapping mentions with mention separators. EMNLP 2017.
- [6] Nested named entity recognition revisited. NAACL 2018.

This Paper

- Nested BioNER with very weak supervision
- Idea: Nested structure as a **pattern-level** phenomenon

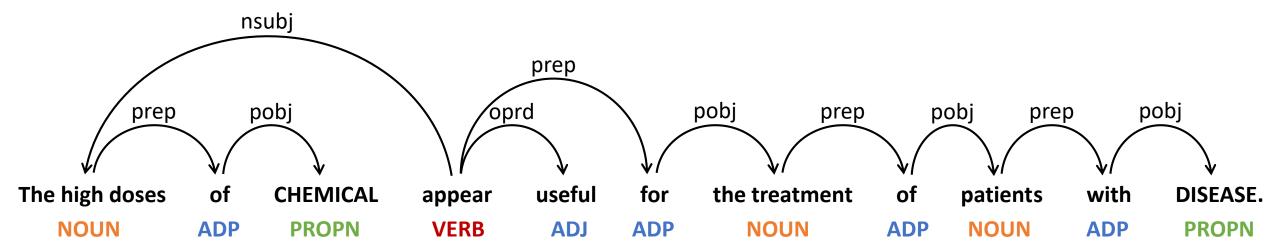

```
CHEMICAL aminotransferase = PROTEIN
GENE mRNA release = PROCESS
```

- Unsupervised pattern extraction
- Few-shot nested entity recognition for each type

Outline

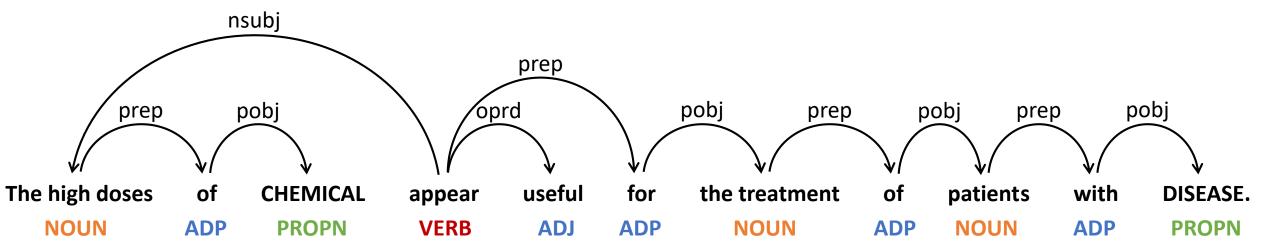
- Introduction
- Framework
- Evaluation
- Conclusion

