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ABSTRACT

Pattern-based methods have been successful in information extrac-

tion and NLP research. Previous approaches learn the quality of

a textual pattern as relatedness to a certain task based on statis-

tics of its individual content (e.g., length, frequency) and hundreds

of carefully-annotated labels. However, patterns of good content-

quality may generate heavily conflicting information due to the

big gap between relatedness and correctness. Evaluating the cor-

rectness of information is critical in (entity, attribute, value)-tuple

extraction. In this work, we propose a novel method, calledTruePIE,

that finds reliable patterns which can extract not only related but

also correct information. TruePIE adopts the self-training frame-

work and repeats the training-predicting-extracting process to grad-

ually discover more and more reliable patterns. To better represent

the textual patterns, pattern embeddings are formulated so that

patterns with similar semantic meanings are embedded closely to

each other. The embeddings jointly consider the local pattern in-

formation and the distributional information of the extractions. To

conquer the challenge of lacking supervision on patterns’ reliability,

TruePIE can automatically generate high quality training patterns

based on a couple of seed patterns by applying the arity-constraints

to distinguish highly reliable patterns (i.e., positive patterns) and

highly unreliable patterns (i.e., negative patterns). Experiments on

a huge news dataset (over 25GB) demonstrate that the proposed

TruePIE significantly outperforms baseline methods on each of

the three tasks: reliable tuple extraction, reliable pattern extraction,

and negative pattern extraction.
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1 INTRODUCTION

Pattern-based methods have been popular in extracting structured

information from text data for over two decades [1, 13]. Recently,

with the achievement of high accuracy of entity typing systems,

multiple pattern generation methods have been proposed [14, 21] to

generate textual patterns with semantic types. These typed patterns

such as “$Country president $Person” can help discover entity-

attribute-value tuples beyond the predefined attribute schema of

entities.

The existing pattern-based information extraction methods try

to find high-quality patterns based on content-based criteria, such

as frequency. However, the discovered “high-quality” patterns may

still extract much incorrect information from the corpus. For exam-

ple, consider the pattern “president $Person ’s visit to $Country”.

It is likely to be considered as a high-quality pattern by the existing

pattern-based information extraction methods for the task of find-

ing country’s president, since it appears frequently in the corpus,

has a complete meaning, and contains the keyword “president”.

However, when considering its meanings, one can realize that this

pattern is actually not proper for the targeted task. The extracted

person may not be the president of the mentioned country in this

pattern. In fact, this pattern always extracts incorrect information

and should be excluded from the president extraction task. Therefore,
we propose to add another dimension to the pattern quality: pattern
reliability, where we call a pattern is reliable if it is more likely to
provide correct information.

It is clear that when extracting information, one should rely more

on the reliable patterns. It is especially important when there exist

many patterns providing low-quality information: if those unreli-

able patterns can be detected and disregarded, then they will not

introduce noise to the extracted information. However, it is a chal-

lenging problem to estimate the patterns’ reliability degrees, since

there is usually little supervision available. In practice, with the

massive corpus, we cannot expect human to label every pattern’s

reliability and every piece of information’s correctness. Therefore,

it is critical to infer the patterns’ reliability from the corpus without

much human effort.

To achieve the goal, we develop a novel method called TruePIE

(True-Pattern oriented Information Extraction). TruePIE tries to

find both reliable information and patterns for the specific infor-

mation extraction tasks. It adopts a self-training framework that

can automatically generate training patterns, both positive and

negative, and classify the massive candidate patterns.

https://doi.org/10.1145/3219819.3220017


There are two major challenges: 1) what features should be used

to represent the patterns, and 2) how to automatically generate the

training set? To conquer the first challenge, how to represent the

patterns, we propose pattern embeddings as the features, where

patterns with similar semantic meanings are embedded close to

each other. The proposed pattern embeddings evaluate the pattern

similarity from two aspects: the constructing words in a typed

pattern and the extractions of the pattern. The idea is that if two

patterns share similar words and/or their extractions share a similar

relationship, then they are more likely to be similar. Such pattern

embeddings consider both the local pattern information and the

distributional information of the extractions, and consequently can

nicely represent patterns.

To conquer the challenge of lacking supervision, we propose to

automatically generate training patterns based on only a couple of

seed patterns. Our basic principle is that the patterns which often

extract correct information are more reliable, and the information

extracted from the reliable patterns is more likely to be correct.

However, this principle can only help us discover the reliable (i.e.,

positive) patterns for the training. Then how to detect the negative

patterns under the open-world assumption? The existing pattern-

based methods focus on discovering positive information and rarely

consider the negative information or negative patterns. To tackle

this challenge, we propose a novel approach which discovers the

conflict information. Based on common sense and observations

from the data, we find that the number of correct values of a specific

entity is usually limited, and the number of entities that a specific

value is associated with is also limited. For example, a country

may have only a limited number of presidents in history and a

president may serve in only one country. This information can

be utilized to form constraints on the number of entities/values

that a value/entity can be linked with, and we call such constraints

“arity-constraints”. The arity-constraints are effective in detecting

incorrect information. For example, if we find that in the extractions

one president is associated with two countries, then it is very likely

that one of the countries is incorrect. Moreover, we define two types

of arity-constraints, hard and soft, to allow flexibility under certain

circumstances. We further propose an optimization problem to

accurately estimate the reliability of the patterns and the correctness

of the extractions.

Applying these ideas, TruePIE can start from a tiny amount of

labeled information (our experiments show that only one seed pat-

tern is needed in many cases) and gradually discover more andmore

reliable patterns and correct information. The proposed TruePIE

method is tested on a massive corpus (over 25 GB in size) with 9.9

million documents and 4.0 billion words. The experiments show a

significant improvement over the state-of-the-art information ex-

traction methods in terms of finding both correct tuples and reliable

patterns.

