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• Automatically extracting structured information 
from unstructured and/or semi-structured 
documents.

• Information extraction from text
• Machine learning methods

• Use linguistic features and train machine 
learning models on a labeled corpus

• Textual pattern methods

• Based on statistics on a large corpus, such as 
frequency

Information Extraction on Text
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Pattern-based Information Extraction

• Pattern-based IE methods have been applied in
finding a huge collection of <Entity, Attribute,
Value>-tuples from massive text corpora.

1. Formation

2. Grouping

3. Extraction
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• Issues of existing pattern-based IE methods 

• group patterns by trigger words (e.g., “married”)
• Include wrong patterns: [$Person married $Person’s 

daughter]

• Miss good patterns: [wedding of $Person and $Person]

• group patterns by agreement on extractions
• Miss many good patterns

• Our solution: pattern reliability estimation

• Positive patterns (highly reliable patterns)

• Negative patterns (highly unreliable patterns)

• Unrelated patterns: patterns that are unrelated to the 
task

Challenge and Solution
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• Given the text corpus, couple of seed patterns for a 
specific extraction task on attribute 

• Find as many as possible reliable patterns and correct 
extractions <entity e, attribute a, value v>

System Overview
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• Reliable patterns are semantically similar to the 
seed patterns
• Joint consider pattern constructing words and extractions

• Eg., $Person , president of $Country

• Constructing words: president, of

• Extractions: <Russian, Putin>, <China, Xi>, <USA, Trump>,…

• Pattern embedding
• Adapting word embedding technique

A Intuitive Solution

USA

China

Russia

Trump

Xi

Putin

president

presidential
dictator
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• Reliable patterns are semantically similar to the 
seed patterns
• Joint consider pattern constructing words and extractions

• Eg., $Person , president of $Country 

• Constructing words: president, of

• Extractions: <Russian, Putin>, <China, Xi>, <USA, Trump>,…

• Pattern embedding
• Adapting word embedding technique

• 𝑣𝑝 = 𝑣𝑝𝑤, 𝑣𝑝𝑎

A Intuitive Solution

1

2
𝑣 𝑝𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡 + 𝑣(𝑜𝑓)

7



• Reliable patterns are semantically similar to the 
seed patterns
• Joint consider pattern constructing words and extractions

• Eg., $Person , president of $Country 

• Constructing words: president, of

• Extractions: <Russian, Putin>, <China, Xi>, <USA, Trump>,…

• Pattern embedding
• Adapting word embedding technique

• 𝑣𝑝 = 𝑣𝑝𝑤, 𝑣𝑝𝑎

A Intuitive Solution

1

3
𝑣 𝑅𝑢𝑠𝑠𝑖𝑎𝑛 − 𝑣 𝑃𝑢𝑡𝑖𝑛 + 𝑣 𝐶ℎ𝑖𝑛𝑎 − 𝑣 𝑋𝑖 + 𝑣 𝑈𝑆𝐴 − 𝑣 𝑇𝑟𝑢𝑚𝑝
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• Reliable patterns are semantically similar to the 
seed patterns
• Joint consider pattern constructing words and extractions

• Eg., $Person , president of $Country 

• Constructing words: president, of

• Extractions: <Russian, Putin>, <China, Xi>, <USA, Trump>,…

• Pattern embedding
• Adapting word embedding technique

• 𝑣𝑝 = 𝑣𝑝𝑤, 𝑣𝑝𝑎
• Reliable patterns are those who are similar to the seed 

patterns 

A Intuitive Solution
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• Lack of supervision to determine an accurate 
boundary

• Solution
• Use the pattern embedding as features

• Build a training set from the seed patterns

• Train a classifier

Issue of the Intuitive Solution
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• Challenge: open world assumption
• Eg., the seed pattern does not extract <US, president, 

Putin> nor <Nigeria, president, Buhari>

• Arity-constraint
• Constraint on degrees of entities and values in an entity-

value bipartite graph

How to Detect Negative Samples

US

Trump

Putin

Xi

Russia

China

Nigeria Buhari
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Arity-Constraint

• The arity-constraint is equivalent to setting constraints on the 
degree of entities 𝐶𝑒 and degree of values 𝐶𝑣.

𝐶𝑒
𝑎: deg 𝑒 ≤ 𝑚𝑒𝑑𝑖𝑎𝑛 𝑓𝑒

𝐶𝑣
𝑎: deg 𝑣 ≤ 𝑚𝑒𝑑𝑖𝑎𝑛 𝑓𝑣

• Hard arity-constraint:
• If the 𝑚𝑒𝑑𝑖𝑎𝑛 𝑓 = 𝛽-Quantiles 𝑓 , we set it as hard arity-constraint

• For hard arity-constraint, no violation is allowed; e.g., #country of a
president = 1

• Soft arity-constraint:
• If the 𝑚𝑒𝑑𝑖𝑎𝑛 𝑓 < 𝛽-Quantiles 𝑓 , we set it as soft arity-constraint

• For soft arity-constraint, some violations are allowed; e.g., #president
of a country

• If a tuple has a high reliability score, we can add it into the truth tuple 
set even it may violate the soft arity-constraint.
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• Tuple’s Polarity
• A tuple 𝑡 is positive, if 𝑡∈𝑇 (i.e., the true tuple set);

• 𝑡 is negative, if 𝑡∉𝑇, and adding 𝑡 to 𝑇 will cause violation 
of arity-constraints. 

