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ABSTRACT
In the past decade, commercial crowdsourcing platforms
have revolutionized the ways of classifying and annotating
data, especially for large datasets. Obtaining labels for a sin-
gle instance can be inexpensive, but for large datasets, it is
important to allocate budgets wisely. With limited budgets,
requesters must trade-off between the quantity of labeled in-
stances and the quality of the final results. Existing budget
allocation methods can achieve good quantity but cannot
guarantee high quality of individual instances under a tight
budget. However, in some scenarios, requesters may be will-
ing to label fewer instances but of higher quality. Moreover,
they may have different requirements on quality for differ-
ent tasks. To address these challenges, we propose a flexible
budget allocation framework called Requallo. Requallo allows
requesters to set their specific requirements on the labeling
quality and maximizes the number of labeled instances that
achieve the quality requirement under a tight budget. The
budget allocation problem is modeled as a Markov decision
process and a sequential labeling policy is produced. The
proposed policy greedily searches for the instance to query
next as the one that can provide the maximum reward for
the goal. The Requallo framework is further extended to
consider worker reliability so that the budget can be bet-
ter allocated. Experiments on two real-world crowdsourcing
tasks as well as a simulated task demonstrate that when
the budget is tight, the proposed Requallo framework out-
performs existing state-of-the-art budget allocation methods
from both quantity and quality aspects.

1. INTRODUCTION
In the Internet age, the thriving growth of crowdsourc-

ing platforms unleashes the astonishing power of crowd wis-
dom, which makes it more convenient and efficient to ob-
tain labels. On commercial crowdsourcing platforms such
as Amazon Mechanical Turk1 (mTurk) and CrowdFlower2,

1https://www.mturk.com/mturk/
2http://www.crowdflower.com/
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requesters design and post their tasks (also known as human
intelligence tasks, HITs). Each HIT may contain one or sev-
eral instances (such as images) to be labeled. Workers can
view available HITs and choose whichever they want to work
on. After the workers finish their jobs, requesters adjudicate
the final results and pay the workers. As individual workers
may make mistakes, requesters can ask multiple workers for
each instance. This “repeated labeling” is commonly used
and recommended by mTurk3 to get more accurate labels.
Although crowdsourcing is known to be a cheap source for
individual labels, with the repeated labeling and a big pool
of instances, it is important to use the budget wisely, es-
pecially when the budget is tight comparing with the size
of instance pool. For example, ten thousand dollars may
still be tight to label all inappropriate videos on YouTube.
With a tight budget, the requesters can only afford a limited
amount of labels and they need to decide which instances
should get labels and how many on them.

One of the major dilemma the requester faces is the trade-
off between quantity of labeled instances and quality of
the final results. Intuitively, if we want more instances to
be labeled (high quantity), each instance will receive less
labels, resulting in a lower quality of the final results; on
the other hand, if we want high quality results, we may
end up with fewer questions being labeled (low quantity) so
each instance can get more labels. This trade-off is even
more noticeable under a tight budget. The preference of
this trade-off may vary for different tasks. For some tasks,
quantity is more important, but for others, quality is pre-
ferred. Under a tight budget, most existing budget alloca-
tion work [4, 11, 19, 24, 25, 30, 31, 38], though being able to
achieve good quantity, cannot guarantee high quality for in-
dividual instances. Consider a case that a requester has N
instances and can only afford N labels. Then these budget
allocation methods will give exactly one label to each in-
stance, and the final results are inadequate to justify. How-
ever, in some scenarios, requesters may prefer quality over
quantity. They may be willing to label less instances, i.e.,
sacrifice quantity to some extent, but require what they get
is of high quality. In that case, the existing methods cannot
meet the requesters’ needs. Therefore, a method is badly
needed if requesters have a preference of quality over quan-
tity under a tight budget.

To achieve this, the major challenge is how a requester
can measure the quality of the labels, a problem often over-
looked in the crowdsourcing literature. Most crowdsourcing
algorithms use accuracy rate to measure the quality of fi-

3mturkpublic.s3.amazonaws.com/docs/MTURK BP.pdf



nal results. It can be a nice measurement for an algorithm,
but usually is impractical for requesters because the ground
truths are often unknown, which is the reason requesters
post the HITs in the first place. In this case, it is impossible
to judge whether an instance is correctly labeled, and it is
hard to tell how many labels are enough.

To address this challenge, we propose to use confidence,
a user-specified measurement, to measure quality. Instead
of judging a result as correct or incorrect, the requester can
judge a result as confident or unconfident based on his “re-
quirement,” such as a minimum ratio between two classes’
vote counts. If the results have high confidence under a
strict requirement, it is likely that the results also have high
accuracy. We use the following example to illustrate how
confidence is decided under a requirement.

Example 1. Suppose a requester sets a requirement as a
minimum ratio of 4 between two classes’ vote counts. Then
an instance with results of one vote for class +1 and two
votes for class −1 is unconfident, while another instance with
results of one versus four is confident. Comparing these two,
the latter one is more likely to obtain the correct label.

Using this measurement, the requesters can specify a con-
crete and detailed requirement to reflect their needs for qual-
ity. Another benefit of using confidence is that it can help
requesters identify hard instances so that further actions can
be taken. A challenging instance might remain unconfident
after many rounds of labeling process. Then the requesters
may not want to waste their precious budgets on that in-
stance and should consider asking experts for labels.

In this paper, we develop a Requirement based budget
allocation (Requallo) framework, which can adjust the al-
location policy according to requesters’ needs on quality in
the form of a confidence requirement. No matter the size
of a budget, the proposed Requallo framework can guaran-
tee the requesters’ desired quality while trying to maximize
quantity (i.e., number of confident instances) and staying
within the budget. Formally, the objective of the frame-
work is stated as maximizing the overall expected complete-
ness of the tasks subject to the budget, where completeness
for an instance reflects how much confidence it gets under
the requirement. To solve this optimization problem, we for-
mulate it as a Markov decision process and use a one-step
look-ahead greedy algorithm to search for the instance with
the maximum reward in completeness to label next.

