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ABSTRACT
In many applications, one can obtain descriptions about the same
objects or events from a variety of sources. As a result, this will in-
evitably lead to data or information conflicts. One important prob-
lem is to identify the true information (i.e., the truths) among con-
flicting sources of data. It is intuitive to trust reliable sources more
when deriving the truths, but it is usually unknown which one is
more reliable a priori. Moreover, each source possesses a vari-
ety of properties with different data types. An accurate estimation
of source reliability has to be made by modeling multiple prop-
erties in a unified model. Existing conflict resolution work either
does not conduct source reliability estimation, or models multiple
properties separately. In this paper, we propose to resolve conflicts
among multiple sources of heterogeneous data types. We model the
problem using an optimization framework where truths and source
reliability are defined as two sets of unknown variables. The objec-
tive is to minimize the overall weighted deviation between the truths
and the multi-source observations where each source is weighted by
its reliability. Different loss functions can be incorporated into this
framework to recognize the characteristics of various data types,
and efficient computation approaches are developed. Experiments
on real-world weather, stock and flight data as well as simulated
multi-source data demonstrate the necessity of jointly modeling dif-
ferent data types in the proposed framework1.

1. INTRODUCTION
Recently, the Big Data challenge is motivated by a dramatic in-

crease in our ability to extract and collect data from the physical
world. One important property of Big Data is its wide variety, i.e.,
data about the same object can be obtained from various sources.
For example, customer information can be found from multiple
databases in a company, a patient’s medical records may be scat-
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tered in different hospitals, and a natural event may be observed
and recorded by multiple laboratories.

Due to recording or transmission errors, device malfunction, or
malicious intent to manipulate the data, data sources usually con-
tain noisy, outdated, missing or erroneous records, and thus multi-
ple sources may provide conflicting information. In almost every
industry, decisions based on untrustworthy information can cause
serious damage. For example, erroneous account information in
a company database may cause financial losses; wrong diagnosis
based on incorrect measurements of a patient may lead to seri-
ous consequences; and scientific discoveries may be guided to the
wrong direction if they are derived from incorrect data. Therefore,
it is critical to identify the most trustworthy answers from multiple
sources of conflicting information. This is a non-trivial problem due
to the following two major challenges.

Source Reliability
Resolving conflicts from multiple sources have been studied in the
database community for years [4, 5, 10, 13] resulting in multiple
ways to handle conflicts in data integration. Among them, one
commonly used approach to eliminate conflicts for categorical data
is to conduct majority voting so that information with the highest
number of occurrences is regarded as the correct answer; and for
continuous values, we can simply take the mean or median as the
answer. The issue of such Voting/Averaging approaches is that they
assume all the sources are equally reliable, and thus the votes from
different sources are uniformly weighted. In the complicated world
that we have today, it is crucial to estimate source reliability to
find out the correct information from conflicting data, especially
when there exist sources providing low quality information, such
as faulty sensors that keep emanating wrong data, and spam users
who propagate false information on the Internet. However, there is
no oracle telling us which source is more reliable and which piece
of information is correct.

Heterogeneous Data
Motivated by the importance but lack of knowledge in source re-
liability, many truth discovery approaches have been proposed to
estimate it and infer true facts without any supervision [3, 8, 9, 11,
12, 14–16, 18, 19, 21–24]. However, these approaches are mainly
designed for single-type data and they do not take advantage of a
joint inference on data with heterogeneous types.

In real data integration tasks, heterogeneous data is ubiquitous.
An object usually possesses multiple types of data. For example,
in the integration of multiple health record databases, a patient’s
record includes age, height, weight, address, measurements, etc; we
may want to infer correct information for a city’s population, area,
mayor, and founding year among conflicting information presented



on the Internet; and when we combine the predictions from multi-
ple weather forecast tools, we need to resolve conflicts in weather
conditions, temperature, humidity, wind speed, wind direction, etc.
In all these cases, the data to be integrated involve categorical, con-
tinuous or even more complicated data types.

Due to the wide existence of missing values, we usually do not
have sufficient amount of data to estimate source reliability cor-
rectly purely from one type of data. When source reliability is con-
sistent on the entire data set, which is often valid in reality, a model
that infers from various data types together will generate accurate
estimates of source reliability, which will in turn help infer accurate
information. Therefore, instead of separately inferring trustworthy
information for individual data types, we should develop a unified
model that conducts a joint estimation on all types of data simulta-
neously.

However, it is non-trivial to unify different types of data in one
model. During source reliability estimation, we need to estimate
how close a source input is to the correct answer, but different data
types should be treated differently in this process because the con-
cept of closeness varies among different data types. For categorical
data, each observation will be either correct or wrong (i.e., whether
the observation is the same as or different from the true fact). It
is very different when a property has continuous values. For ex-
ample, if the true temperature is 80F, then an observation of 79F is
closer to the true value than 70F. If such differences are not taken
into account and we regard each continuous input as a fact, we will
inevitably make wrong estimates of source reliability and derive in-
correct results. Therefore, we need a framework that can seamlessly
integrate data of heterogeneous data types by estimating informa-
tion trustworthiness.
Summary of Proposed CRH Framework
These observations motivate us to develop a Conflict Resolution on
Heterogeneous Data (CRH) framework to infer the truths (also re-
ferred to as the true information or correct answers) from multiple
conflicting sources each of which involves a variety of data types.
We formulate the problem as an optimization problem to mini-
mize the overall weighted deviation between the identified truths
and the input. The weights in the objective function correspond to
source reliability degrees. We propose to leverage heterogeneous
data types by allowing any loss function for any type of data, and
find out both truths and source reliability by solving the joint op-
timization problem. In the experiments (Section 3), we show that
the proposed CRH framework outperforms existing conflict resolu-
tion approaches applied separately or jointly on heterogeneous data
because each baseline approach either does not conduct source re-
liability estimation, or takes incomplete single-type data, or ignores
the unique characteristics of each data type.