In summary, we make the following contributions in this paper:

• We identify the pitfall and challenge overlooked by existing

pattern-based methods: the patterns’ reliability. The reliable pat-

terns are more likely to provide correct information for the spe-

cific information extraction tasks, and the negative patterns are

the clues of likely wrong information.

• We formulate a pattern embedding approach where semantically

similar patterns can be embedded close to each other. The pattern

embeddings consider both the local pattern information as well

as the distributional extraction information.

• We propose a novel approach using the arity-constraints to de-

tect negative patterns under the open-world assumption. The

automatically generated positive and negative patterns together

can train a powerful classifier to identify more reliable patterns.

The proposed TruePIE adopts a self-training framework and

requires minimal human effort.

2 RELATEDWORK

Given a text corpus, textual patterns leverage statistics (e.g., high

frequency) by replacing words, phrases, or entities with symbols

such as part-of-speech tags or entity types in order to extract a large

collection of tuple-like information [27]. Hearst patterns like “NP
such as NP , NP , and NP” were proposed to automatically acquire

hyponymy relations from text data [13]. Later, machine learning

experts designed the Snowball systems to propagate in plain text for

numerous relational patterns [1, 7, 30]. Google’s Biperpedia [11, 12]

generated E-A patterns (e.g., “A of E” and “E ’s A”) from users’

fact-seeking queries by replacing entity with “E” and noun-phrase

attribute with “A”. ReNoun [28] generated S-A-O patterns (e.g., “S ’s
A is O” and “O , A of S ,”) from human-annotated corpus on a pre-

defined subset of the attribute names. Patty used parsing structures

to generate relational patterns with semantic types [21]. The recent

MetaPAD generated “meta patterns” based on content quality [14].

However, the above methods generated textual patterns based on

either frequency or content quality. Our proposed TruePIE resolves

conflicts for truth by evaluating reliability of patterns, which makes

it distinctive among the pattern-based IE methods. There is also a

study [24] trying to estimate the pattern reliability. However, this

method only considers pattern extractions when calculating the

reliability, and it cannot effectively detect negative information

under the open world assumption. Our framework improves the

reliability estimation by further considering the constructing words

of patterns, and it can automatically generate training patterns,

both positive and negative, based on several seed patterns.

Besides scoring textual patterns, there have been a few works on

scoring tuples [15, 23, 25]. Bast et al. proposed to assign relevance

scores for the tuples from type-like relations that are extracted

from text or exported from Knowledge Bases [5, 6]. In our work,

we evaluate the reliability of tuples based on the reliability of the

sources (i.e., textual patterns) that provide them: If the patterns are

reliable, their extractions are more likely to be correct; if the tuples

are correct, the patterns are more likely to be reliable. Our studies

show that these two processes can mutually enhance each other.

Open-domain IE systems can also extract facts by parsing indi-

vidual sentences into (subject, relation/verb phrase, object)-tuples

[4, 9, 10, 19, 26, 29]. Angeli et al. leveraged linguistic structure in ev-

ery single sentence for IE and slot filling tasks [2, 3]. However, facts

are often not expressed by whole sentences but segments of the

sentences, which is why textual pattern-based IE often outperforms

the Open IE systems on extracting values of specific attributes [14].

Therefore, the Open IE systems are not compared in our experi-

ments.



3 PROBLEM DEFINITION

In this section, we describe the task and introduce some key con-

cepts. Then we formally define our problem.

Definition 3.1 (Task definition). A target-attribute extraction task

is an information extraction task for a specific attribute (e.g., pres-

ident, capital). The task aims to accurately find all entities that

have the target attribute and their corresponding attribute values.

To reduce the ambiguity of the attribute, we assume that the entity

type and the value type are also specified in the task. For example,

a target-attribute extraction task can be set with the attribute goal

as “president”, where the entity type is $Location, and the value

type is $Person.

Definition 3.2 (EAV-Tuple). An EAV-tuple t is a piece of informa-

tion extracted for the target-attribute extraction task, formating as

⟨e , a, v⟩, where e denotes the entity, a denotes the target attribute,

and v denotes the attribute value.

Definition 3.3 (Pattern). A textual pattern is a sequential pat-

tern of the tokens from the set of entity types (e.g., $Location,

$Person), data types (e.g., $Digit, $Year), phrases (e.g., “prime

minister”), words (e.g., “president”), and punctuation marks. Here

the pattern is a textual pattern of content quality, which means it

has good frequency, concordance, completeness, informativeness,

and coverage as defined in MetaPAD [14]. We denote a pattern as

p and the set of all the tuples it can extract as Tp .

As discussed above, the pattern’s quality assessment is usually

defined on content-based criteria. However, in this quality defini-

tion, one important aspect is overlooked: the correctness of the

information that it extracts. In real-world applications, there are

many patterns that have high “quality” scores, but do not extract

useful information for the given attribute. To address the short-

coming of the existing quality assessment for patterns, we further

define the reliability of a pattern/tuple to reflect how likely the

pattern/tuple is correct.

Definition 3.4 (Pattern Reliability). The pattern p’s reliability is

defined as how likely its extracted EAV-tuplesTp are correct. We use

a score ρp to measure p’s reliability. The higher the more reliable.

Further, we call a pattern positive if it is reliable on attribute a,
and a pattern negative if it is unreliable, i.e., it usually extracts

wrong information for attribute a. Note here that, if a pattern does

not contain correct entity or value types for the target-attribute

extraction task, we consider it as irrelevant with attribute a, and
do not assess its reliability on attribute a.

Definition 3.5 (Tuple Reliability). Similarly, we define the tuple

t ’s reliability as how likely t is correct. We use a score τt to measure

t ’s reliability.

