TruePIE: Discovering Reliable Patterns in Pattern-Based Information Extraction

Qi Li¹, Meng Jiang², Xikun Zhang¹, Meng Qu¹,

Timothy Hanratty³, Jing Gao⁴, and Jiawei Han¹

1. University of Illinois at Urbana-Champaign

2. University of Notre Dame

3. US Army Research Laboratory

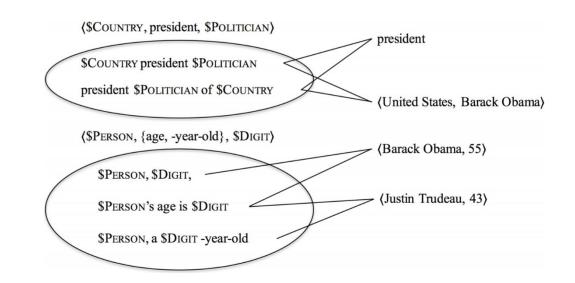
4. University at Buffalo

Information Extraction on Text

- Automatically extracting structured information from unstructured and/or semi-structured documents.
- Information extraction from text
 - Machine learning methods
 - Use linguistic features and train machine learning models on a labeled corpus
 - Textual pattern methods
 - Based on statistics on a large corpus, such as frequency

Pattern-based Information Extraction

- Pattern-based IE methods have been applied in finding a huge collection of <Entity, Attribute, Value>-tuples from massive text corpora.
- 1. Formation
- 2. Grouping
- 3. Extraction



Challenge and Solution

Issues of existing pattern-based IE methods

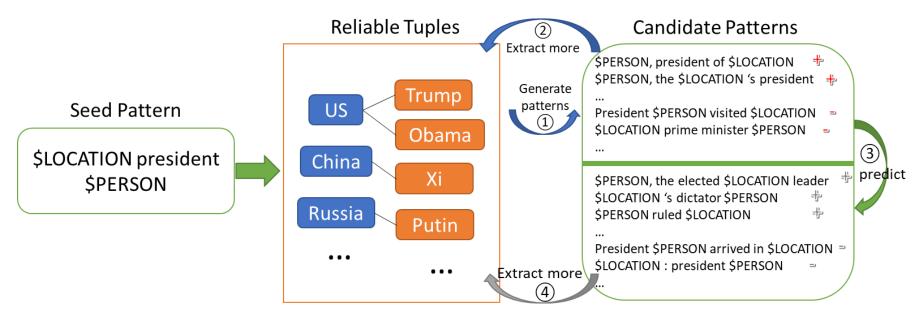
- group patterns by trigger words (e.g., "married")
 - Include wrong patterns: [\$Person married \$Person's daughter]
 - Miss good patterns: [wedding of \$Person and \$Person]
- group patterns by agreement on extractions
 - Miss many good patterns

• Our solution: pattern reliability estimation

- Positive patterns (highly reliable patterns)
- Negative patterns (highly unreliable patterns)
- Unrelated patterns: patterns that are unrelated to the task

System Overview

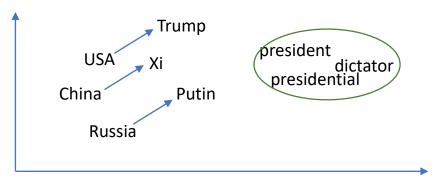
- **Given** the text corpus, couple of seed patterns for a specific extraction task *on attribute*
- Find as many as possible reliable patterns and correct extractions <entity *e*, attribute *a*, value *v*>



- Reliable patterns are semantically similar to the seed patterns
 - Joint consider pattern constructing words and extractions
 - Eg., \$Person , president of \$Country
 - Constructing words: president, of
 - Extractions: <Russian, Putin>, <China, Xi>, <USA, Trump>,...

Pattern embedding

Adapting word embedding technique



- Reliable patterns are semantically similar to the seed patterns
 - Joint consider pattern constructing words and extractions
 - Eg., \$Person , president of \$Country
 - Constructing words: president, of
 - Extractions: <Russian, Putin>, <China, Xi>, <USA, Trump>,...