We further extend the basic model to incorporate workers’
reliabilities. Instead of using vote counts when calculating
expected completeness, we use the weighted vote counts de-
rived via MLE estimation, where the weights are determined
by the corresponding workers’ reliability. Standard ways of
inferring reliability for crowdsourcing include qualification,
spammer detection, and EM based aggregation. Extensions
on labeling in parallel and multi-class cases are also dis-
cussed.

In summary, we make the following contributions in this
paper:

• We identify the trade-off between quantity and qual-
ity in crowdsourcing tasks under a tight budget. Re-
questers can specify a measure of quality.

• We build a flexible framework to allocate the budget
for instances according to requesters’ needs on quality.
Examples of various quality requirements are discussed
and demonstrated.

• We formulate the budget allocation problem as a
Markov decision process and produce a sequential la-
beling policy. It maximizes the number of labeled
instances that achieve the quality requirement while
staying under the budget.

• We test the proposed framework on two real-world
crowdsourcing tasks and a simulated task. The real-
world tasks include one benchmark NLP task con-
ducted on mTurk and one trivia game conducted via
an app. The results clearly demonstrate the advan-
tages of the framework when the budget is tight.

In the following section, we give a brief overview on the re-
lated work in crowdsourcing and budget allocation problem.
Then in Section 3 we formulate the problem and derive the
proposed Requallo framework. In Section 4, the behavior of
different policies is examined and analyzed via experiments
conducted on two real-world crowdsourcing tasks and a sim-
ulated task. Finally, we conclude the paper in Section 5.

2. RELATED WORK
Recent years have witnessed the growing importance and

popularity of crowdsourcing applications in real life, and
thus many research efforts have been contributed to the de-
velopment of new algorithms and designs for crowdsourc-
ing tasks. Quality is one of the biggest concern in crowd-
sourcing tasks [28]. Research topics for this concern include
how to aggregate crowd labels [3, 5, 6, 21, 29, 33–35, 40], how
to select which crowd workers to work for a instance/task
[7,9,12,37,41], and how to better design the crowdsourcing
questions/tasks [8, 22, 26, 32, 36, 39]. Either by better task
design or targeting a small group of informative workers,
fewer labels may be needed for each instance, so they can
potentially save the costs. However, in those work, budget
constraints are not explicitly considered.

Motivated by the label cost concern, the budget allocation
problem in crowdsourcing has attracted considerable atten-
tion [4,10,11,19,24,25,30,31,38]. Methods in [25,27,30,38]
focus on pricing tasks given a budget. The platforms de-
signed in [25, 27] use flexible prices for different workers.
However, this work does not consider the quality of the re-
sults. Work in [10, 30, 38] takes quality into consideration.
However, different from our problem setting, interdepen-
dent tasks are considered in [30] and negotiation between
requesters and workers is required and modeled by game
theory in [10, 38]. The method proposed in [11] provides
a minimum number of labels in order to achieve target re-
liability ε. This work is built upon the assumption that
instances have the same level of difficulty, which is different
from ours. The work [31] further improves the theoretical
guarantee from the PAC (probably approximately correct)
perspective. All of these methods are all inapplicable when
the budget is lower than supporting one label per instance.

Among the budget allocation work, [4,19,24] are the most
related to ours. They all sequentially select instances to
label. In [24], label uncertainty is estimated as the tail
probability of a Beta distribution and the instances with
the highest label uncertainties are selected for more labels.
This work assumes that data quality is the same on all in-
stances, whereas we assume the quality would be higher for
easy instances. Both [4] and [19] model the sequential la-
beling problem as a Markov decision process, though they
have different goals from ours: the goal in [4] is to maximize



overall accuracy, while the goal in [19] is to maximize a util-
ity function with consideration of pull market (i.e., workers
may not accept jobs from requesters). Under our problem
setting, [19] can be considered as a special case of the pro-
posed Requallo framework (see Section 4.1). Under a tight
budget (such as affording N labels for N instances), meth-
ods in [4, 24] tend to allocate the budget uniformly among
the instances since querying on an unlabeled instance would
be optimal. As a result, though a large quantity of instances
may be labeled, very few of them could achieve the quality
requirement. To the best of our knowledge, we are the first
to address the trade-off between quantity and quality under
the tight budget. The proposed Requallo framework takes
requesters’ specific needs for quality into account and works
nicely even with very tight budgets.

3. METHODOLOGY
In this section, we introduce the proposed Requirement

based budget allocation (Requallo) framework. We start
with the basic framework, and then extend it to incorpo-
rate workers’ reliability. Finally, some practical issues are
discussed.

3.1 Basic Requallo Framework
Problem Setting and Formulation

Suppose a requester has N instances. Each instance is a
binary labeling problem and they are independent of each
other. The true label for the i-th instance Zi is either +1
or −1. Adopting the idea from probabilistic classification,
we model Zi as a random variable. P (Zi = +1), which can
be interpreted as the relative frequency that +1 appears
when the number of workers approaches infinity, indicates
the difficulty level of the i-th instance. If P (Zi = +1) is close
to 0.5, it implies that the i-th instance is difficult, because
even when the requester asks a large number of workers,
there is still no predominant answer. On the other hand, if
P (Zi = +1) is close to 1 (or 0), the instance is relatively
easy. Here we assume that instances are not misleading,
that is, P (Zi = +1) � 0.5 (or P (Zi = +1) � 0.5) implies
that the true label Zi is +1 (or −1).