In summary, we make the following contributions:
• We design a general optimization framework to model the

conflict resolution problem on heterogeneous data by incor-
porating source reliability estimation. The proposed objec-
tive function characterizes the overall difference between un-
known truths and input data while modeling source reliability
as unknown source weights in the framework.
• Under this framework, weight assignment schemes are intro-

duced to capture source reliability distributions. Various loss
functions can be plugged into the framework to character-
ize different types of data. In particular, we discuss several
common choices and illustrate their effectiveness in model-
ing conflict resolution on heterogeneous data.
• We propose an algorithm to solve the optimization problem

by iteratively updating truths and source weights. We de-
rive effective solutions for commonly used loss functions and

weight assignment schemes, and show the convergence of the
algorithm. The running time is linear in the number of ob-
servations. Also, the proposed approach can be adapted to
MapReduce model, so it can scale to very large data sets.

• We validate the proposed algorithm on both real-world and
simulated data sets, and the results demonstrate the advan-
tages of the proposed approach in resolving conflicts from
multi-source heterogeneous data. The CRH framework can
improve the performance of existing approaches due to its
ability of tightly coupling various data types in the conflict
resolution and source reliability estimation process. Running
time on both single and Hadoop cluster machines demon-
strates its efficiency.

2. METHODOLOGY
In this section, we describe our design of the CRH model, which

computes truths and source weights from multi-source heteroge-
neous data. We formulate the conflict resolution problem as an op-
timization problem which models the truths as the weighted com-
bination of the observations from multiple sources and incorpo-
rates a variety of loss functions for heterogeneous data types. An
iterative weight and truth computation procedure is introduced to
solve this optimization problem. Under this general framework, we
present several loss functions and constraints, discuss other possible
choices and analyze the time complexity.

2.1 Problem Formulation
We start by introducing important terms and defining the conflict

resolution problem. We use an example on demographic database
(Table 1) to illustrate these concepts.

DEFINITION 1. An object is a person or thing of interest; a
property is a feature used to describe the object; and a source de-
scribes the place where information about objects’ properties can
be collected.

EXAMPLE 1. “Bob” is an object; height is a property; and a
database that provides the information is a source.

DEFINITION 2. An observation is the data describing a prop-
erty of an object from a source.

EXAMPLE 2. The observation on Bob’s height from Source 1 is
1.74m.

DEFINITION 3. An entry is a property of an object, and the truth
of an entry is defined as its accurate information, which is unique.

EXAMPLE 3. Bob’s height is an entry. The real height of Bob
is the truth of the entry.

The mathematical notation is as follows. Suppose there are N ob-
jects, each of which has M properties whose data types can be dif-
ferent, and these objects are observed by K sources.
Input

DEFINITION 4. The observation of the m-th property for the i-
th object made by the k-th source is v(k)im .

DEFINITION 5 (SOURCE OBSERVATION TABLES).

The k-th source X (k) is the collection of observations made on all
the objects by the k-th source. It is denoted as a matrix whose im-th
entry is v(k)im . {X (1),X (2), . . . ,X (K)} are the K source observa-
tion tables.



Table 1: Observation Tables
X (1) X (2) X (3)

Object City Height City Height City Height

Bob NYC 1.72 NYC 1.70 NYC 1.90
Mary LA 1.62 LA 1.61 LA 1.85
Kate NYC 1.74 NYC 1.72 LA 1.65
Mike NYC 1.72 LA 1.70 DC 1.85
Joe DC 1.72 NYC 1.71 NYC 1.85

Table 2: Ground Truth and Conflict Resolution Results
Ground Truth Voting/Averaging CRH

Object City Height City Height City Height

Bob NYC 1.72 NYC 1.77 NYC 1.72
Mary LA 1.62 LA 1.69 LA 1.62
Kate NYC 1.75 NYC 1.70 NYC 1.74
Mike NYC 1.71 DC 1.76 NYC 1.72
Joe DC 1.73 NYC 1.76 DC 1.72

EXAMPLE 4. Suppose we have three databases (sources) that
provide the information on a group of people. Table 1 shows the
observation tables of X (1), X (2), and X (3), which store all ob-
servations made by Sources 1, 2 and 3 respectively. Source 1 states
that the citizenship for Bob (row 1 and column 1 inX (1)) is “NYC”,
so v(1)11 is “NYC”.

Remark. To simplify the notations, we assume that the obser-
vations of all the sources about all the objects are available in the
formulation. However, the proposed framework is general enough
to cover the cases with missing observations. More discussion can
be found in Section 2.5.
Output of CRH Framework

DEFINITION 6 (TRUTH TABLE).

v
(∗)
im denotes the truth of the m-th property for the i-th object. The

truths of all the objects on all the properties are stored in a truth
table X (∗) whose im-th entry is v(∗)im .

EXAMPLE 5. Table 2 shows the ground truth, the results ob-
tained by Voting/Averaging, and the results obtained by the pro-
posed framework CRH from the input tables. CRH resolves con-
flicts from different sources for each entry. It provides more accu-
rate results comparing with Voting/Averaging.