Pattern embedding

Adapting word embedding technique

•
$$v_p = \begin{bmatrix} v_{pw}, v_{pa} \end{bmatrix}$$

 $\frac{1}{2}(v(president) + v(of))$

- Reliable patterns are semantically similar to the seed patterns
 - Joint consider pattern constructing words and extractions
 - Eg., \$Person , president of \$Country
 - Constructing words: president, of
 - Extractions: <Russian, Putin>, <China, Xi>, <USA, Trump>,...

Pattern embedding

Adapting word embedding technique

•
$$v_p = [v_{pw}, v_{pa}]$$

 $\frac{1}{3}\left[\left(v(Russian) - v(Putin)\right) + \left(v(China) - v(Xi)\right) + \left(v(USA) - v(Trump)\right)\right]$

- Reliable patterns are semantically similar to the seed patterns
 - Joint consider pattern constructing words and extractions
 - Eg., \$Person , president of \$Country
 - Constructing words: president, of
 - Extractions: <Russian, Putin>, <China, Xi>, <USA, Trump>,...

Pattern embedding

- Adapting word embedding technique
- $v_p = [v_{pw}, v_{pa}]$
- Reliable patterns are those who are similar to the seed patterns

Issue of the Intuitive Solution

- Lack of supervision to determine an accurate boundary
- Solution
 - Use the pattern embedding as features
 - Build a training set from the seed patterns
 - Train a classifier

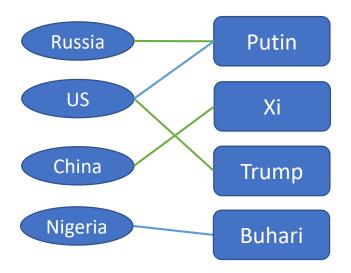
How to Detect Negative Samples

Challenge: open world assumption

 Eg., the seed pattern does not extract <US, president, Putin> nor <Nigeria, president, Buhari>

• Arity-constraint

 Constraint on degrees of entities and values in an entityvalue bipartite graph



Arity-Constraint

• The arity-constraint is equivalent to setting constraints on the degree of entities C_e and degree of values C_v .

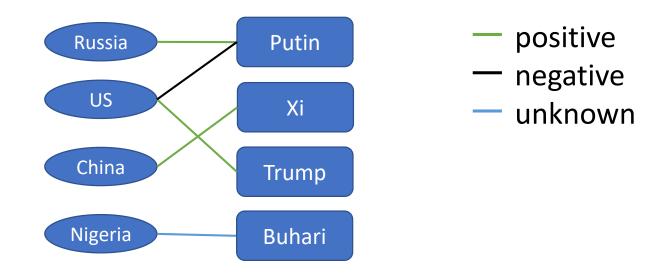
 $C_e^{a}: \deg(e) \leq median(f_e)$ $C_v^{a}: \deg(v) \leq median(f_v)$

- Hard arity-constraint:
 - If the $median(f) = \beta$ -Quantiles(f), we set it as hard arity-constraint
 - For hard arity-constraint, no violation is allowed; e.g., #country of a president = 1
- Soft arity-constraint:
 - If the $median(f) < \beta$ -Quantiles(f), we set it as soft arity-constraint
 - For soft arity-constraint, some violations are allowed; e.g., #president of a country
 - If a tuple has a high reliability score, we can add it into the truth tuple set even it may violate the soft arity-constraint.

Arity-constraint-based Conflict Finding

• Tuple's Polarity

- A tuple t is positive, if $t \in T$ (i.e., the true tuple set);
- *t* is negative, if *t*∉*T*, and adding *t* to *T* will cause violation of arity-constraints.
- t is unknown, if $t \notin T$ and t is not negative



Pattern Reliability

$$\rho_p = \frac{\left|T_p \cap T\right| + \frac{1}{2}\left|T_p^u\right|}{\left|T_p\right|}$$