Here, we assume all the workers are noiseless and indepen-
dent, i.e., P (yij = +1) = P (Zi = +1) where yij is worker
j’s label on the i-th instance. In other words, the labels pro-
vided by the workers only depend on the true label of the
instance and its difficulty level.4 Based on this assumption,
all labels for the i-th instance are essentially i.i.d. samples
drawn from a Bernoulli distribution with Pi = P (Zi = +1).
Majority voting can be used when conducting the final re-
sults since individual labels are equivalent. The cases that
workers have different levels of reliability will be discussed
in Section 3.2.

The proposed framework has two inputs. The requester
specifies a confidence requirement and the budget. As men-
tioned in the introduction, different tasks may have differ-
ent requirements. Therefore, the proposed framework can
incorporate a variety of requirements as part of input. In
this paper, the cost of a single label is assumed to be the
same over all instances and all workers, so the budget works
as a constraint that the requesters can only afford a cer-

4Note that in our definition a worker being noiseless does
not mean that he provides correct labels for every instance,
which is different from some literature.

tain amount of labels. We use T to denote the maximum
amount. Note that we do not have to exhaust the budget.
If all instances achieve the requirement before the budget
is exhausted, the labeling process will be stopped and the
remaining budget will be saved.

The goal of the proposed Requallo framework is to have
as many instances as possible achieve the requirement under
the budget, i.e., to maximize quantity while maintaining de-
sired quality. Since the quantity can only be an integer, this
goal will inevitably lead to an integer programming, an NP-
hard problem. Therefore, we relax this integer constraint by
maximizing the overall completeness subject to the budget,
where completeness of an instance is a ratio in [0, 1]. The
concrete definition of completeness will be introduced later.

Table 1 summarizes the frequently used notations in this
paper; some will be introduced later.

Table 1: Notations

Notation Definition

{1, 2, . . . N} index set of instances
{1, 2, . . .M} index set of workers

Zi true label of the i-th instance
P (Zi = +1), Pi difficulty level of the i-th instance

yi,j worker j’s label on the i-th instance
T maximum number of labels under the budget
ai vote count of +1 labels
bi vote count of −1 labels

Vi(ai, bi) expected completeness of the i-th instance
R(St, it) reward for the i-th instance at stage t

θj reliability of worker j

Requirement Examples
Before formally introducing the proposed framework, we

want to provide some examples of the requirements that
requesters may be interested in. We denote the vote count
for +1 class as ai, and vote count for −1 class as bi for
the i-th instance. The requester expresses his quality needs
for the final results using a specific requirement. A strict
requirement will ask for a big difference between ai and bi
(i.e., big |ai − bi|). If a requester needs high confidence on
the results, then he can set a strict requirement.

One example of requirements is to set a minimum ratio
between two classes’ vote counts, i.e., to label the i-th in-
stance as +1 if ai : bi > c and as −1 if bi : ai > c, where
the constant c > 1. If we estimate P (Zi = +1) with ai

ai+bi
,

then this requirement is equivalent to setting a threshold on
entropy, which is a commonly used measurement for infor-
mation uncertainty. A larger c means a stricter requirement
on the confidence.

Another possible requirement is to conduct a hypothesis
test and approve the result when the observed labels are sta-
tistically significant. For example, Fisher exact test can be
used [1], where the null hypothesis is that the observed la-
bels are from a random guess and the alternative hypothesis
is that they are not randomly guessed. Based on the null hy-
pothesis, we can calculate the p-value, the probability that
the observed labels and more extreme vote counts happen
given that the workers provide random labels. When the
null hypothesis is rejected with significance level of α, i.e.,
p-value < α, we approve the result and determine the final
label by majority voting. The significance level α is often
set as a small value, usually 0.05, 0.1, or 0.2. A smaller α



gives a stricter requirement. We use the following example
to illustrate how the Fisher exact test can be conducted.

Example 2. Suppose we set α = 0.1, and the observed
vote counts are ai = 1 and bi = 4. To calculate the p-value,
we find the more extreme case, with ai = 0 and bi = 5.
Therefore, the p-value =

(
5
1

)
0.510.54 +

(
5
0

)
0.500.55 = 0.1875,

which is greater than α. Then the null hypothesis cannot be
rejected, that is, there is no strong evidence that the observed
labels are not randomly guessed. For this observed labeling
result, it does not achieve the requirement yet.

The aforementioned requirements can also be combined
with other simple requirements such as minimum count of
labels per instance ai + bi > δmin and maximum count of
labels per instance ai + bi < δmax.

Calculating Completeness
An instance is completed once it is confident based on the
requirement. We define the completeness of the i-th instance
as the ratio between the observed total vote counts ai + bi
and the minimum count of labels it needs to achieve the
requirement, where the latter is denoted as r(ai, bi|Zi). At
the beginning of labeling process, an instance has no labels,
so its completeness is 0. Then it gradually gets more and
more labels. Once the instance achieves the requirement,
then the ratio becomes 1, which means the labeling process
on that instance is completed and it needs no more labels
(therefore, ai+bi will not increase any more). Note that the
completeness depends on not only the current vote counts
and the requirement, but also on Zi. We use the following
example to illustrate how to calculate completeness.

Example 3. Suppose we have ai = 3 and bi = 1, and the
requirement is the minimum ratio of 4. In the case that Zi =
+1, we can achieve the requirement if ai = 4 and bi = 1.
Therefore, we need at least five labels to pass the requirement,
i.e., r(3, 1|Zi = +1) = 4 + 1 = 5. The completeness in this
case is 4/5. However, if Zi = −1, then we need at least
b = 12 to achieve the requirement, which means minimum
count of labels it needs is r(3, 1|Zi = −1) = 3 + 12 = 15
labels, and the completeness is 4/15.