With the aforementioned concepts, we formally define our prob-

lem in the target-attribute extraction task.

Problem. Given the text corpus and a specific target-attribute

extraction task a, our goal is to generate reliable patterns P, so that

they can extract as many as possible reliable EAV-tuples.

To solve this problem in practice, the designed algorithm should

also consider the human effort involved. With the massive text

Table 1: Notations we use throughout this paper.

Symbol Definition

e,a,v An entity, an attribute, and a value, respectively

p a pattern that contains a pair of typed entities

t An EAV-tuple, in the format of ⟨e , a, v⟩
vec(·) embedding function.

Tp The tuples extracted by pattern p
ρp The reliability score of pattern p
τt The reliability score of tuple t
P The positive pattern set

T The reliable tuple set

¯P The negative pattern set

corpus, it is unrealistic to rely on the human to annotate the cor-

rectness for many tuples or patterns. Therefore, the designed algo-

rithm should expect limited annotations to handle the massive text

corpus.

Table 1 summarizes the frequently used notations in this paper;

some will be introduced in the next section.

4 THE TRUEPIEMETHOD

In this section, we formally present the proposed algorithm

TruePIE. Reliable patterns, i.e., the patterns that are more likely

to extract correct information, are the key in the target-attribute

extraction tasks. However, there is hardly any prior knowledge on

which pattern is reliable and which tuple is correct. Therefore, the

reliability of patterns and the tuples needs to be learned from the

data with little human guidance. To achieve the goal, the proposed

TruePIE adopts a self-training framework and gradually identifies

more and more reliable tuples and positive patterns (and negative

patterns).

4.1 TruePIE Overview

Figure 1: The self-training framework of TruePIE

The basic idea of TruePIE is that reliable patterns for a target-

attribute extraction task should convey similar semantic meanings.

Therefore, we propose a pattern embedding approach so that pat-

terns with similar semantic meanings are close to each other in

the embedded space. However, without supervision, it is hard to

judge how close is close enough. Therefore, to overcome the lack of

supervision, TruePIE is a self-training model that can automatically

generate training patterns from the data and the design runs with

little human guidance.



The flow of the proposed TruePIE is shown in Figure 1. With

the seed pattern, TruePIE first learns the arity-constraints (Section

4.4.1) to help identify the highly reliable (i.e., positive) and highly

unreliable (i.e., negative) patterns (Section 4.4.2). With the identified

positive and negative patterns, a classifier can be trained with

the pattern embeddings (Section 4.3) as features and the pattern

candidates can be classified. Combining the highly reliable predicted

positive patterns with the previously found positive patterns, more

positive and negative information can be extracted (Section 4.5).

TruePIE will repeat this training-predicting-extracting process to

discover more and more reliable patterns and information.

4.2 Pattern Candidate Generation

The pattern candidates used in TruePIE can be generated by any

kind of pattern-based information extraction methods, for example,

MetaPAD [14], which uses a context-aware phrasal segmentation

approach to generate pattern candidates of high content quality.

Regardless of the pattern candidate generation methods, the same

basic ideas apply: information extracted from the reliable patterns

is more likely to be correct and the patterns which often extract

correct information are more reliable. For example, in the large set

of S-A-O patterns used in ReNoun [28], “A of S is O” is often more

reliable than “S A O”, and the pattern “S’s A and O” may even be

a negative pattern; here S is the subject/entity, A is the attribute

name, andO is the object/attribute value. From another perspective,

TruePIE can be viewed as an enhancer for any pattern-based IE

systems, which can better group synonymous patterns and improve

the accuracy of the extracted information.

4.3 Pattern Embedding

Word embedding techniques have been widely used as features for

NLP and machine learning tasks, thanks to its properties such as

providing a distributional representation for words and preserving

their semantic and syntactic relationships [17]. For example, similar

words can have similar embeddings and the semantic relationships

can be captured through algebraic operations (e.g., vec(‘Paris’) −
vec(‘France’) +vec(‘Italy’) ≈vec(‘Rome’)). These properties are also

helpful to formulate pattern embeddings: good pattern embeddings

should also preserve their semantic relationships. Therefore, we

propose to learn a distributional representation for patterns using

the word embedding techniques (word2vec) in [17, 18].

The key idea of the proposed pattern embedding is to map pat-

terns with similar semantic meanings close to each other. The

reason is that reliable patterns are likely to share similar meanings.

When evaluating the similarity between patterns, there are two

important perspectives: the words constructing the pattern and the

pattern’s extractions. For example, pattern “$Location president

$Person” has the constructing word “president” and has extractions

such as ⟨USA, President, Trump⟩.
Suppose p has constructing words (W p

1
, · · · ,W p

m ) and extrac-

tions {(epi ,v
p
i )}

n
i=1

. Applying the above idea, we formulate pattern

p’s embedding, denoted as vec(p), as follows.

vec(p) = (vecp (w),vecp (r )), (1)

where

vecp (w) = 1

m

m∑
i=1

vec(W p
i )

vecp (r ) = 1

n

n∑
i=1

vec(epi ) −vec(vpi ). (2)

In the above definition, pattern embedding is a concatenation of two

parts, which correspond to the aforementioned two perspectives:

The first part is themean of the constructing words’ embedding, and

the second part reflects the relationship between the extracted pairs.

Using this pattern embedding, patterns with similar constructing

words and similar relationships between the extracted pairs will

have similar embeddings.

4.4 Generation of Training Patterns

With the proposed pattern embeddings, one straightforward ap-

proach to find reliable patterns is to conduct clustering or ranking

based on the seed patterns, as its neighboring patterns may have

similar semantic meanings and are likely to be reliable. However,

such unsupervised methods have a strong shortcoming: it is hard to

determine a proper threshold to justify how close is close enough

for each target attribute. To overcome this problem, we propose to

generate the training patterns with only a couple of seed patterns

so that a classifier can be then used to distinguish positive and

negative patterns.