Pattern reliability score

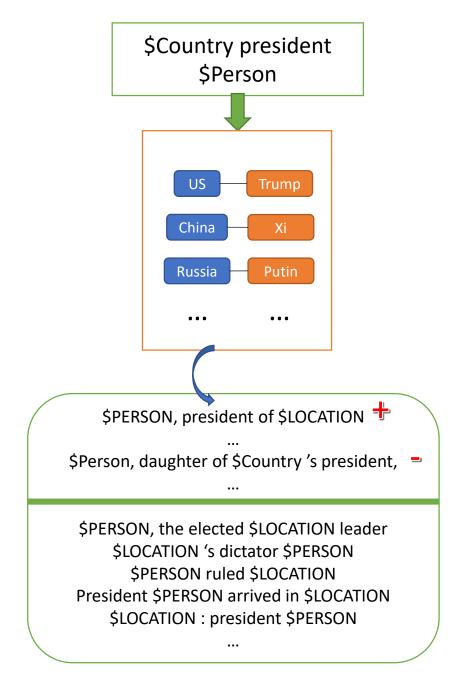
- Extension of precision
 - Number of positive tuples
 - Number of unknown tuples
 - Total number of tuples
- Positive and negative patterns
 - Positive patterns: $\rho_p > \theta$
 - Negative patterns: $\rho_p < 1 \theta$

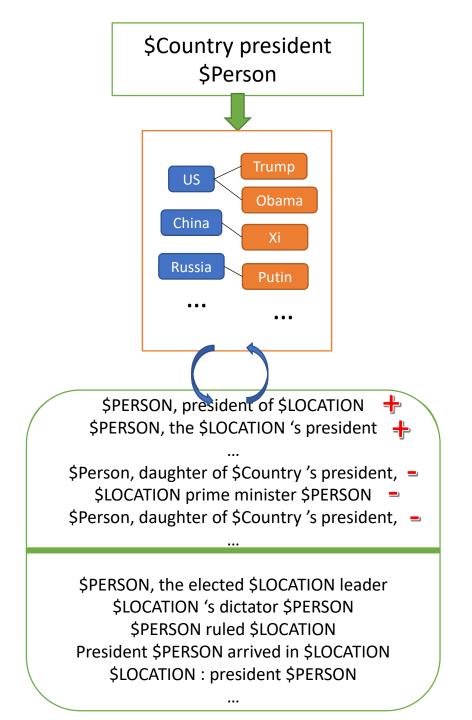
Tuple Reliability

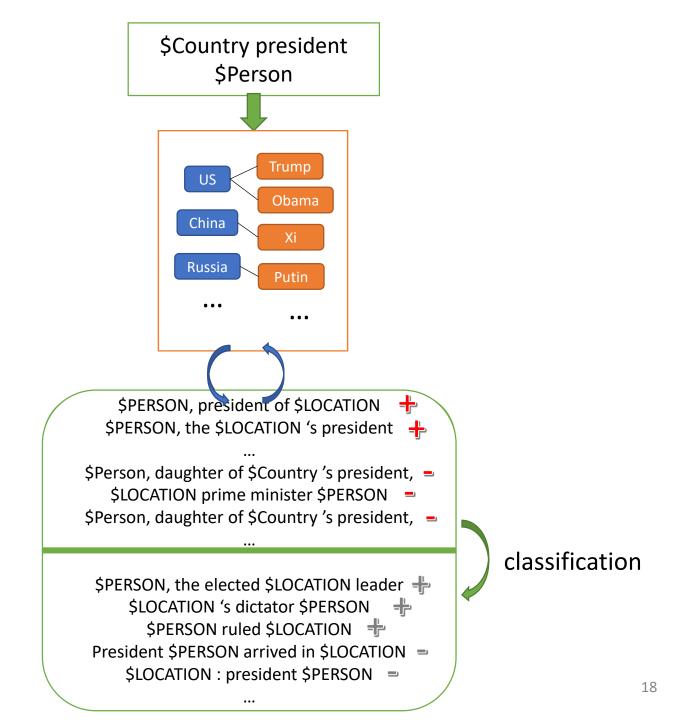
$$\tau_t = \sum_{\{p:p\in P\}} \rho_p \times n_t^p$$

Tuple reliability score

- Edge weight of the entity-value bipartite graph
 - Positive patterns' reliability score
 - Frequency
- Optimization problem: Find the bipartite graph with the maximal sum of edge weights under the arity-constraints
 - Hard arity-constraint: no violation allowed, $+\infty$ penalty
 - Soft arity-constraint: violation allowed with a positive penalty







Experimental Evaluation

• Corpus

- English Gigaword Fourth Edition LDC2009T13
- 25.7 GB of size including 9.9 million documents and 4.0 billion words
- State-of-the-art pattern-based IE baselines
 - PATTY, MetaPAD