From Example 3, it is clear that the denominator in the
completeness r(ai, bi|Zi) is calculated based on the vote
count of the opposite class of Zi. That is, given Zi = +1,
the completeness is only determined by the vote count
for −1(i.e. bi) and vice versa. Therefore, we abbreviate
r(ai, bi|Zi = +1) = r(bi) and r(ai, bi|Zi = −1) = r(ai). Ta-
ble 2 shows examples of function r(·) with different input
x’ for several aforementioned requirements. These examples
present that with x votes for the wrong class, how many
total vote counts the i-th instance needs to achieve the cor-
responding requirement.

Expected Completeness
Since the completeness of the i-th instance depends on Zi,

which is a random variable, from a decision theory perspec-
tive we want to take an action that maximizes the expected
completeness defined as follows:

Vi(ai, bi) = E(Completenessi|ai, bi)

= P (Zi = +1|ai, bi)
ai + bi
r(bi)

+P (Zi = −1|ai, bi)
ai + bi
r(ai)

. (1)

Table 2: Some examples of r(x) with different x’.

x

Requirement 1 2 3 4 5

minimum ratio c = 4 5 10 15 20 25
minimum ratio c = 5 6 12 18 24 30

Fisher p = 0.2 5 8 10 12 15
Fisher p = 0.1 7 9 12 14 17
Fisher p = 0.05 8 11 13 16 18

If P (Zi = +1|ai, bi) is estimated based on empirical rel-
ative frequency ai

ai+bi
(which is also the MLE estimator for

Bernoulli(Pi)), then Vi = ai
r(bi)

+ bi
r(ai)

6 1 and “=” can

be satisfied only when the requirement is absolute consen-
sus. This conflicts with our intuition, however, as the ex-
pected completeness should fall into the range of [0, 1], and
reach 1 when the labeling process is considered to be com-
pleted, i.e., when it meets the requirement ai + bi = r(bi) or
ai + bi = r(ai).

In order to solve this problem, we propose to modify the
estimation of P (Zi = +1) as following:

P (Zi = +1|ai, bi) =


ai

ai+bi
+ bi

r(bi)
if ai > bi,

0.5 if ai = bi,
ai

ai+bi
− ai

r(ai)
if ai < bi.

(2)

When the i-th instance achieves the requirement and ai > bi,
the requester is confident about the result, so he will stop
collecting labels for this instance and use +1 as the final
class label. In such a case, ai is usually much bigger than
bi and Zi is believed to be +1 with confidence, so assigning
P (Zi = +1|ai, bi) = 1 is reasonable. In the case that the
i-th instance is far from completed, P (Zi = +1|ai, bi) would
still be close to ai

ai+bi
.

With the expected completeness defined in Eq. (1), the
goal of achieving the requirement for as many instances as
possible, while staying within the budget, is modeled as the
following optimization problem:

sup
π

Eπ(
∑N
i=1 Vi(ai, bi))

s.t.
∑N
i=1 ai + bi 6 T, (3)

where π is the policy to choose instances for labeling and Eπ
means the expectation taken over all the potential outcomes
of the policy.

Markov Decision Process
A Markov decision process (MDP) is a natural framework

for the optimization problem in Eq. (3). A MDP contains
a set of states S, a set of actions A, transition probabili-
ties from one state to another P and a real valued reward
function R(S,A).

In our problem setting, the set of states S consists of all
the possible labeling observations that can be achieved under
the budget. Since the budget is finite, S is also a finite set.
At time t, we get exactly t labels, so the state is then:

St = {(ati, bti)Ni=1| ati, b
t
i > 0,

∑N
i=1 a

t
i + bti = t,

ati + bti 6 min(r(ati), r(b
t
i))}, (4)

where ati and bti are the vote counts at stage t.
The set of actions consists of the potential instances to

be queried next, that is, the instances that do not achieve



the requirement yet. If we only obtain one label on one
instance at each time, the transition probability is essentially
P (Zit |St, it), where it is the chosen instance to label at stage
t. As the state of the i-th instance at time t is directly
determined by (ait , bit), it is identical with P (Zit |ait , bit)
defined in Eq. (2).

For the reward function R(S, i), we use the result from [4]
and define the stage-wise expected reward as:

R(St, it) = E(Vit(a
t+1
it , bt+1

it )− Vit(atit , b
t
it)|S

t, it), (5)

and the optimization becomes:

sup
π

Eπ(

T−1∑
t=0

R(St, it)). (6)

This stage-wise reward function is to evaluate how much
difference an extra label can make prior to the decision.
There are basically two cases to consider: the next label
yit is +1 or −1. Correspondingly, the differences it may
make are:

R+1
it = Vit(a

t
it + 1, btit)− Vit(a

t
it , b

t
it),

R−1
it = Vit(a

t
it , b

t
it + 1)− Vit(atit , b

t
it).

Then R(St, it) can be calculated as:

R(St, it) = P (yit = +1)R+1
it + P (yit = −1)R−1

it . (7)

With the defined MDP model, there are well-developed
algorithms to compute the optimal policy, such as dynamic
programming [18] and linear programming [23]. However,
the state space defined in Eq. (4) is exponential with respect
to the budget. The computation complexity in such a case is
intractable. Therefore, we use a one-step look-ahead greedy
strategy instead to approximate the optimal policy. Moti-
vated by [4], we also change the immediate reward function
R(St, it) = max(R+1

it
, R−1

it
) for better performance. The

greedy strategy will provide a sequential policy and choose
the instance that has the maximum immediate reward, the
one with the most optimistic outcome for completeness in
our setting. A similar strategy to build a policy for a MDP
problem is also applied in [4,19]. Using the greedy strategy,
the framework will label instances with the highest priority
to easy ones that are also nearly complete.