Remark. Comparing with the ground truths, it is clear that Source
1 provides accurate information more often (more reliable) while
Source 2 and 3 are not very reliable. Due to the various reliabil-
ity degrees, voting cannot work well. For example, voting fails on
Joe’s citizenship because the majority answer is stated by the unre-
liable sources and majority voting gives a wrong answer – “NYC”.
Although only Source 1 states that Joe’s citizenship is “DC”, as it
is a reliable source, we should take this observation as the truth.

However, ground truths and source reliability are usually un-
known a priori. Existing truth discovery approaches [3, 8, 9, 11, 12,
14–16, 18, 21–24] and the proposed method try to estimate source
reliability in an unsupervised manner. The difference from existing
approaches is that the proposed approach estimates source reliabil-
ity jointly with heterogeneous data, which is discussed as follows.

DEFINITION 7 (SOURCE WEIGHTS).

Source weights are denoted asW = {w1, w2, . . . , wK} in which
wk is the reliability degree of the k-th source. A higher wk indi-
cates that the k-th source is more reliable and observations from
this source is more likely to be accurate.

Remark. As for the approaches that incorporate source reliabil-
ity estimation, if this estimation is only conducted on individual
properties separately, the estimated reliability result is not accu-
rate enough due to insufficient observations. In the example shown
in Table 1, if we only consider citizenship, the reliability degrees
of Sources 1 and 3 cannot be easily distinguished. In contrast, if
we consider all the properties in the source reliability estimation,
we can find that Source 1 is better than Source 3 in terms of the
ability of providing accurate information. To characterize this phe-
nomenon, the proposed framework unifies heterogeneous proper-
ties in the source reliability estimation. It will output both source
weights and a truth table which are computed simultaneously by
estimating source reliability from all the properties.

2.2 CRH Framework
The basic idea behind the proposed framework is that reliable

sources provide trustworthy observations, so the truths should be
close to the observations from reliable sources, and thus we should
minimize the weighted deviation from the truths to the multi-source
input where the weight reflects the reliability degree of sources.
Based on this principle, we propose the following optimization frame-
work that can unify heterogeneous properties in this process:

min
X (∗),W

f(X (∗),W) =

K∑
k=1

wk

N∑
i=1

M∑
m=1

dm(v
(∗)
im , v

(k)
im )

s.t. δ(W) = 1, W ∈ S. (1)

We are trying to search for the values for two sets of unknown vari-
ables X (∗) and W , which correspond to the collection of truths
and source weights respectively, by minimizing the objective func-
tion f(X (∗),W). There are two types of functions that need to be
plugged into this framework:

• Loss function. dm refers to a loss function defined based on
the data type of the m-th property. This function measures
the distance between the truth v(∗)im and the observation v(k)im .
This loss function should output a high value when the ob-
servation deviates from the truth and a low value when the
observation is close to the truth.

• Regularization function. δ(W) reflects the distributions of
source weights. It is also required mathematically. If each
source weightwk is unconstrained, then the optimization prob-
lem is unbounded because we can simply take wk to be−∞.
To constrain the source weights W into a certain range, we
need to specify the regularization function δ(W) and the do-
main S. Note that we set the value of δ(W) to be 1 for the
sake of simplicity. Different constants for δ(W) do not affect
the results, as we can divide δ(W) by the constant.

These two types of functions should be chosen based on our knowl-
edge on the characteristics of heterogeneous data and the source
reliability distributions, and more details about these functions will
be discussed later. Intuitively, if a source is more reliable (i.e., wk

is high), high penalty will be received if this source’s observation is
quite different from the truth (i.e., difference between v(∗)im and v(k)im

is big). In contrast, the observation made by an unreliable source
with a low wk is allowed to be different from the truth. In order to
minimize the objective function, the truths X (∗) will rely more on
the sources with high weights.

The truths X (∗) and source weights W should be learned to-
gether by optimizing the objective function through a joint proce-
dure. In an optimization problem that involves two sets of variables,
it is natural to iteratively update the values of one set to minimize
the objective function while maintaining the values of another set



Algorithm 1 CRH Framework
Input: Data from K sources: {X (1), . . . ,X (K)}.
Output: Truths X (∗) = {v(∗)

im}
N,M
i=1,m=1, source weightsW = {w1, . . . , wK}.

1: Initialize the truths X (∗);
2: repeat
3: Update source weightsW according to Eq(2) to reflect sources’ reliability

based on the estimated truths;
4: for i← 1 to N do
5: for m← 1 to M do
6: Update the truth of the i-th object on the m-th property v

(∗)
im according

to Eq(3) based on the current estimation of source weights;
7: end for
8: end for
9: until Convergence criterion is satisfied;
10: return X (∗) andW .

until convergence. This iterative two-step procedure, referred to
as block coordinate descent approach [2], will keep reducing the
value of the objective function. To minimize the objective function
in Eq(1), we iteratively conduct the following two steps.

Step I: Source Weights Update. With an initial estimate of the
truths X (∗), we first weight each source based on the difference
between the truths and the observations made by the source:

W ← argmin
W

f(X (∗),W) s.t. δ(W) = 1, W ∈ S. (2)

At this step, we fix the values for the truths and compute the source
weights that jointly minimize the objective function subject to the
regularization constraints.

Step II: Truths Update. At this step, the weight of each source
wk is fixed, and we update the truth for each entry to minimize the
difference between the truth and the sources’ observations where
sources are weighted by their reliability degrees:

v
(∗)
im ← argmin

v

K∑
k=1

wk · dm(v, v
(k)
im ). (3)

By deriving the truth using this equation for every entry, we can
obtain the collection of truths X (∗) which minimizes f(X (∗),W)
with fixedW .