• 𝑡 is unknown, if 𝑡∉𝑇 and 𝑡 is not negative

Arity-constraint-based Conflict Finding

US

Trump
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Xi
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Nigeria Buhari

positive
negative
unknown
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𝜌𝑝 =
𝑇𝑝⋂𝑇 +

1
2
|𝑇𝑝

𝑢|

𝑇𝑝
Pattern reliability score

• Extension of precision
– Number of positive tuples

– Number of unknown tuples

– Total number of tuples

• Positive and negative patterns
• Positive patterns: 𝜌𝑝 > 𝜃

• Negative patterns: 𝜌𝑝 < 1 − 𝜃

Pattern Reliability
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𝜏𝑡 = ෍
{𝑝:𝑝∈𝑃}

𝜌𝑝 × 𝑛𝑡
𝑝

Tuple reliability score

• Edge weight of the entity-value bipartite graph
– Positive patterns’ reliability score

– Frequency 

• Optimization problem: Find the bipartite graph with the 
maximal sum of edge weights under the arity-constraints 
• Hard arity-constraint: no violation allowed, +∞ penalty 

• Soft arity-constraint:  violation allowed with a positive penalty

Tuple Reliability
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$Country president 
$Person

US

China

Russia

Trump

Xi

Putin

……

$PERSON, president of $LOCATION
…

$Person, daughter of $Country ’s president, 
…

$PERSON, the elected $LOCATION leader
$LOCATION ‘s dictator $PERSON

$PERSON ruled $LOCATION
President $PERSON arrived in $LOCATION

$LOCATION : president $PERSON 
…
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$Country president 
$Person

US

China

Russia

Trump

Xi

Putin

……

US

China

Russia

Trump

Obama

Xi

Putin

……

$PERSON, president of $LOCATION
…

$Person, daughter of $Country ’s president, 
…

$PERSON, the elected $LOCATION leader
$LOCATION ‘s dictator $PERSON

$PERSON ruled $LOCATION
President $PERSON arrived in $LOCATION

$LOCATION : president $PERSON 
…

$PERSON, president of $LOCATION
$PERSON, the $LOCATION ‘s president

…
$Person, daughter of $Country ’s president,

$LOCATION prime minister $PERSON
$Person, daughter of $Country ’s president,  

…

$PERSON, the elected $LOCATION leader
$LOCATION ‘s dictator $PERSON

$PERSON ruled $LOCATION
President $PERSON arrived in $LOCATION

$LOCATION : president $PERSON 
…
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$Country president 
$Person

US

China

Russia

Trump

Xi

Putin

……

US

China

Russia

Trump

Obama

Xi

Putin

……

$PERSON, president of $LOCATION
…

$Person, daughter of $Country ’s president, 
…

$PERSON, the elected $LOCATION leader
$LOCATION ‘s dictator $PERSON

$PERSON ruled $LOCATION
President $PERSON arrived in $LOCATION

$LOCATION : president $PERSON 
…

$PERSON, president of $LOCATION
$PERSON, the $LOCATION ‘s president

…
$Person, daughter of $Country ’s president,

$LOCATION prime minister $PERSON
$Person, daughter of $Country ’s president,  

…

$PERSON, the elected $LOCATION leader
$LOCATION ‘s dictator $PERSON

$PERSON ruled $LOCATION 
President $PERSON arrived in $LOCATION

$LOCATION : president $PERSON 
…

classification
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Experimental Evaluation

• Corpus 
• English Gigaword Fourth Edition LDC2009T13

• 25.7 GB of size including 9.9 million documents and 4.0 
billion words

• State-of-the-art pattern-based IE baselines
• PATTY, MetaPAD

• Performance measure
• Precision

• randomly select 10 sets of 50 extracted tuples and label their 
correctness

• Coverage
• Randomly choose 100 corrected tuples from each method and 

combine them. Check how many are covered by each method
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Performance Comparison
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Case Study
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Error Analysis and Future Work

• Information sparsity
• Pattern sparsity: extract little information

• Entity sparsity: appears infrequent in the corpus

• Information ambiguity
• Fine-grained typing

• ‘$Country senator $Person’ is semantically different 
from ‘$State senator $Person’ 

• Entity linking or entity normalization

• ‘John’, ‘John Kennedy’, ‘Kennedy’, ‘J. H. Kennedy’… 
are they the same person?

• Are ‘John’ and ‘John’ the same person?
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Conclusion

• We proposed TruePIE to discover reliable patterns 
and EAV-tuples from text data

• Only reliable patterns should contribute to the 
information extraction

• Spotting negative tuples can significantly boost the 
performance of the information extraction. Arity-
constraint is one effective way to do so
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