Summary of the Basic Requallo Framework
So far, we have introduced the basic Requallo framework

for a simple problem setting. The requester inputs his bud-
get (or the maximum number of labels he can afford T )
and his specific quality requirement. Based on the inputs,
a sequential policy is provided to maximize the number of
instances that achieve the requester’s quality requirement.
The framework is summarized in Algorithm 1.

3.2 Model Workers’ Reliability
In the basic Requallo framework, we consider noiseless

workers, that is, their labels only depend on the instances’
true labels and difficulty levels. However, the assumption
may be too strong in real-world crowdsourcing scenarios. If
workers’ varying reliabilities are considered, we may further
save the budget in the labeling process by eliminating labels
from unreliable workers or adjusting labels’ weights based
on the workers’ reliability.

Suppose there are M workers, and the labels they provide
on the i-th instance are {yi1, . . . , yiM}. Each worker has

Algorithm 1 Basic Requallo framework

Input: instances, maximum number of labels T ,
requester’s requirement.
Output: labeling result for instances.

1: while t 6 T and maxiR(St, it) > 0 do
2: Based on the requirement, select an instance to label:

it = arg maxi∈{1,...,N}R(St, it).
3: Receive label yit ∈ {+1,−1}
4: Update at+1

it
and bt+1

it
according to yit

5: Update at+1
i = ati and bt+1

i = bti for all i 6= it

6: t = t+ 1
7: end while
8: return Labeling results for instances.

a reliability degree denoted by θj , where j is the worker’s
index. θj is defined as P (yij = Zi|Zi), i.e., the probability
that worker j provides the same label as the one provided
by the noiseless worker. If θj = 1, it indicates worker j
is noiseless. The label from a worker can be viewed as an
output from two layers of Bernoulli sampling. First yij is
drawn from Bernoulli(Pi = P (Zi = +1)), and then with
probability of 1− θj , yij flips its sign. As a result, we have:

P (yij = +1) = θjPi + (1− θj)(1− Pi),
P (yij = −1) = θj(1− Pi) + (1− θj)Pi.

Here we assume that θj > 0.5. Otherwise we can flip the
sign of his labels so that θj > 0.5.

In the following, we discuss how to incorporate workers’
reliability under different types of requirements.

Fisher Exact Test Based Requirements
In the Fisher exact test, the p-value is calculated based on

the worst case scenario: everyone is random guessing. Un-
fortunately, the hypothesis already assumes P (yij = +1) =
0.5, so workers’ reliability cannot be explicitly applied. How-
ever, if we find anyone is indeed random guessing, that
worker is considered as a spammer5 and his labels can be
removed. By doing so, the completeness of the task will
increase with a high probability.

Example 4. Let’s revisit Example 2. Suppose the worker
who answers +1 is a spammer. After remove his label, we
get a result of ai = 0 and bi = 4. Therefore, p-value =(
4
0

)
0.500.54 = 0.0625, which is smaller than α. The null

hypothesis is rejected and this instance achieves the require-
ment. Its completeness is 1, so it needs no more labels.

A simple way to detect spammers is to test if θ ≈ 0.5 based
on the labeled instances that achieve the requirement and
his labels on those instances. Note that for those instances,
P (Zi = +1|ai, bi) is either 0 or 1 based on Eq. (2) and Zi is
provided by majority voting. In order to estimate θj more
accurately, we only consider worker j when he provides a cer-
tain amount of labels on the labeled instances. Then we can
either conduct a Fisher exact test or calculate the confidence
interval of θj . If the observed labels from him cannot reject
the hypothesis or 0.5 falls into the confidence interval, this
worker is considered as a spammer and will be blocked for

5It should be noted that in some literature spammer has
a different meaning. In this work, a spammer refers to a
worker whose θ = 0.5.



further labeling process. Some existing techniques [11,20,34]
can also be applied.

Minimum Ratio Requirements
When using the minimum ratio requirement for vote

counts between two classes, the key idea in the basic Re-
quallo framework can still be applied, but we can readjust
labels’ weights based on the workers’ reliability. By doing
so, the expected completeness is then computed according to
weighted vote counts instead of observed vote counts. Simi-
larly, weighted voting can be used to obtain the final labels.

Given the labels from workers and their reliabilities {θj},
we can estimate Pi = P (Zi = +1) based on the likelihood
function:

f(yi1, . . . , yiM |Pi, {θj}Mj=1)

=

M∏
j=1

{(θjPi + (1− θj)(1− Pi))1(yij=+1)

× (θj(1− Pi) + (1− θj)Pi)1(yij=−1)}, (8)

where 1(yij = +1) = 1 if yij = +1, and 1(yij = +1) = 0 if
yij = −1. Then the MLE estimator for Pi is

Pi = arg max f(yi1, . . . , yiM |Pi, {θj}Mj=1)

s.t. Pi ∈ [0, 1]. (9)

Although the closed-form solution is not easy to derive, there
are many numerical ways to solve this optimization problem.
Note that Pi may be 1 or 0 if some of the workers are unreli-
able. To prevent this, pseudo-labels can be added and more
discussions can be found in Section 3.3.

Based on Pi, we can readjust the vote counts that satisfy:

ãi + b̃i = ai + bi,

ãi : b̃i = Pi : (1− Pi).

Here ãi and b̃i can be viewed as weighted vote counts, and
they are derived as follows:

ãi = Pi(ai + bi),

b̃i = (1− Pi)(ai + bi).

The vote counts ai and bi in Eq. (1) then can be replaced

by the ãi and b̃i. Similar to Eq. (2), we modify the MLE
estimator as:

P (Zi = +1|ãi, b̃i) =


ãi

ãi+b̃i
+ b̃i

r(b̃i)
if ãi > b̃i,

0.5 if ãi = b̃i,
ãi

ãi+b̃i
− ãi

r(ãi)
if ãi < b̃i.