The pseudo code of this framework is summarized in Algorithm
1. We start with an initial estimate of truths and then iteratively
conduct the source weight update and truth update steps until con-
vergence. In the following, we explain the two steps in detail using
example functions, and discuss the convergence and other practical
issues of the proposed approach.

2.3 Source Weight Assignment
We propose the following regularization function:

δ(W) =

K∑
k=1

exp(−wk). (4)

This function regularizes the value of wk by constraining the sum
of exp(−wk).

THEOREM 1. Suppose that the truths are fixed, the optimization
problem Eq(1) with constraint Eq(4) is convex. Furthermore, the
global optimal solution is given by

wk = − log

( ∑N
i=1

∑M
m=1 dm(v

(∗)
im , v

(k)
im )∑K

k′=1

∑N
i=1

∑M
m=1 dm(v

(∗)
im , v

(k′)
im )

)
. (5)

PROOF. Since the truths are fixed, the optimization problem Eq(1)
has only one set of variablesW . To prove the convexity of Eq(1),

we introduce another variable tk so that tk = exp(−wk). Now we
express the optimization problem in terms of tk:

min
{tk}Kk=1

f(tk) =

K∑
k=1

− log(tk)

N∑
i=1

M∑
m=1

dm(v
(∗)
im , v

(k)
im )

s.t.
K∑

k=1

tk = 1. (6)

The constraint in Eq(6) is linear in tk, which is affine. The objective
function is a linear combination of negative logarithm functions and
thus it is convex. Therefore, the optimization problem Eq(1) with
Eq(4) is convex, and any local optimum is also global optimum [6].

We use the method of Lagrange multipliers to solve this opti-
mization problem. The Lagrangian of Eq(6) is given as:

L({tk}Kk=1, λ) =

K∑
k=1

− log(tk)

N∑
i=1

M∑
m=1

dm(v
(∗)
im , v

(k)
im )

+λ(

K∑
k=1

tk − 1), (7)

where λ is a Lagrange multiplier. Let the partial derivative of La-
grangian with respect to tk be 0, and we can get:

N∑
i=1

M∑
m=1

dm(v
(∗)
im , v

(k)
im ) = λtk. (8)

From the constraint that
∑K

k=1 tk = 1, we can derive that

λ =

K∑
k′=1

N∑
i=1

M∑
m=1

dm(v
(∗)
im , v

(k′)
im ). (9)

Plugging Eq(9) andwk = − log(tk) into Eq(8), we obtain Eq(5).

This weight computation equation indicates that a source’s weight
is inversely proportional to the difference between its observations
and the truths at the log scale. The negative log function maps a
number in the range of 0 and 1 to a range of 0 and∞, so it helps
to enlarge the difference in the source weights. A source whose
observations are more often close to the truths will have a higher
weight. Therefore, Eq(4) is a reasonable constraint function which
leads to the meaningful and intuitive weight update formula.

In order to distinguish the source weights even better so that re-
liable sources can play a more important role in deriving the truths,
we use the maximum rather than the sum of the deviations as the
normalization factor when computing the weights. It still ensures
that a source’s weight is inversely proportional to the difference be-
tween its observations and the truths at the log scale.

EXAMPLE 6. Considering the databases given in Table 1, if
Voting/Averaging results are adopted as the initial truths, we can
get weights 0.67, 0.41, and 0.01 for Sources 1, 2, and 3 respec-
tively using the proposed weight computation equation (Eq(5)). As
the proposed method is iterative, we show the converged source
weights here (more details are given in Table 3 after we discuss all
the steps in the iterative framework). Source 1 is the most reliable
one and Source 3 is the least reliable one, as Source 1 makes the
fewest errors while Source 3 makes the most errors.

The aforementioned weight assignment scheme considers a combi-
nation of sources. By setting different regularization functions, we
can conduct source selection under the framework. For example,
the following function defined based on Lp-norm can be used to



select sources:

δ(W) = p

√
wp

1 + wp
2 + . . .+ wp

K = 1,

wk ∈ R+ (k = 1, . . . ,K), (10)

where p is a positive integer. When p equals to 1 or 2, it corresponds
to the most widely used L1-norm or L2-norm. If Lp-norm regular-
ization is employed, the optimal value of the problem in Eq(1) will
be 0, which is achieved when we select one of the sources and set
its weight to be 1, set all the other source weights to be 0, and sim-
ply regard the chosen source’s observations as the truths. Different
from the regularization function shown in Eq(4), this regularization
function does not combine multiple sources but rather assumes that
there only exists one reliable source.

We can also incorporate integer constraints to conduct source se-
lection with more than one source, i.e., choose j sources out of all
K sources:

δ(W) =
1

j
(w1 + w2 + . . .+ wK) = 1,

wk ∈ {0, 1} (k = 1, . . . ,K). (11)

If wk = 1, the k-th source is selected in truth computation, other-
wise its observations will be ignored when updating the truths in the
next step. Due to the integer constraints defined in Eq(11), Eq(1)
becomes an NP-hard problem. Approximation algorithms can be
developed to solve this problem, the details of which are omitted.

In many problems, we will benefit from integrating the observa-
tions from multiple sources, but there is a variation in the overall
reliability degrees. Therefore, in this paper, we focus on the weight
assignment scheme with max normalization factor where sources
are integrated and variation is emphasized.

2.4 Truth Computation
The truth computation step (Eq(3)) depends on the data type and

loss function. We respect the characteristics of each data type and
utilize different loss functions to describe different notions of de-
viation from the truths for different data types. Accordingly, truth
computation will differ among various data types. Below we dis-
cuss truth computation in detail based on several loss functions for
categorical and continuous data, the two most common data types.