4.4.1 Arity-Constraint. It is relatively easy to find positive pat-

terns: if a pattern repeats significantly in the corpus and its extrac-

tions overlap significantly with the extractions from seed pattern

set P0, it is likely to be reliable. However, having the positive pat-

terns only is not enough for the training. Spotting the negative

patterns/tuples plays a key role in completing the training set.

Though important it may be, negative patterns/tuples are hard to

detect as the close-world assumption is not valid under the real-life

settings. In this section, we propose a novel method to answer this

question: how to find the negative patterns/tuples?

To detect the negative tuples, we observe the following fact:

Given a target attribute, the number of correct values of a specific

entitymay be limited, and the number of correct entities of a specific

value may also be limited. For example, a country may have only

a limited number of presidents in history, and a president may

only serve in one country. If such observations can be modeled and

applied, the false tuples can be effectively detected. To do so, we

form the tuples into a bipartite graph of entity nodes and value

nodes, where an edge between ⟨e , v⟩ indicates that ⟨e , a, v⟩ is
extracted, then this observation can be formally defined as the

arity-constraints on entities and values.

Definition 4.1 (Arity-Constraint). The arity-constraint for at-

tribute a is equivalent to setting constraints on the degree of entities
Ca
e (number of values an entity can associate with) and degree of

values Ca
v (number of entities a value can associate with).

Given the arity-constraint, and suppose there is a reliable EAV-

tuple set T , then we can evaluate the reliability of the tuples more

accurately. We call a tuple t is positive if t ∈ T; a tuple t is negative
if t < T and adding t to T can cause violation of Ca

e or Ca
v (we also



call t a conflict of T); a tuple t is undecidable, if t is neither positive
nor negative.

The arity-constraint can be set by human for a given target-

attribute extraction task or can be learned from the data automati-

cally. Either way, the arity-constraints should fit for “average” enti-

ties and values. To learn the arity-constraints from the data, due to

the ubiquitous long-tail phenomenon in word distributions, median

may be a good estimation of “average”. Therefore, we suggest the

arity-constraints as follows.

Ca
e : deд(e) ≤ median(fe ); (3)

Ca
v : deд(v) ≤ median(fv ), (4)

where fe and fv represent the empirical distributions of the degree

of entities and values, respectively.

However, there may exist exceptions that should be considered.

If the arity-constraint is too tight, it may cause high false negative

rate when estimating tuples’ reliability. Therefore, we further re-

fine the definition of arity-constraint by differentiating between

hard constraint and soft constraint. For the former, no violation is

allowed, while for the latter, a violation is allowed if there is enough

evidence that a tuple is positive. Mathematically, we define a hard

constraint ifmedian(fe ) = QFe (1 − α). Ifmedian(fe ) < QFe (1 − α),
then the arity-constraint is a soft constraint. QF (·) is the quantile
function for distribution function F (x) = Pr(X ≤ x), defined as

QF (p) = in f {x ∈ R : F (x) ≥ p}, and α is the significant level.

Note that the QF (·) is non-decreasing and median is equivalent to

QF (0.5), somedian(fe ) ≤ QFe (1−α). In our experiment, α is set to

0.1.

4.4.2 Pattern Reliability and Tuple Reliability Estimation. With

the detected negative tuples, the estimation of the reliabilities of

patterns and tuples can be further improved. Moreover, the pat-

tern reliability and tuple reliability are closely related: the patterns

which often extract correct information are more reliable, and the

information extracted from the reliable patterns is more likely to be

correct. Therefore, we propose a unified model to estimate pattern

and tuple reliability together.

We first define pattern and tuple reliability. Given the arity-

constraints and the reliable EAV-tuple set T, we calculate the pat-
tern reliability ρp as:

ρp =
N+ +

1

2
NU

N+ + N− + NU
, (5)

where N+, N−, and NU denote the number of positive tuples, neg-

ative tuples, and undecidable tuples p extracts, respectively. This

formulation is a natural extension of precision, where the undecid-

able tuples are given partial credits. Compared with precision, it is

more suitable to the open-world assumption.

This pattern reliability score has the ability to distinguish pat-

terns with different reliability characteristics. For a pattern p, if ρp
is close to 1 (e.g., greater than a threshold θ : ρp > 0.8), it means

that p is highly reliable and always provides correct information.

Therefore, it should be considered as a positive pattern. On the

other hand, if ρp is close to 0 (e.g., ρp < 0.2), it means that p always

provides information that conflicts with the reliable EAV-tuple set,

so p should be a negative pattern. If p is irrelevant with the target-

attribute extraction task, then very likely, it will provide many

undecidable tuples, and thus ρp would be close to 0.5.

With the reliable pattern set P and the arity-constraints Ca
e ,C

a
v ,

the extracted tuples can form a bipartite graph of entity and value

nodes, where an edge between ⟨e , v⟩ indicates that ⟨e , a, v⟩ is
extracted. The reliability score of the tuple is then represented as

the edge weight, which is defined as:

τt =
∑

p :p∈P
ρp × n

p
t − b, (6)

where ρp is the reliability score of pattern p, n
p
t is the count of t

extracted by p, and b is a small positive parameter to reduce the

randomness in extractions. Here, we only consider tuples from the

reliable patterns since unreliable patterns have high noise and may

have harmful influence to the reliability estimation of the tuples.

Since the tuples with higher weights are more likely to be correct,

the problem is then equivalent to forming the bipartite graph with

the maximum sum of edge weights subject to the arity-constraints.