(10)

When calculating the reward function Eq. (5), due to the
limitation of crowdsourcing platforms, we cannot assign in-
stances to specific workers and cannot forecast who will label
the next instance. The worst case is considered then, i.e., the
worker who currently has the lowest reliability degree (i.e.
the θj that is closest to 0.5) will label the next instance.

Note that in Eq. (9) we assume θj is known. If the re-
quester uses qualification exams or control questions among
the instances, it can be easily inferred by the workers’ per-
formance on those tasks [15]. In the case that θj is un-
known a priori, there are some existing techniques that can
be used to estimate it under different crowdsourcing scenar-
ios [3, 6, 14, 16, 17, 33–35, 40]. Many of them are aggrega-
tion algorithms that model worker reliability and conduct

weighted vote to improve label accuracy. In the Requallo
framework, they are also helpful to estimate labels’ weighted
vote counts. If a worker is likely to be a spammer, i.e.,
θj ≈ 0.5, we can also eliminate/block him from the labeling
process.

3.3 Discussion and Practice Issues
Here we discuss several techniques to make the proposed

framework more general and practical.

Multi-class Case
Multi-class labeling problems can be converted into binary

classification problems as follows. The class with the highest
votes is converted to +1 class, and the class with the second
highest votes is converted to −1 class. If the most popular
and the second most popular classes get similar votes, it still
implies that the instance is hard to classify. On the other
hand, if the most popular class predominates the votes, then
we can regard it as an easy instance. This conversion is
straightforward and the proposed Requallo framework can
be applied to the corresponding binary problem.

Adding Pseudo-labels
At the early stage of the labeling process, the estimation

of Pi may be unreasonable when either ai = 0 or bi = 0.
The easiest solution to this problem is to give each instance
pseudo-labels. For the model that incorporates workers’ reli-
ability, the pseudo-labels are considered to be from noiseless
workers. The pseudo-labels can also be interpreted as prior
knowledge from Bayesian point of view. In the experiments,
we use one pseudo-label for each class as the initial label.

Choosing a Proper Requirement
If the requirement is not set properly, it is possible that

no instances can achieve the requirement when the budget is
exhausted. The requester need to keep in mind that crowd
workers are usually non-experts, and normally do not receive
any special training. Therefore, the requirement should be
reasonable for the task difficulty as well as the budget. If the
requester does not have a good estimate of task difficulty,
we suggest to start with a small sample of instances and
set a low requirement. If the instances can easily achieve
the requirement, then gradually raise the bar. When the
requirement is settled, all the instances can be tested.

4. EXPERIMENTS
In this section, we test the proposed Requallo framework

to solve the budget allocation problems on two real-world
crowdsourcing tasks and one simulated task. The results
clearly demonstrate the advantages of Requallo framework
when the budget is tight. We also provide some guidelines to
requesters with different size of budgets and different needs.

4.1 Experiment Setup
In the experiments, we assume the basic setting as de-

scribed in Section 3.1. We use one unit of the budget for
one label.

Compared Methods
There are existing methods that consider budgets as dis-

cussed in Section 2, but some of them are not applicable
when the budget is tight and need major modifications to fit
our settings. Thus, the following budget allocation policies
are compared. All of them are sequential labeling strategies.



• Random. This policy will randomly choose an instance
and ask for one label.

• Looping. This strategy will pick the instances sequen-
tially and ask for one label each time. Once the last
instances is reached, it returns back to the first.

• Opt-KG. This budget allocation policy is proposed in
[4]. The optimization goal for this policy is to maxi-
mize the overall accuracy and an MDP is formulated.
It greedily chooses the next instance which has the
largest possible reward. The prior distribution is set
as Beta(1, 1) as suggested in the original paper.

• LU. This policy is proposed in [24]. As the full version
of this method is designed for active learning, which is
different from our problem setting, we only adopt the
label uncertainty component (Eq. (4) in [24]) as the
baseline and disregard the model uncertainty estima-
tion. LU will choose the instance that has the highest
label uncertainty in each iteration.

• Requallo-c4. This budget allocation policy is created
by the proposed Requallo framework based on the min-
imum ratio of 4. We find that it is essentially the same
policy as seq-lindley with a threshold of −0.73, which is
proposed in [19]6. That is, Requallo-c4 and seq-lindley
will choose the same instance to label next. Although
using different value functions, seq-lindley also adopts
an MDP framework and a greedy algorithm to approx-
imate the optimum policy. However, seq-lindley cannot
take requirements other than the minimum ratio, while
Requallo is more general. Thus, we can view seq-lindley
as a special case of the proposed Requallo framework.

• Requallo-p0.2. This budget allocation policy is cre-
ated by Requallo framework based on the requirement
of Fisher exact test with a significant level of 0.2. In
addition, we also add a maximum label count require-
ment as neither class can receive more than 14 labels.

As the proposed Requallo method can provide flexible bud-
get allocation policies according to different requirements,
we mainly use Requallo-p0.2 to compare with the baseline
methods because the requirement is moderate and suitable
for many tasks. Other Requallo policies are compared to
provide a guideline for choosing proper requirements.

Performance Measures
We measure the performance from two aspects: quantity

and quality. Due to the fact that baseline policies and the
proposed Requallo policies have quite different goals, it is
unfair to the baseline policies to measure quantity and qual-
ity only on the instances that achieve the requirements. It
is also unfair to the Requallo policies to measure the perfor-
mance without considering the requirements. Therefore, we
choose a compromise and measure the performance with the
minimum label count requirement, i.e., one instance needs to
get at least three labels in order to be considered as labeled.
The label count requirement is one of the most widely used
requirements in crowdsourcing tasks. With the minimum
requirement of 3, it is also one of the mildest in practice.