On categorical data, the most commonly used loss function is 0-1
loss in which an error is incurred if the observation is different from
the truth. Formally, if them-th property is categorical, the deviation
from the truth v(∗)im to the observation v(k)im is defined as:

dm(v
(∗)
im , v

(k)
im ) =

{
1 if v(k)im 6= v

(∗)
im ,

0 otherwise.
(12)

THEOREM 2. Suppose that the weights are fixed, based on 0-1
loss function, to minimize the objective function at this step (Eq(3)),
the truth on the m-th property of the i-th object should be the value
that receives the highest weighted votes among all possible values:

v
(∗)
im ← argmax

v

K∑
k=1

wk · 1(v, v(k)im ), (13)

where 1(x, y) = 1 if x = y, and 0 otherwise.

PROOF. We plug Eq(12) into the objective function in Eq(1):

v
(∗)
im ← argmin

v

K∑
k=1

wk · dm(v, v
(k)
im ), (14)

which is equivalent to Eq(13).

This computation follows the principle that an observation stated
by reliable sources will be regarded as the truth.

EXAMPLE 7. If we use the weights 0.67, 0.41, and 0.01 for
Sources 1, 2, and 3 from Example 6, the proposed approach will
output the citizenship for Joe as “DC” (different from “NYC” out-
put by voting), because Source 1’s weight is higher than the sum of
Source 2 and 3’s weights. With an accurate source weight estima-
tion, we correct the mistake given by Voting/Averaging.

For the scenarios where multiple values of v(∗)im are probable, we
introduce a strategy to incorporate probability into truth computa-
tion. This strategy is probabilistic-based and we assume that obser-
vations from reliable sources should have higher probability to be
true. We represent categorical data by binary index vectors, which
characterize the probability distributions of observations over all
possible values. Formally, if the m-th property has Lm possible
values and v(k)im is the l-th value, then the index vector I(k)im for v(k)im

is defined as:

I
(k)
im = (0, . . . ,

l
1, 0, . . . , 0)T . (15)

We can use squared loss function to describe the distance be-
tween the observation index vector I(k)im and the truth vector I(∗)im :

dm(v
(∗)
im , v

(k)
im ) = dm(I

(∗)
im , I

(k)
im )

= (I
(∗)
im − I

(k)
im )T (I

(∗)
im − I

(k)
im ). (16)

THEOREM 3. Suppose that the weights are fixed, the optimiza-
tion problem Eq(1) with Eq(16) is convex. The optimal I(∗)im should
be the weighted mean of the probability vectors of all the sources:

I
(∗)
im ←

∑K
k=1 wk · I(k)im∑K

k=1 wk

. (17)

PROOF. Since the weights are fixed, the optimization problem
Eq(1) has only one set of variables X and the optimization problem
is unconstrained. As dm(I

(∗)
im , I

(k)
im ) is convex, Eq(1) is a linear

combination of convex functions, and thus it is convex.
We plug Eq(16) into the objective function in Eq(1) and then let

the partial derivative with respect to I(∗)im be 0:

K∑
k=1

wk

N∑
i=1

M∑
m=1

2(I
(∗)
im − I

(k)
im )T = 0, (18)

which leads to Eq(17).

Here, I(∗)im denotes the probability distribution of the truths, in which
v
(∗)
im is the corresponding value with the largest probability in I(∗)im ,

i.e., the most possible value.

EXAMPLE 8. We use the same scenario as in Example 7. Source
weights are 0.67, 0.41, and 0.01; the observations are “DC”, “NYC”,
and “NYC” from the corresponding sources. If “DC” is coded as
(1,0) and “NYC” as (0,1), we can calculate the truth vector for that
entry as I(∗)im = (1,0)×0.67+(0,1)×0.41+(0,1)×0.01

0.67+0.41+0.01
= (0.61, 0.39).

Therefore, the truth is “DC” with a probability of 0.61.

Comparing with the 0-1 loss strategy, this strategy gives a soft deci-
sion instead of a hard decision. However, this method has relatively
high space complexity due to the representation of categories for
input data.

As for the continuous data, the loss function should characterize
the distance from the input to the truth with respect to the variance



of entries across sources. One common loss function is the normal-
ized squared loss, which is defined as:

dm(v
(∗)
im , v

(k)
im ) =

(v
(∗)
im − v

(k)
im )2

std(v
(1)
im , . . . , v

(K)
im )

. (19)

THEOREM 4. Suppose that the weights are fixed, the optimiza-
tion problem Eq(1) with Eq(19) is convex. The truth that minimizes
the overall weighted distance should be the weighted average of the
observations:

v
(∗)
im ←

∑K
k=1 wk · v(k)im∑K

k=1 wk

. (20)

PROOF. The proof of convexity is similar to the proof in Theo-
rem 3. We plug Eq(19) into the objective function Eq(1) and then
let the partial derivative with respect to v(∗)im be 0:

K∑
k=1

wk

N∑
i=1

M∑
m=1

2(v
(∗)
im − v

(k)
im )/std(v

(1)
im , . . . , v

(K)
im ) = 0. (21)

Therefore, we can get the optimal truth shown in Eq(20).

EXAMPLE 9. Consider Bob’s height from Table 1. The obser-
vations from Sources 1, 2, and 3 are 1.72, 1.70, and 1.90 respec-
tively. Suppose the weights are 0.67, 0.41, and 0.01 for Sources
1, 2, and 3 respectively. Then Bob’s height can be calculated as:
1.72×0.67+1.70×0.41+1.90×0.01

0.67+0.41+0.01
= 1.71. It is obvious that the result

is closer towards the observation from Source 1 because it is more
reliable.