Framework Overview

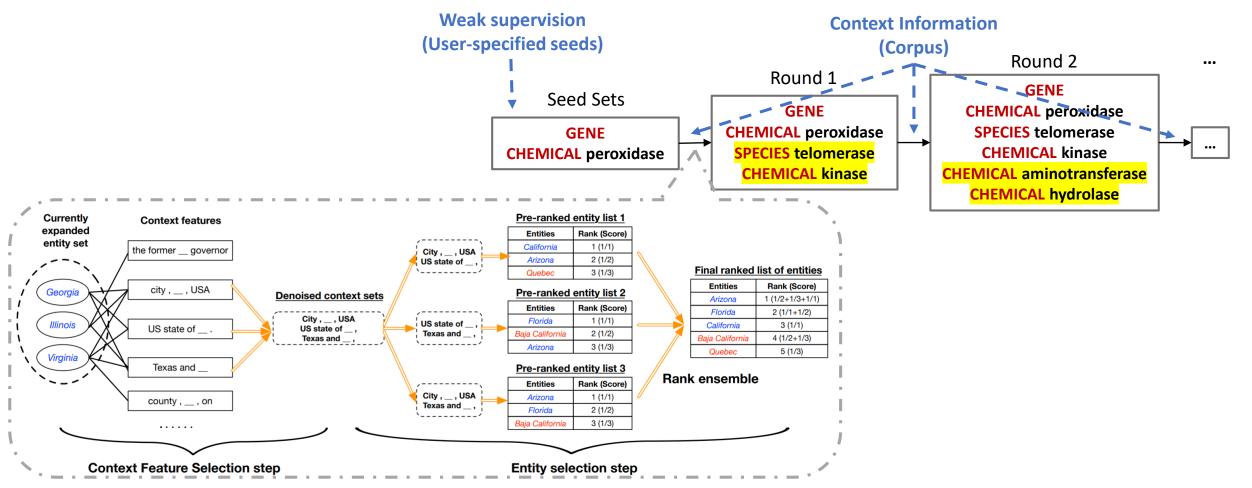


Meta-Pattern Extraction

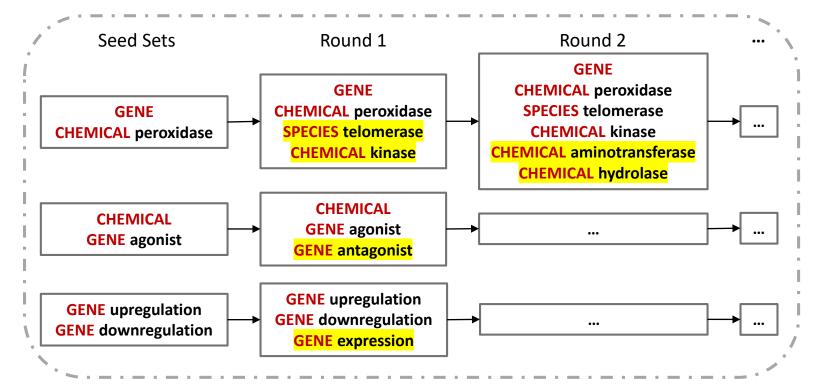
- What are meta-patterns?
- A mixed sequence of entity types and non-type words in the corpus
 - E.g., pattern: CHEMICAL aminotransferase instance: CHEMICAL = alanine, aspartate, tyrosine...
- Each instance of a meta-pattern has a natural nested structure.
- A meta-pattern has the aggregated context information of all of its instances, which helps us learn its semantics in a more accurate way.
- Pattern Discovery for Wide-Window Open Information Extraction in Biomedical Literature. Tomorrow noon, Section 31


Meta-Pattern Extraction

- How to find quality meta-patterns?
- Frequency: Appear more than t times in the corpus
- Informativeness: Either a single entity type (e.g., DISEASE) or a phrase with one entity type and at least one stopwords (e.g., *patients with* DISEASE)
- Syntactic Completeness: The tokens form a connected subgraph in the dependency parsing tree. (CHEMICAL appear useful vs. patients with DISEASE)


Meta-Pattern Extraction

- How to find quality meta-patterns?
- Semantic Completeness: For NER, extracted patterns should be complete noun phrases.
 - Chunking: Iteratively cutting the tree at nouns (i.e., **NOUN & PROPN**). Each noun serves as a leaf of the current chunk as well as the root of the next chunk.
 - A semantic complete pattern should be a complete chunk.


Weakly-supervised Pattern Expansion

- Finding new patterns with few user-specified seeds
- Method: SetExpan (Shen et al., ECML-PKDD 2017): Skip-gram + Rank Ensemble

Expanding Multiple Sets Simultaneously

- SetExpan essentially combines frequency and context similarity.
- Unlike entities, some meta-patterns may be extremely frequent (e.g., "CHEMICAL")
- Utilizing the mutual exclusiveness of seed sets.

Outline

- Introduction
- Framework
- Evaluation
- Conclusion

Experiments

• Dataset: A subset of PubMed abstracts, selected using tuples in CTD

Abstracts	Sentences	Entity Mentions			
		Gene	Chemical	Disease	Species
28007	302736	215704	314134	129931	86697

BASIC STATISTICS OF THE SUBSET CORPUS.

- Baselines:
 - Embedding: Using Word2Vec to learn embeddings of meta-patterns, and then searching nearest neighbors for seed patterns
 - SetExpan: Expanding different types one by one. No mutual exclusiveness.