Mathematically, it is an optimization problem to find the best as-

signment such that:

max

∑
t

(
τt − max(β11(¬Ca

e ), β21(¬Ca
v )
)

s .t .ρp ⩾ θ ,∀p ∈ P,P0 ⊆ P, (7)

where 1(·) is the indicator function, P0 refers to the seed pattern

set, and βi is a positive penalty parameter if the corresponding

arity-constraint is soft and βi is ∞ for hard constraint. For soft

constraints, if an edge causes violation but its weight τt is large
enough, then this edge should still be kept. However, for hard

constraint, no violation can be kept.

This optimization problem jointly models the reliability of the

tuples and patterns. If τt ’s are given, this problem can be reduced

to a network flow problem. Since the correct information usually

appears more frequently than the incorrect information in the reli-

able pattern’s extractions, therefore, we propose a greedy method

to speed up the optimization process. Algorithm 1 shows the gener-

ation of the positive/negative pattern set and the reliable EAV-tuple

set.

4.5 The Self-Training Framework

Now with the generated training patterns, we can then train a clas-

sifier to predict the reliability of the candidate patterns who are

neither positive nor negative, where the features are the patten

embeddings. Considering the characteristics of the proposed pat-

tern embedding, in our experiments, we use K-nearest-neighbors

approach to make predictions, with cosine distance and the inverse

distance as the weight. The candidate patterns which are closer to

the positive patterns will be predicted as positive. To avoid over

fitting, the negative patterns that are close (cosine similarity > 0.9)

to any positive patterns will be removed from the training set. In

practice, there are more negative patterns than the positive patterns,

so the value of K should be chosen proportional to the number of

positive patterns to ensure the effectiveness of the classification

results.

Since the automatically generated training set has high standard

on their reliability scores, the size may limit its power to discover



Algorithm 1 Algorithm of Generating Training Patterns

Input: The corpus, seed pattern set P′, arity-constraints, and parameters

β1, β2, and θ .
Output: Reliable EAV-tuple set T, positive pattern set P, and negative

pattern set
¯P.

1: Initialization: T = ∅, P = P′, and ¯P = ∅. For
p ∈ P, ρp = max(β1, β2)/2, T = TP

2: if Arity-constraints are not given then

3: Learn Ca
e and Ca

v from TP ;
4: Set βi = ∞ if corresponding arity-constraint is hard;

5: end if

6: repeat

7: Calculate the reliability score of the tuples using Eq.(6)

8: Sort t with τt in decreasing order

9: for each t with τt > 0 do

10: if adding t to T satisfy the arity-constraints then

11: Add t to T;
12: else if τt > max(β1, β2) then
13: Add t to T;
14: end if

15: end for

16: Generate a new set of pattern candidates using MetaPAD;

17: for each candidate pattern p do

18: Calculate ρp based on Eq.(5)

19: if ρp > θ then

20: P = P ∪ p ;
21: else if ρp < 1 − θ then

22:
¯P = ¯P ∪ p ;

23: end if

24: end for

25: until P is stable

reliable patterns. In this case, a self-training framework can be

adopted, where the “good” predicted positive patterns will be added

into the training patterns.

Since the predictions may contain errors, further estimation of

their reliability is necessary to ensure the quality of the training set.

We first combine the extractions of the predicted positive patterns

with the existing reliable pattern set and update the reliable tuple

set. In this step, since the reliabilities of the newly added positive

patterns are unknown, we use their prediction probabilities instead:

τnewt = τoldt +
∑
t ∈Tp Prob(p). Now, with the updated reliable tuple

set, the reliability of the candidate patterns can be calculated. Note

here, since the reliable tuple set already contains the extractions

from the predicted positive patterns, their ρp ’s should be calculated
under the close-world assumption (i.e., the vanilla precision). Fi-

nally, the patterns with high reliability scores will be added into

the reliable pattern set.

In summary, the proposed self-training TruePIE framework

will gradually enlarge the set of reliable EAV-tuples and the set of

positive (reliable) patterns through repeating the following training-

predicting-extracting steps until the stopping criterion is met.

Step 1: Given the reliable tuple set, generate training patterns;

Step 2: With the training patterns, classify the candidate patterns,

where the features are the pattern embeddings;

Step 3: Combine the extractions of the positive patterns and update

the reliable tuple set. Repeat from Step 1.

4.6 Time Complexity of TruePIE

The proposed TruePIE method runs in an iterative manner, discov-

ering more and more positive patterns and tuples in each iteration.

In practice, we find that TruePIE can find sufficient positive pat-

terns within 2 to 3 iterations. In each iteration, if the arity-constraint

is not given, then it needsO(|TP |) to learn. The construction of the

reliable tuple set needs O(|TP |loд(|TP |)). The pattern generation

step can be done by calling the module inMetaPAD [14] once to

generate all pattern candidates, which takes O(|C |), where |C | is
the corpus size. Then for each pattern, we estimate the correctness

of all tuples it extracted and calculate its reliability scores, so totally

this step can be done in O(∑p |Tp |). When conducting the classifi-

cation step, the time complexity for KNN is linear in the size of the

training set O(| ¯P| + |P |). Overall, besides the pattern generation

step, TruePIE runs inO(∑p |Tp | + |TP |loд(|TP | + | ¯P| + |P |). How-
ever, since the number of positive tuples and number of patterns

are usually much less than the total number of tuples, in practice,

TruePIE runs in O(∑p |Tp |).

5 EXPERIMENTS

In this section, we first introduce a huge text corpus (as our dataset)

and the competitive methods. Then we report the experimental

results on multiple tasks including a) reliable tuple extraction, b)

reliable pattern generation, c) case studies, and d) error analysis.