This truth computation strategy simulates the idea that observations
from a reliable source should contribute more to the computation
of the truth. However, this method is sensitive to the existence of
outliers, as an outlier will receive a huge loss because of the square
term, and thus can only work well in the data set in which outliers
are removed.

To mitigate the effect of outliers, we can use the normalized ab-
solute deviation as the loss function on continuous data:

dm(v
(∗)
im , v

(k)
im ) =

|v(∗)im − v
(k)
im |

std(v
(1)
im , . . . , v

(K)
im )

. (22)

THEOREM 5. Based on Eq(22), the truth that minimizes the
overall weighted absolute deviation should be the weighted median.

Proof is omitted as the derivation is similar to the previous cases.
Specifically, we use the following definition of weighted median2.
Given a set of numbers {v1, ..., vK} with weights {w1, ...wK}, the
weighted median of this set is the number vj , such that∑

k:vk<vj

wk <
1

2

K∑
k=1

wk &
∑

k:vk>vj

wk 6
1

2

K∑
k=1

wk. (23)

The sum of weights on the numbers that are smaller than the weighted
median, and the sum of weights on the numbers that are greater
than the weighted median should both be roughly half of the total
weights on the whole set. To find the weighted median, we com-
pare the cumulative sum computed on numbers smaller than vj or
greater than vj . Note that conventional median can be regarded as
a special case where we give the same weight to all the numbers
so that median becomes the number separating the higher half from
the lower half. It is known that median is less sensitive to the exis-
tence of outliers, and thus the weighted median approach for truth
computation is more desirable in noisy environments.
2http://www.mathworks.com/matlabcentral/fileexchange
/23077-weighted-median/content/weightedMedian.m

EXAMPLE 10. Using the same example as in Example 9, we
first sort all observations in ascending order: (1.70, 1.72, 1.90),
and the corresponding source weight is (0.41, 0.67, 0.01). Then
Bob’s height by weighted median using Eq(23) is 1.72.

Besides the aforementioned loss functions, the proposed general
framework can take any loss function that is selected based on data
types and distributions. Some other examples include Mahalanobis
distance for continuous data, edit distance or KL divergence for text
data, etc. To deal with complex data types, we can either use loss
functions defined on raw data or on abstraction of raw data, such as
motifs in time series, frequent sub-graphs in graphs, and segments
in images. The framework can even be adapted to take the ensemble
of multiple loss functions for a more robust loss computation. We
can also convert a similarity function into a loss function, which
allows the usage of numerous techniques in similarity computation
developed in the data integration community.

2.5 Discussions & Practical Issues
Here we first discuss several important issues to make the frame-

work practical including initialization, convergence, normalization,
and missing values. Then we show the algorithm flow using a run-
ning example. Finally, we analyze the time complexity of the pro-
posed CRH framework.

Initialization. The initialization of the truths can be obtained us-
ing existing conflict resolution approaches. In our experiments, we
find that the result from Voting/Averaging approaches is typically
a good start. In fact, initialization will not affect the final results if
the optimization problem is convex.

Convexity and Convergence. The convexity depends on the loss
functions and regularization function. An example of a family of
convex loss functions is Bregman divergence [1], which includes a
variety of loss functions such as squared loss, logistic loss, Itakura-
Saito distance, squared Euclidean distance, Mahalanobis distance,
KL-divergence and generalized I-divergence. Using several loss
functions discussed in this paper, we prove the convergence of the
CRH framework as follows. Note that the proof on the convergence
can be derived in the same way if other convex functions are used.

THEOREM 6. When Eq(4) is used as constraint, Eq(16) or/and
Eq(19) is/are used as loss functions, the convergence of CRH frame-
work is guaranteed.

PROOF. For the optimization problem of Eq(1), we proved ear-
lier in Theorem 1 that the unique minimum with respect to weights
W can be achieved when truths X (∗) are fixed; we proved in The-
orem 3 and Theorem 4 that the unique minimum with respect to
truths X (∗) can be achieved when weights W are fixed. Accord-
ing to the proposition on the convergence of block coordinate de-
scent [2], we can derive that the proposed iterative procedure will
converge to a stationary point of the optimization problem.

In Algorithm 1, the convergence criterion is that the decrease in
the objective function is small enough compared with the previous
iterations. In the experiments we find that the convergence of this
approach is easy to judge because the first several iterations incur
a huge decrease in the objective function, and once it converges,
the results become stable. Experimental results on convergence are
shown in Section 3.2.3.

Although the analysis on non-convex or non-differentiable func-
tions need to be conducted differently [17,20], we find that some of
these approaches work well in practice, such as the absolute devia-
tion for continuous data.

Normalization. Another important issue is the normalization of
deviations on each property. As illustrated in the weight computa-
tion equation (Eq(5)), we need to sum up the deviations to the truths



across different properties. If various loss functions applied on dif-
ferent properties have significantly different scales, the weight com-
putation will be biased towards the property that has bigger range in
the deviation. To solve this issue, we normalize the output of each
loss function on each property so that the deviation computed on all
the properties fall into the same range.

Missing Values. Note that for the sake of simplicity, we assume
that all the sources observe all the objects on all the properties in
the proposed optimization framework (Eq(1)), but it can be easily
modified to handle missing values when different sources observe
different subsets of the objects on different subsets of properties.
When the number of observations made by different sources is quite
different, we can normalize the overall distance of each source by
the number of observations.