Pattern-Level Task: Meta-Pattern Extraction

-	Seed	{GENE, GENE peroxidase}	{CHEMICAL, GENE agonist}	{DISEASE, cellular DISEASE}	{SPECIES, female SPECIES}
	1	unassigned : GENE	CHEMICAL receptor modulator (serm)	DISEASE vera	fischer SPECIES
	2	CHEMICAL phosphatase	antagonist of CHEMICAL	potential for DISEASE	SPECIES and adult
Embedding	3	(CHEMICAL) release	offspring of SPECIES	GENE translocation	exposure to CHEMICAL or
	4	SPECIES cardiomyocyte	CHEMICAL oxidase (SPECIES and adult	SPECIES in vivo
	5	potential against DISEASE	DISEASE chemopreventive agent	growth and DISEASE	CHEMICAL protect
e	6	GENE inducer	GENE receptor activity	a common DISEASE	CHEMICAL interfere
	7	effect and mechanism of CHEMICAL	antagonist (CHEMICAL)	rare DISEASE	a cohort of SPECIES
	8	inducer of GENE	CHEMICAL blocker	detection of DISEASE	SPECIES albino
	9	(GENE) antagonist	CHEMICAL substituent	DISEASE as well as	CHEMICAL exposure,
	10	GENE level and	CHEMICAL vapor	progression and DISEASE	the detrimental effect of CHEMICAL
-					
	Seed	{GENE, GENE peroxidase}	{CHEMICAL, GENE agonist}	{DISEASE, cellular DISEASE}	{SPECIES, female SPECIES}
	1	SPECIES telomerase	GENE	hepatic DISEASE	male SPECIES
	2	CHEMICAL	DISEASE chemopreventive agent	degradation of GENE	DISEASE
SetExpan	3	DISEASE	DISEASE	dermal DISEASE	CHEMICAL
	4	CHEMICAL acetyltransferase	CHEMICAL chelation	clinical DISEASE	DISEASE cell
	5	CHEMICAL aminotransferase	SPECIES	GENE phosphorylation	GENE
	6	SPECIES	GENE antagonist	-	SPECIES cell
	7	CHEMICAL hydrolase	DISEASE cell	-	pregnant SPECIES
	8	GENE kinase	underlying mechanism of CHEMICAL	-	adult SPECIES
	9	CHEMICAL kinase	CHEMICAL exclusion	-	CHEMICAL channel
	10	CHEMICAL influx	10 m CHEMICAL	-	DISEASE cell line
	Seed	{GENE, GENE peroxidase}	{CHEMICAL, GENE agonist}	{DISEASE, cellular DISEASE}	{SPECIES, female SPECIES}
	1	SPECIES telomerase	DISEASE chemopreventive agent	hepatic DISEASE	male SPECIES
	2	CHEMICAL aminotransferase	CHEMICAL chelation	degradation of GENE	DISEASE cell
PENNER	3	GENE promoter	GENE antagonist	dermal DISEASE	pregnant SPECIES
	4	CHEMICAL hydrolase	-	clinical DISEASE	adult SPECIES
	5	CHEMICAL oxidase	-	GENE phosphorylation	SPECIES hepatocyte
	6	CHEMICAL acetyltransferase	-	-	SPECIES embryo
	7	GENE kinase	-	-	normal SPECIES
	8	CHEMICAL kinase	-	-	juvenile SPECIES
	9	CHEMICAL peroxidase	-	-	adult male SPECIES
	10	CHEMICAL dismutase	-	-	f334 SPECIES

Entity-level Task: Nested NER

• "Precision": NDCG of the ranking list of expanded entities

$$DCG_{p} = \sum_{i=1}^{p} \frac{2^{rel_{i}} - 1}{\log_{2}(i+1)} \quad IDCG_{p} = \sum_{i=1}^{|REL|} \frac{2^{rel_{i}} - 1}{\log_{2}(i+1)} \quad nDCG_{p} = \frac{DCG_{p}}{IDCG_{p}}$$

$$\underbrace{\frac{\text{GENE CHEMICAL DISEASE SPECIES}}{\text{EMBEDDING [22]} & 0.139 & 0.580 & 0.073 & 0.315} \\ \text{SETEXPAN [26]} & 0.602 & 0.312 & 0.754 & 0.417 \\ \text{PENNER} & 1.000 & 1.000 & 0.754 & 0.776 \\ \hline \end{array}$$

• "Recall": Number of correct instances

	GENE	CHEMICAL	DISEASE	SPECIES
Embedding [22]	79	139	61	45
SETEXPAN [26]	1734	458	184	2211
PENNER	5254	458	184	3212

- Embedding does not consider frequency. Infrequent patterns may have inaccurate embeddings.
- SetExpan does not exploit mutual exclusiveness. Extremely frequent patterns may cause semantic drift during expansion.

Detecting New Entity Types

• Detecting **Biological Process** and **Treatment** entities using only two seeds!