5.1 Experimental Setup

We adopt a huge set of language resources from English Gigaword
Fourth Edition LDC2009T13 [22]. There are news articles from dif-

ferent news sources spanning from mid-1990s to 2010. The six dis-

tinct international sources of English newswire are Agence France-

Presse, Associated Press Worldstream, Central News Agency of

Taiwan, Los Angeles Times/Washington Post, New York Times,

and Xinhua News Agency. The total size of the text corpus is 26,348

MB (25.7 GB) including 9.9 million documents and 4.0 billion words.

The named entities are recognized and typed using Stanford NER

tool [16].

We compare the proposed approach with the following baseline

methods that represent state-of-the-art pattern-based information

extraction methods. As discussed in Section 2, the open IE systems

are not compared.

• Patty [21] relies on the Stanford dependency parser [8] and

formulates the textual patterns with semantic types if the parsing

path between entity and value is short and the patterns appear

frequently. Then the pattern taxonomy is constructed based on

patterns’ extractions.

• MetaPAD [14] assesses the quality of textual patterns according

to content-based criteria such as frequency, concordance, com-

pleteness, and informativeness. It adopts context-aware phrasal

segmentation to generate patterns of good content quality and

groups synonymous patterns by high agreement on trigger words

(e.g., “president”) or extractions. This method is adopted by

TruePIE to generate the candidate patterns.

• REPEL [24] is a co-training method which also estimates pattern

reliabilities. When calculating the pattern reliability, it only con-

siders the pattern extractions, and the constructing words are

ignored.



In our experiments, Patty and MetaPAD are compared for the

tuple extraction task, and REPEL is compared for the reliable pattern

generation task.

5.2 Results on EAV-Tuple Extraction

In this section, we evaluate the extracted EAV-tuples from dif-

ferent methods. We focus on four tasks, namely, the Leader

of a country (i.e., ⟨$Location, leader, $Person⟩), the President

of a country (i.e., ⟨$Location, president, $Person⟩), the Cap-

ital of a location including country, state and province (i.e.,

⟨$Location, capital, $Location⟩), and the Director of an orga-

nization (i.e., ⟨$Organization, director, $Person⟩).
The seed patterns are “$Location leader $Person”, “$Location

president $Person”, “$Location capital $Location” and

“$Location , the capital of $Location”, and “$Organization

director $Person”, respectively. For the first three tasks, the

arity-constraints are learned from the data, which state that one

location can have one or more leader/president but only one

capital, and one person/city can be the leader/president/capital for

one location. For the Director task, the arity-constraint is given as

“1-soft:1-soft”, meaning that a person can be director for one or

more organizations and one organization can have one or more

directors. The k = 15 for the kNN classification since there are

many positive patterns.

We conduct quantitative evaluation in terms of precision and

coverage rate. Precision is defined as the percentage of the extracted

EAV tuples that are correct. To evaluate precision, we randomly

sample 50 extracted tuples from each method and label their cor-

rectness. To insure the quality of the evaluation, the labeling is

conducted by four hired students (one for each task) manually by

looking up the information from Google search. We repeat this

random sampling for 10 times and report the average precisions

with standard deviations. Since all methods can provide reliabil-

ity scores for tuples, we also compare the precisions on the top

tuples. Another important aspect of the extracted tuple quality is

the completeness (recall). However, because of the corpus size, it

is unrealistic to get a complete list of all correct tuples. Therefore,

we use coverage rate to evaluate how complete the extractions

are. To evaluate the coverage rate, we first sample 100 correct tu-

ples extracted from each method to form a ground truth tuple set,

and then combine them to examine how many of these 300 tuples

are covered by each method. We report the percentage. For both

precision and coverage rate, the values are the higher the better.

Table 2 summarizes the comparison results on the extracted

tuples. It is clear that the proposed TruePIEmethod achieves signif-

icant improvement in precision. Since in the TruePIEmethod, only

the reliable patterns are used in information extraction, TruePIE

is less prone to the noise. The precision on the tuples with high

reliability scores even achieves 100% or almost 100% accuracy for

many tasks. The coverage rate of the TruePIE method is also com-

petitive with the baseline methods. Even though for some tasks,

the baseline methods achieve higher coverage rate than TruePIE,

they may need to extract much more tuples to achieve the improve-

ment (e.g., for the President task, Patty extracts 423% times more

tuples to gain 22% improvement, for the Capital task, MetaPAD

extracts 921% times more tuples to gain 28% improvement, and

for the Director task,MetaPAD extracts 173% times more tuples

to gain 20% improvement in the coverage rate). Moreover, for the

Leader extraction task, which involves many sub-relations and thus

more diverse expressions on reliable patterns, TruePIE achieves

the highest precision and coverage rate. The discovered reliable

patterns by TruePIE contain key words such as president, prime

minister, chancellor, dictator, and ruler, in addition to “leader”. Yet

for this task, only one seed pattern is used by TruePIE.

For the baselines, Patty andMetaPAD perform similarly. For

both methods, the key factors to assess the pattern reliability are the

frequency and the trigger words of the patterns. Though these two

factors are important, as shown in the results that the top extrac-

tions have higher precisions, they are not accurate and sufficient.

For example, pattern such as “president $Person in $Location” is

a frequent pattern and contains trigger word “president”. However,

this pattern is not reliable in the president extraction task. When

many of these kind of patterns are used to extract information, the

results will unavoidably suffer from high noise.

5.3 Results on Reliable Pattern Extraction

In this section, we focus on the following three tasks to eval-

uate the generated reliable patterns: the Spouse of a person

(i.e., ⟨$Person, spouse, $Person⟩), the Parent of a person (i.e.,

⟨$Person, parent, $Person⟩), and the Death Year of a person (i.e.,

⟨$Person, year of death, $Year⟩). These three tasks are much

sparser in the given news corpus and has many diverse expres-

sions.