Running Example. Using the same databases in Table 1, we dis-
play both the truth tables and the source weights for the first three it-
erations using Voting/Averaging as initialization. We use weighted
vote for categorical data and weighted median for continuous data
to update truths. The algorithm updates source weights and truths
repeatedly until the convergence criterion is satisfied. The results
are shown in Table 3 and 4. Comparing with the ground truths in
Table 2, the truth table gets more and more accurate with more iter-
ations. The algorithm converges after three iterations.

Table 3: Source Weights for the First Three Iterations
Iteration 1 Iteration 2 Iteration 3

Source 1 0.2729 0.5552 0.6734
Source 2 0.2521 0.4539 0.4077
Source 3 0.1349 0.0149 0.0141

Table 4: Truth Tables for the First Three Iterations
Iteration 1 Iteration 2 Iteration 3

Object City Height City Height City Height

Bob NYC 1.72 NYC 1.72 NYC 1.72
Mary LA 1.62 LA 1.62 LA 1.62
Kate NYC 1.72 NYC 1.74 NYC 1.74
Mike NYC 1.72 NYC 1.72 NYC 1.72
Joe NYC 1.72 DC 1.72 DC 1.72

Time Complexity. When we utilize the aforementioned functions
Eq(5), Eq(13) and Eq(23), the running time is linear with respect
to the total number of observations, i.e., O(KNM), where K is
the number of sources, N is the number of objects, and M is the
number of properties. In addition, the algorithm can be adapted
to run on the MapReduce platform to further speed up the process
on large-scale data sets. It is obvious that the truth computation
step (Eq(3)) can be executed independently for each object and thus
this step is easy to parallelize. If we use Eq(5) to compute source
weights, this step can be expressed using summation form [7], and
thus it can be parallelized by aggregating partial sums. The time
complexity is experimentally validated in the following section, in
which we show the running time of the proposed approach on both
single machine and Hadoop cluster.

2.6 Summary
Our major contribution is that we unify data of various types in

truth discovery to resolve conflicts on heterogeneous data. The pro-
posed optimization framework (Eq(1)), which targets at minimizing
overall weighted difference between truths and input data, provides
a nice way to combine data of various types when deriving source
weights and truths. Under this general framework, we discussed
several common data types and loss functions, derived effective so-
lutions, and analyzed its convergence. Different from existing truth

discovery approaches that focus on facts [9, 12, 18, 22] or contin-
uous data [23], the proposed CRH model learns source reliability
degrees jointly from various properties with different data types.
Unique characteristics of each data type is considered, and all types
contribute to source reliability estimation together. This joint infer-
ence improves source reliability estimation and leads to better truth
discovery on heterogeneous data.

3. EXPERIMENTS
In this section, we report the experimental results on both real-

world and simulated data sets, which show that the proposed CRH
method is efficient and outperforms state-of-the-art conflict resolu-
tion methods when integrating multiple sources of heterogeneous
data. We first discuss the experiment setup in Section 3.1, and then
present experimental results in Section 3.2.

3.1 Experiment Setup
In this part, we present the performance measures and discuss the

baseline methods.

3.1.1 Performance Measures
The problem setting is that we have multi-source input and the

ground truths. All the conflict resolution methods are conducted in
an unsupervised manner in the sense that the ground truths will only
be used in evaluation. In this experiment, we focus on two types of
data: categorical and continuous. To evaluate the performance of
various conflict resolution methods, we adopt the following mea-
sures for these two data types:

• Error Rate: For categorical data, we use Error Rate as the per-
formance measure of an approach, which is computed as the
percentage of the approach’s output that are different from
the ground truths.

• MNAD: For continuous data, we can measure the overall
absolute distance from each method’s output to the ground
truths, which indicates how close the output are to the ground
truths. As different entries may have different scales, we nor-
malize the distance on each entry by its own variance, and
then calculate their mean. This leads to the measure Mean
Normalized Absolute Distance (MNAD).

For both measures, the lower the value, the closer the method’s es-
timation is to the ground truths and thus the better the performance.

3.1.2 Baseline Methods
For the proposed CRH method, we use weighted voting (Eq(13))

for categorical data due to its time and space efficiency. On contin-
uous data, we use weighted median (Eq(23)), which is efficient and
robust in noisy environment with outliers. Weight assignment is
computed by the inverse logarithm of the ratio between the devia-
tion to the truth and the maximum distance so that the difference
in source reliability is emphasized. We compare the proposed ap-
proach with the following baseline methods that cover a wide va-
riety of ways to resolve conflicts. These approaches can be parti-
tioned into three categories.

Conflict Resolution Methods Applied on Continuous Data Only.
The following approaches can only be applied on continuous data,
and thus they will ignore the input from categorical properties.

• Mean: Mean simply takes the mean of all observations on
each property of each object as the final output.

• Median: Median calculates the median of all observations
on each property of each object as the final output.



• GTM [23]: Gaussian Truth Model (GTM) is a Bayesian prob-
abilistic approach especially designed for solving conflict res-
olution problem on continuous data. Note that this approach
only uses partial data (continuous) while other truth discov-
ery methods use all the data (categorical and continuous),
and thus insufficient data may lead to performance degrade
in GTM compared with others. However, we still include
GTM in the comparison as it is an important truth discovery
method applied on continuous data.

Among them, Mean and Median are traditional conflict resolution
approaches, and GTM is a truth discovery approach which consid-
ers source reliability estimation.

Conflict Resolution Methods Applied on Categorical Data Only.
We apply majority voting approach on categorical properties only.
This is the traditional way of resolving conflicts in categorical data
without source reliability estimation.