Seed	{GENE upregulation, GENE	{CHEMICAL injection,	
	downregulation}	CHEMICAL inhalation}	
1	GENE expression	CHEMICAL treatment	
2	GENE phosphorylation	CHEMICAL administration	
3	the development of DISEASE	CHEMICAL exposure	
4	GENE induction	treatment with CHEMICAL	
5	CHEMICAL action	exposure to CHEMICAL	
6	identification of GENE	administration of CHEMICAL	
7	GENE suppression	pretreatment with CHEMICAL	
8	DISEASE reduction	CHEMICAL pretreatment	
9	CHEMICAL production	-	
10	GENE activity	-	

- Fine-grained flat NER may further improve the performance.
 - E.g., pattern1: CHEMICAL treatment (Treatment) instance: CHEMICAL = resveratrol, simvastatin, quercetin, ... (drug) pattern2: CHEMICAL exposure (symptom rather than treatment) instance: CHEMICAL = lead, mercury, hydrofluoric acid, ... (toxic)

Case Study

• Nested Structure + New Entity Types

	PMID: 15820610		
PubTator	The aim of the present study was to determine the effect of HRT on the activities of an antioxidant enzyme [superoxide] _{CHEMICAL} dismutase		
	(SOD) and aminotransferases like [alanine] _{CHEMICAL} aminotransferase (Ala-AT) and [aspartate] _{CHEMICAL} aminotransferase in different age		
	groups		
PENNER	The aim of the present study was to determine the effect of HRT on the activities of an antioxidant enzyme [[superoxide] _{CHEMICAL}		
	dismutase] _{GENE} (SOD) and aminotransferases like [[alanine] _{CHEMICAL} aminotransferase] _{GENE} (Ala-AT) and [[aspartate] _{CHEMICAL}		
	aminotransferase] _{GENE} in different age groups		
PMID: 10919993			
PubTator	Mitogen-activated protein (MAP) kinase [Erk1/2] _{GENE} antagonist mainly inhibited the release of [MCP-1] _{GENE} , whereas MAP kinase		
	[p38] _{GENE} antagonist mainly suppressed the release of [IL-8] _{GENE} and [RANTES] _{GENE} .		
PENNER	Mitogen-activated protein (MAP) kinase [[Erk1/2] _{GENE} antagonist] _{CHEMICAL} mainly inhibited the release of [MCP-1] _{GENE} , whereas MAP		
	kinase [[p38] _{GENE} antagonist] _{CHEMICAL} mainly suppressed the release of [IL-8] _{GENE} and [RANTES] _{GENE} .		
PMID: 21266192			
PubTator	it suppressed [STAT3] _{GENE} and [STAT5] _{GENE} phosphorylation in HS-578T cells, whereas it up-regulated [STAT1] _{GENE} phosphorylation		
	and down-regulated [STAT5] _{GENE} phosphorylation in MCF-7 cells.		
PENNER	it suppressed [STAT3] _{GENE} and [[STAT5] _{GENE} phosphorylation] _{PROCESS} in HS-578T cells, whereas it up-regulated [[STAT1] _{GENE}		
phosphorylation] _{PROCESS} and down-regulated [[STAT5] _{GENE} phosphorylation] _{PROCESS} in MCF-7 cells.			
PMID: 10498651			
PubTator	[COL1A2] _{GENE} expression was decreased by [vitamin E] _{CHEMICAL} treatment or transfection with [manganese superoxide] _{CHEMICAL}		
	dismutase, and was further increased after treatment with [L-buthionine sulfoximine] _{CHEMICAL}		
PENNER	[[COL1A2] _{GENE} expression] _{PROCESS} was decreased by [[vitamin E] _{CHEMICAL} treatment] _{TREATMENT} or transfection with [[manganese		
	superoxide] _{CHEMICAL} dismutase] _{GENE} , and was further increased after [treatment with [L-buthionine sulfoximine] _{CHEMICAL}] _{TREATMENT}		

Outline

- Introduction
- Framework
- Evaluation
- Conclusion

Conclusion

- Framework
 - Taking a corpus pre-tagged by any flat NER tool as input
 - Unsupervised meta-pattern extraction
 - Few-shot pattern expansion
- Evaluation
 - Outperforming baselines in both meta-pattern extraction and nested NER
 - Detecting new entity types with few seeds
 - Improving annotation results over PubTator
- Future Work
 - To use meta-patterns to find biomedical entity naming principles
 - To use nested structures to help meta-pattern discovery in return

Thank you! Questions?