For the Spouse extraction task, the seed patterns are “$Person

and his/her wife/husband , $Person ,”, “$Person ’ s wife/husband ,

$Person ,”, and “$Person married $Person”. For Parent extraction

tasks, the seed patterns are “$Person ’ s father/mother/parents ,

$Person ,”. For the Death year extraction task, the seed patterns

are “$Person died in $Year” and “$Person ’ s death in $Year”.

The seed patterns are also used in the baseline method REPEL. The

arity-constraints are set as “1-soft:1-soft”, “2-soft:2-soft”, and “1-

soft:20-soft” respectively. They are set according to common sense

for average cases. For example, one person may have one spouse,

but should have exceptions as he/she may have a divorce. The k = 3

for the kNN classification since the positive patterns are relatively

sparse for these tasks in the dataset. Since REPEL returns a ranked

list of generated patterns on their reliability scores, we compare its

top 100 reliable patterns in the experiment.

To evaluate the discovered reliable patterns, we ask a human

labeler to read the patterns and provide her judgment on the pattern

correctness for each task. We compare the True Positive Rate for the

discovered reliable patterns. To evaluate the discovered unreliable

patterns, we report the True Negative Rate. For both measurements,

the values are the higher the better.

Table 3 summarizes the details of some of the labeling results.

Overall, the discovered reliable patterns by TruePIE enjoy high

accuracy, with true positive rate higher than 90%.Moreover, the true

positive rates on the training patterns are even higher, with 99%, 94%

and 94% for the three tasks. Those automatically generated training

patterns ensure the good results of the self-training TruePIE. From

limited seed patterns, TruePIE detects “widower”, “divorce”, “bride”,

“couple”, etc, for Spouse task; “son”, “daughter”, etc, for Parent task;



Table 2: Comparison of the extracted EAV-tuples. Precisions are calculated based on 10 sets of 50 random samples from the

extracted tuples of eachmethod. K=400 for Capital and K=1000 for other tasks. Coverage rates are calculated based on 300 true

tuples where each method provides 100 unique tuples.

Task Patty MetaPAD TruePIE Task Patty MetaPAD TruePIE

#Extracted Tuples

Leader

2752 4067 2317

President

7801 4917 1490

Average Precision 0.59 ± 0.05 0.43 ± 0.07 0.87 ± 0.05 0.38 ± 0.08 0.30 ± 0.06 0.89 ± 0.05

Top 10% Precision 0.89 ± 0.17 0.66 ± 0.30 0.99 ± 0.03 0.59 ± 0.29 0.42 ± 0.15 1 ± 0

Top K Precision 0.67 ± 0.12 0.56 ± 0.10 0.99 ± 0.01 0.56 ± 0.27 0.33 ± 0.07 0.95 ± 0.04

Coverage Rate 0.56 0.59 0.61 0.87 0.63 0.71

#Extracted Tuples

Capital

1316 4371 428

Director

10313 14234 5205

Average Precision 0.37 ± 0.07 0.27 ± 0.10 0.97 ± 0.02 0.54 ± 0.08 0.56 ± 0.07 0.86 ± 0.05

Top 10% Precision 0.54 ± 0.25 0.47 ± 0.16 1 ± 0 0.63 ± 0.31 0.65 ± 0.20 0.93 ± 0.12

Top K Precision 0.51 ± 0.18 0.47 ± 0.16 0.98 ± 0.02 0.63 ± 0.32 0.67 ± 0.31 0.89 ± 0.10

Coverage Rate 0.67 0.92 0.68 0.52 0.6 0.50

Table 3: Comparison of the discovered reliable patterns. “Positive in Training” refers to the positive patterns generated for the

initial training set; “All Reliable” refers to all the discovered reliable patterns; “Unreliable Positive” refers to the discovered

unreliable patterns but with positive predictions from the classifier. TPR/TNR refers to the True Positive or Negative Rate.

REPEL

TruePIE

Positive in Training All Reliable Unreliable Positive

Spouse

# Patterns 100 429 1223 97

TPR/TNR 0.94 0.99 0.91 0.54

Parent

# Patterns 100 261 321 17

TPR/TNR 0.45 0.94 0.92 0.53

Death Year

# Patterns 100 54 235 37

TPR/TNR 0.79 0.94 0.93 0.51

and “assassinated”, “killed”, “suicide”, etc, for Death Year task. We

further examine how much those false positive patterns can affect

the results and find that most of them are infrequent patterns with

10 or less extracted tuples.

The baseline method REPEL performs well on Spouse task but

not satisfying on Parent and Death Year tasks. On the Parent task,

REPEL discovers “grandmother”, “sister”, “nephew”, “wife” and

other family relationships and cannot distinguish their difference

with “parent”. On the Death Year task, most wrong patterns are

about a person’s family’s death year, such as “$PERSON ’s mother

died in $YEAR”. Such mistakes may be caused by the sparsity of

the named entities in the corpus, which leads to noisy entity em-

beddings. Compared with REPEL, which only considers the pattern

extractions’ embeddings, TruePIE further takes into consideration

the pattern constructing words’ embeddings and detects negative

patterns. Thus, it is more robust against the embedding noise.

When evaluating the unreliable patterns, we randomly sample

200 patterns and the true negative rate is nearly 1 for all three

tasks. Note that this true negative rate may be not precise for all the

detected unreliable patterns since there are much more unreliable

patterns than reliable patterns. Therefore, we further examine a

special set of unreliable patterns (Unreliable Positive in Table 3).

These patterns are considered unreliable based on their estimated

reliability scores, but they are labeled positive by the classification

algorithm. The result shows quite high true negative rate (above

50%), which strongly suggests that the extracted tuples are of high

quality and demonstrates the robustness of the TruePIE method.