6Note that their problem setting is different from ours. Some
modifications on the original method are necessary to fit our
setting.

Under the minimum label count requirement, quantity is
measured as the total number of labeled instances, i.e., the
number of instances that have at least three labels. Quality
is measured from two aspects: absolute count and accuracy.
The former is defined as the number of correctly labeled
instances. The latter is the percentage of correctly labeled
instances in all labeled instances.

4.2 Real-World Crowdsourcing Tasks
In this section, we show the experimental results on two

real-world datasets: the RTE dataset and the Game dataset.
Comparing with the baselines, the Requallo framework shows
a better balance for the trade-off between quantity and qual-
ity under a tight budget.

RTE Dataset [28]. This crowdsourcing task is conducted
on mTurk for recognizing textual entailment (RTE). The
dataset is publicly available7 and considered to be a bench-
mark for crowdsourcing tasks. It contains 800 instances, and
each one is queried to 10 different workers for a binary la-
bel. Ground truth for every instance is also provided, and
700 out of 800 instances can get correct labels from majority
voting. More detailed descriptions about this dataset can be
found in the original paper [28].

Game Dataset [2, 13]. This crowdsourcing task is conducted
using an Android app based on a TV game show “Who
Wants to Be a Millionaire”. When a question is displayed on
the show, the Android app simultaneously sends the ques-
tion and the four candidate answers to the app users, and
then users send their answers back voluntarily. Ground
truth information is also recorded as revealed by the anchor
of the show. The original dataset contains 2169 questions
and 221653 answers from 38196 users. Here, a question can
be viewed as an instance and a user’s answer can be viewed
as a label from a worker. The following preprocessing steps
are applied on this dataset: 1) Instances with fewer than
20 labels are removed. By doing so, the policies can fully
demonstrate their characteristics when the budget increases.
2) Misleading instances are removed, i.e., the instances on
which majority voting gives incorrect answers. Due to the
nature of the game show, it contains some tricky questions
that are intended to trap people, and most people would
choose the wrong answer. This kind of design is highly
discouraged in regular crowdsourcing tasks. Therefore, re-
moving those instances is more reasonable for crowdsourcing
tasks. 3) Since the original questions are multiple-choice, we
convert them into binary problems using the technique dis-
cussed in Section 3.3. After the preprocessing, Game dataset
contains 1709 instances and 158385 labels.

To test the behavior of different budget allocation poli-
cies, we start from a very tight budget which is not enough
to label all instances once, and then gradually increase the
budget. In the RTE dataset, each instance has only 10 la-
bels, so we focus more on the tight budget and stop increas-
ing the budget when it reaches 4000, i.e., each instance has
five labels on average. In the Game data, since more labels
are available for each instance, we explore the policies until
the budget reaches 15000, i.e., each instance has about nine
labels on average. Figures 1 and 2 demonstrate the per-
formance of different budget allocation policies on the two
real-world crowdsourcing tasks respectively.

7http://sites.google.com/site/nlpannotations/
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Figure 1: Comparison of Budget Allocation on RTE Dataset
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Figure 2: Comparison of Budget Allocation on Game Dataset

In Figures 1a and 2a, the quantity of labeled instances is
compared. The looping policy has no labeled instance un-
til the budget reaches 2N (N is the number of instances),
when every instance has exactly two labels. Then the quan-
tity linearly increases to N as the budget increases from
2N to 3N , when every instance has exactly three labels. If
the budget is 3N , then looping provides the best quantity.
Random can get some instances labeled under a tight bud-
get, but needs a big budget to reach the maximum quantity.
Note that Opt-KG and LU have no instances labeled until
the budget is greater than N . This is because both Opt-KG
and LU will query one label for each instance at the ini-
tial stage. The quantity increases fast when the budget is
higher than 3N . Comparing with baseline policies, the pro-
posed Requallo-p0.2 and Requallo-c4 can provide a remark-
able amount of labeled instances even with a budget tighter
than 2N . When the budget is around 3N , only looping can
provide a slightly higher quantity.

Absolute counts of correctly labeled instances are com-
pared in Figures 1b and 2b. The pattern is similar to the
ones presented in quantity comparison. When the budget is
tight, Requallo-p0.2 and Requallo-c4 show a big advantage.
When the budget is sufficient, Requallo-p0.2 still demon-
strates a competitive performance, even though the qual-
ity requirement is not strict. Note that when the budget
is small, Requallo-p0.2 and Requallo-c4 have the same per-
formance. The reason is that due to the overlap of their
corresponding requirements, these two policies will choose
the same instance to label at next step when all instances
have less than three labels. However, when some instances
have more labels, these two policies will choose different in-

stances because the requirements differ then. On the Game
dataset, Requallo-p0.2 stops labeling process after spending
a cost of 7715 because all instances achieve the requirement.
If the budget is higher than 7715, the extras will be saved.

Figures 1c and 2c presents the change of accuracy. As
looping, Opt-KG and LU have no labeled instance at the ini-
tial stage, we use 0.5 to indicate that the result is uninforma-
tive. The looping policy gives a wavy but slightly increasing
accuracy rate once every instance is labeled. The accuracy
rate of the random policy fluctuates widely. Opt-KG and LU
perform similarly. Both policies improve the accuracy when
the budget increases and can achieve good results when the
budget is sufficient. However, when the budget is tight, their
accuracy is unsatisfactory.