Performance measure

- Precision
 - randomly select 10 sets of 50 extracted tuples and label their correctness
- Coverage
 - Randomly choose 100 corrected tuples from each method and combine them. Check how many are covered by each method

Performance Comparison

	Task	Patty	MetaPAD	TRUEPIE	Task	Ράττυ	MetaPAD	TRUEPIE
#Extracted Tuples		2752	4067	2317		7801	4917	1490
Average Precision		0.59 ± 0.05	0.43 ± 0.07	0.87 ± 0.05		0.38 ± 0.08	0.30 ± 0.06	0.89 ± 0.05
Top 10% Precision	Leader	0.89 ± 0.17	0.66 ± 0.30	0.99 ± 0.03	President	0.59 ± 0.29	0.42 ± 0.15	1 ± 0
Top K Precision		0.67 ± 0.12	0.56 ± 0.10	0.99 ± 0.01		0.56 ± 0.27	0.33 ± 0.07	0.95 ± 0.04
Coverage Rate		0.56	0.59	0.61		0.87	0.63	0.71
#Extracted Tuples		1316	4371	428		10313	14234	5205
Average Precision		0.37 ± 0.07	0.27 ± 0.10	0.97 ± 0.02		0.54 ± 0.08	0.56 ± 0.07	0.86 ± 0.05
Top 10% Precision	Capital	0.54 ± 0.25	0.47 ± 0.16	1 ± 0	Director	0.63 ± 0.31	0.65 ± 0.20	0.93 ± 0.12
Top K Precision		0.51 ± 0.18	0.47 ± 0.16	0.98 ± 0.02		0.63 ± 0.32	0.67 ± 0.31	0.89 ± 0.10
Coverage Rate		0.67	0.92	0.68		0.52	0.6	0.50

Case Study

Task	Positive Patterns	Negative Patterns		
Leader	\$Location president \$Person	\$LOCATION leader told \$PERSON		
	\$LOCATION prime minister \$PERSON	\$LOCATION scoring leader \$PERSON		
	\$LOCATION military ruler \$PERSON	\$PERSON , son of the \$LOCATION leader		
	\$LOCATION 's chancellor , \$PERSON ,	\$LOCATION 's cricket chief , \$PERSON		
Governor	\$PERSON , the \$LOCATION administrator	\$Location senator \$Person		
Capital	\$LOCATION 's central government in \$LOCATION	\$LOCATION leader \$PERSON will visit \$LOCATION		
	president sworn in <i>\$Location</i> , \$Location	embassy of \$Location in <i>\$Location</i>		
Spouse	\$PERSON 's widower \$PERSON	\$Person 's lover \$Person ,		
	\$LOCATION president \$PERSON and first lady \$PERSON	\$PERSON 's affair with \$PERSON		
	wedding of prince <i>\$Person</i> and princess \$Person	\$Person 's girlfriend , \$Person ,		
Parent	\$Person 's son \$Person	\$PERSON 's brother, \$PERSON ,		
	\$PERSON to his daughter \$PERSON	\$Person 's husband \$Person		
Death Year	king \$Person (\$Year - <i>\$Year</i>)	\$PERSON 's trial in \$YEAR		
	\$PERSON 's \$YEAR suicide	\$PERSON fired him in <i>\$YEAR</i>		
	\$PERSON 's \$YEAR funeral	\$PERSON 's husband died in \$YEAR		
	killed \$PERSON in <i>\$YEAR</i>	\$PERSON left in \$YEAR		

Error Analysis and Future Work

- Information sparsity
 - Pattern sparsity: extract little information
 - Entity sparsity: appears infrequent in the corpus
- Information ambiguity
 - Fine-grained typing
 - '\$Country senator \$Person' is semantically different from '\$State senator \$Person'
 - Entity linking or entity normalization
 - 'John', 'John Kennedy', 'Kennedy', 'J. H. Kennedy'... are they the same person?
 - Are 'John' and 'John' the same person?

Conclusion

- We proposed TruePIE to discover reliable patterns and EAV-tuples from text data
- Only reliable patterns should contribute to the information extraction
- Spotting negative tuples can significantly boost the performance of the information extraction. Arity-constraint is one effective way to do so