5.4 Case Study on Reliable/Unreliable Patterns

We also run TruePIE method on four additional tasks, namely

Vice President, Governor, Mayor, and Prime Minister. Due to space

limit, we do not discuss their results in details. However, from the

ten tasks, We find that for some tasks, the trigger words are more

important than for others. For example, in Vice President, Governor,

and Mayor tasks, the reliable patterns usually contain these trigger

words, but in tasks such as Death Year, Parent, Spouse, and Leader,

the expressions are more diverse.

Table 4 shows some interesting examples that TruePIE method

detects. Items in bold refer to the entity and items in italic refer to

the value. We provide our insights and analysis as follows.

First, the trigger words are not always reliable. The semantic

meanings can still differ a lot with the same trigger words. Not

relying on the trigger words may give TruePIE a big advantage in

discovering reliable patterns. Second, TruePIE discovers reliable

patterns that may explicitly or implicitly indicate similar attributes.

For example, reliable patterns may contain the hyponym of the



Table 4: Examples of positive patterns and negative patterns (“$Bold” denotes the entity and “$Italian” denotes the value).

Task Positive Patterns Negative Patterns

Leader

$Location president $Person $Location leader told $Person

$Location prime minister $Person $Location scoring leader $Person

$Location military ruler $Person $Person , son of the $Location leader

$Location ’s chancellor , $Person , $Location ’s cricket chief , $Person

Governor $Person , the $Location administrator $Location senator $Person

Capital

$Location ’s central government in $Location $Location leader $Person will visit $Location

president sworn in $Location , $Location embassy of $Location in $Location

Spouse

$Person ’s widower $Person $Person ’s lover $Person ,

$Location president $Person and first lady $Person $Person ’s affair with $Person

wedding of prince $Person and princess $Person $Person ’s girlfriend , $Person ,

Parent

$Person ’s son $Person $Person ’s brother , $Person ,

$Person to his daughter $Person $Person ’s husband $Person

Death Year

king $Person ( $Year - $Year ) $Person ’s trial in $Year

$Person ’s $Year suicide $Person fired him in $Year

$Person ’s $Year funeral $Person ’s husband died in $Year

killed $Person in $Year $Person left in $Year

trigger words, such as “president” and “prime minister” for “leader”;

and the two examples for Capital tasks show that the attribute is im-

plicitly referred. Third, the arity-constraints can play an important

role in detecting negative patterns. For example, “$Person ’s affair

with $Person” is considered an unreliable pattern because its ex-

tractions conflict with many reliable tuples. This pattern, however,

is considered reliable for Spouse and IsMarriedTo relationships by

Patty [20]. TruePIE successfully distinguishes the subtle difference

and finds that the two persons extracted from this pattern are not

married.

5.5 Error Analysis and Future Work

To provide further insights of the proposed TruePIE, we also exam-

ine the reason of the errors and provide some guidelines for using

TruePIE.

One of the main reasons causing errors in TruePIE is that the

embeddings are not distinguishable enough to classify positive and

negative patterns, especially for the patterns with sparse or ambigu-

ous named entities, and the low-coverage low-frequency patterns.

As discussed in Section 5.3, for the Parent task, REPEL generates

many patterns with other family relationships. Adding the pattern

constructing word embeddings significantly helps TruePIE to find

reliable patterns, but still a small amount of other family relation-

ships are generated. This also explains why there are unreliable

patterns labeled positive in the classification step. To overcome this

issue, we plan to investigate more sophisticated pattern embedding

methods.

Another reason of errors comes from the named entity recog-

nizer. The errors of the NER results can propagate to the pattern

generation step and then affect the accuracy of the extractions.

For example, in the Leader task, most of the errors are caused by

the incorrect typing: the NER tool types some company names as

locations. We also find that our candidate pattern generator, Meta-

PAD, can achieve better results if a reliable fine-grained typing

system can be applied. Such fine-grained typing system can also

help TruePIE to find more reliable patterns by reducing the ambigu-

ity of the patterns. For example, “$Country senator $Person” and

“$State senator $Person” may derive different arity-constraints.

To avoid the aforementioned errors, we suggest to apply TruePIE

on the corpus that contains considerably dense information for the

extraction tasks. Proper entity linking may also help to improve the

results by reducing entity sparsity and entity ambiguity. To ensure

the quality of the generated training examples, the selected seed

patterns should provide a good amount of extractions with high

precision. In our experiments, we choose the seed patterns as the

most frequent patterns containing the key words, which works nice

in the examined tasks. There are relation types that TruePIE may

fail, such as extracting the high/low blood pressure from medical

records and n-ary relations, where the current definitions of pattern

reliability score and arity-constraints are not suitable. We leave

those relation extraction tasks as our future work.

One potential extension of the proposed TruePIE is to use it for

building taxonomy of attributes automatically. Currently, TruePIE

can discover that “leader” includes “president”, “prime minister”,

“ruler” and several other attributes, which shows that it is promising

in finding hypernym-hyponym and synonym attributes. We also

observe a hierarchical structure in the pattern embedding space,

such as the parent, family, general relationships between persons.

6 CONCLUSIONS

In this paper, we propose a novel method, called TruePIE, to dis-

cover reliable EAV-tuples and patterns from text data. By adding re-

liability into pattern quality assessment, TruePIE can significantly

improve the precision of information extraction. We propose to

represent the patterns by pattern embeddings so that semantically

similar patterns are close to each other. To tackle the lack of supervi-

sion challenge, the proposed TruePIE is a self-training framework

that automatically generates training patterns based on a couple

of seed patterns, and gradually discovers more and more reliable

patterns and EAV-tuples from the corpus with little human effort.



To better estimate the pattern reliability under the open-world as-

sumption, arity-constraints are proposed to detect negative tuples

and patterns. Extensive experiments on a massive corpus clearly

demonstrates the effectiveness of the proposed TruePIE method.
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