Requallo-p0.2 provides a high accuracy except a low ebb
when the budget is around 3.5N . This pattern is subtle in
Figure 1c because the budget limit is low, but it is clear
in Figure 2c. This is because when the budget is tight,
Requallo-p0.2 gives easy instances priority so that the com-
pleteness can be maximized. It also leads to a high accuracy
rate as shown in the figures. When the budget increases,
easy instances are all labeled, and Requallo-p0.2 starts to
work on harder instances. At that time, however, there is
still not enough budget for sufficient labels on those hard
questions. As the evaluation is not conducted with the orig-
inal requirement, there are some labeled instances that do
not achieve the requirement yet. Therefore, the increas-
ing speed of quantity is faster than the increasing speed of
correctly labeled instances. This leads to the low ebb on
accuracy. As the budget keeps increasing, Requallo-p0.2 can
allocate sufficient labels on hard questions, so the accuracy



raises back. A similar pattern happens to Requallo-c4. The
low ebb occurs when the budget is around 4.5N . The mini-
mum ratio requirement is stricter than the Fisher exact test
requirement on moderately hard questions, so once the easy
instances are completed, Requallo-c4 intensively puts more
effect on some hard questions. This slows down the increase
of quantity, which causes the delay of low ebb on accuracy.
The accuracy also raises back, but is slower.

In order to give some guidelines for requesters with differ-
ent sizes of budgets and quality needs, other Requallo policies
based on various requirements are also compared on Game
dataset. Requallo-p0.2, Requallo-p0.1, and Requallo-p0.05 are
the policies created based on Fisher exact test with different
significance levels. The lower the p-value, the stricter the
requirement. Requallo-c4 and Requallo-c5 are the policies
created base on minimum ratio of 4 and 5 respectively. For
these policies, we also adopt the same maximum label count
requirements as mentioned in Section 4.1 as additional re-
quirements. In addition, we show Requallo-m3, the policy
with only minimum label count requirement, as a reference.
Compared with the minimum ratio requirement, Fisher ex-
act test based requirements are stricter at the initial stage,
but looser when number of labels is relatively big. To better
illustrate the effect of different requirements, we let the poli-
cies keep choosing instances until they are completed based
on the requirement. The final labeling results are examined
and Table 3 summarizes the performance.

Table 3: Comparison of Different Requallo Policies

Method Cost # Instances # Correct Accuracy

Requallo-p0.2 7715 1662 1587 0.9549
Requallo-p0.1 11191 1597 1558 0.9756
Requallo-p0.05 13878 1517 1493 0.9842
Requallo-c4 8689 1567 1518 0.9687
Requallo-c5 11266 1489 1464 0.9832
Requallo-m3 5127 1709 1580 0.9245

In Table 3, “Cost” is the total number of labels that each
policy uses to finish labeling process. “# Instances” is the
number of instances that achieve the corresponding require-
ment except for the maximum label count requirement. “#
Correct” shows the number of correctly labeled instances
among those who achieve the requirement. “Accuracy” is
# Correct divided by # Instances. This table confirms our
intuition of the trade-off between quantity and quality of
the results, and the effect of different requirements. If a
requester wants high quality results, he can set a strict re-
quirement, but should expect a lower quantity of labeled
instances or a higher cost. If the requester has a tight bud-
get and no strong preference on quality, Requallo-p0.2 is a
decent choice.

4.3 Simulated Crowdsourcing Task
As many crowdsourcing tasks are conducted to obtain

training labels for machine learning problems, a simulation
of such a scenario is created in this section, from crowd-
sourced labeling to training and finally testing. The Splice
dataset from LIBSVM8 is used as the target machine learn-
ing task. The original dataset contains 1000 training in-

8http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/

stances and 2175 testing instances. For each instance, there
are 60 features and a binary label.

We first simulate the labels provided by crowd workers.
A linear SVM classifier is learned on the training set and it
provides a probability of being in class +1 for each training
instance, which is used as P (Zi = +1). Random samples
are drawn from Bernoulli(Pi = P (Zi = +1)) as the labels
provided by noiseless workers for instance i. Under the same
budget (from 500 to 5000), we then apply each policy and
form a new training set by replacing the original labels with
the labels given by the policy for all training instances. The
same minimum label count requirement is used as in previ-
ous experiments. If a policy does not provide a label for an
instance, it will be eliminated from the training set. Finally,
new linear SVM classifiers are learned on the new training
sets and applied to the test set.
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Figure 3: F1 Score on Test Data.

Due to the randomness in generating workers’ labels, we
run the simulation for 10 times and report the errorbar
(standard deviation) of the results. The performance is eval-
uated as F1 score on testing data. A higher F1 score means a
better performance. Figure 3 summarizes the results. Here
we omit the results for Requallo-c4 because Requallo-p0.2
has almost the same performance. The black dash line rep-
resents the performance if the classifier is trained on the
original training data, which is 0.853. Generally speaking,
quantity and quality of training data are two of the most
important factors for a good classifier. When the budget
is tight, Requallo-p0.2 shows great advantages over base-
line policies because of its excellent performance on both
quantity and quality, which is also shown on the real-world
crowdsourcing tasks. On the other hand, baseline policies
need more labels to build up a good training set.

5. CONCLUSIONS
Crowdsourcing under a tight budget brings new unique

challenges. Most existing budget allocation methods, which
assume a sufficient budget is available, cannot achieve de-
sired labeling quality if the budget is tight. As different re-
questers and tasks may have different needs on label quality,
we proposed a framework that allows requesters specify their
quality requirement on the results. The proposed framework
can guarantee the requesters’ desired quality while trying to
maximize quantity under the budget. A Markov decision
process is used to model the labeling process. To tackle the
computational challenge, an approximate policy is built via
a one-step look-ahead greedy algorithm. The policy sequen-
tially chooses the next instance which can provide the high-
est reward on task completeness. The framework is further



extended to consider workers’ reliability, so that unreliable
workers can be eliminated from labeling process and reliable
workers can have a higher weight in the vote counts. Ex-
periments on both real-world and simulated crowdsourcing
tasks demonstrate remarkable advantages of the proposed
framework under a tight budget.
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