• Voting: The value which has the highest number of occur-
rences is regarded as the fused output.

Conflict Resolution Methods by Truth Discovery. Many of the ex-
isting conflict resolution approaches that consider source reliability
(often referred to as “truth discovery” approaches) are developed
to find true “facts” for categorical properties. However, we can
enforce them to handle data of heterogeneous types by regarding
continuous observations as “facts” too.

• Investment [18]: In this approach, a source “invests" its re-
liability uniformly on the observations it provides, and col-
lects credits back from the confidence of those observations.
In turn, the confidence of an observation grows according to
a non-linear function defined based on the sum of invested
reliability from its providers.

• PooledInvestment [18]: PooledInvestment is similar to
Investment. The only difference is that the confidence of an
observation is linearly scaled instead of non-linearly scaled.

• 2-Estimates [12]: This approach is proposed based on the
assumption that “there is one and only one true value for each
entry". If a source provides an observation for an entry, 2-
Estimates assumes that this source votes against different
observations on this entry.

• 3-Estimates [12]: 3-Estimates improves 2-Estimates by
considering the difficulty of getting the truth for each entry,
the estimation of which will affect the source’s weight.

• TruthFinder [22]: TruthFinder adopts Bayesian analysis, in
which for each observation, its confidence is calculated as
the product of its providers’ reliability degrees. Similarity
function is used to adjust the vote of a value by considering
the influences between facts.

• AccuSim [9]: AccuSim also applies Bayesian analysis and
it also adopts the usage of the similarity function. Mean-
while, it considers complement vote which is adopted by 2-
Estimates and 3-Estimates. Note that in [9], other algo-
rithms have been proposed to tackle source dependency is-
sues in resolving conflicts, which are not compared here be-
cause we do not consider source dependency in this paper but
leave it for future work.

The comparison between the proposed framework with these base-
line approaches on heterogeneous data can show that 1) using both
types of data jointly gives better source reliability estimation than
using individual data types separately, but 2) an accurate weight can

only be obtained by taking unique characteristics of each data type
into consideration.

We implement all the baselines and set the parameters accord-
ing to their authors’ suggestions. All the experimental results in
this section except for MapReduce experiments are conducted on a
Windows machine with 8G RAM, Intel Core i7 processor.

3.2 Experimental Results
In this section, by comparing the proposed CRH approach with the
baseline methods, we show the power of simultaneously model-
ing various data types in a joint framework on both real-world and
simulated data sets. We also show the efficiency of the proposed
approach on single machine and Hadoop cluster.

3.2.1 Real-world Data Sets
We use three real-world data sets to demonstrate the effectiveness

of the proposed method.

Weather Forecast Data Set. Weather forecast integration task is
a good test bed because the data contains heterogeneous types of
properties. Specifically, we integrate weather forecasting data col-
lected from three platforms: Wunderground3, HAM weather4, and
World Weather Online5. On each of them, we crawl the forecasts
of three different days as three different sources, so altogether there
are nine sources. For each source, we collected data of three prop-
erties: high temperature, low temperature and weather condition,
among which the first two are continuous and the last is categori-
cal. To get ground truths, we crawl the true weather information for
each day. We collected the data for twenty US cities over a month.

Stock Data Set. The stock data [15], crawled on every work day
in July 2011, consists of 1000 stock symbols and 16 properties from
55 sources, and the ground truths are also provided. Here, we treat
the data set as heterogeneous. More specifically, property volume,
Shares outstanding and Market cap are considered as continuous
type, and the rest ones are considered as categorical type.

Flight Data Set. The flight data [15], crawled over one-month pe-
riod starting from December 2011, consists of 1200 flights and 6
properties from 38 sources. We conduct pre-processing on the data
to convert the gate information into the same format and the time in-
formation into minutes. The ground truths are also available. In this
work, we show results on the flight data by treating gate informa-
tion as categorical type and time information as continuous type.
Note that we have a different task setting compared with [15] for
Stock and Flight data when we treat them as heterogeneous types.

Table 5 shows the statistics of these three data sets. Note that
the number of entries does not equal to the number of ground truths
because we only have a subset of entries labeled with ground truths.
The ground truths are not used by any of the approaches, but only
used in the evaluation.

Table 5: Statistics of Real-world Data Sets
Weather Data Stock Data Flight Data

# Observations 16038 11748734 2790734
# Entries 1920 326423 204422

# Ground Truths 1740 29198 16572

In Table 6, we summarize the performance of all the methods
in terms of Error Rate on categorical data and MNAD on contin-
uous data for three real-wold data sets. Although our approach
outputs truths on both data types simultaneously, we evaluate the

3http://www.wunderground.com
4http://www.hamweather.com
5http://www.worldweatheronline.com



Table 6: Performance Comparison on Real-world Data Sets
Weather Data Stock Data Flight Data

Method Error Rate MNAD Error Rate MNAD Error Rate MNAD

CRH 0.3759 4.6947 0.0700 2.6445 0.0823 4.8613
Mean NA 4.7840 NA 7.1858 NA 8.2894

Median NA 4.9878 NA 3.9334 NA 7.8471
GTM NA 4.7914 NA 3.4253 NA 7.6703
Voting 0.4844 NA 0.0817 NA 0.0859 NA

Investment 0.4913 5.2361 0.0983 2.8081 0.0919 6.4153
PooledInvestment 0.4948 5.5788 0.0990 2.7940 0.0925 5.8562

2-Estimates 0.5327 5.5258 0.0726 2.8509 0.0885 7.4347
3-Estimates 0.4810 5.1943 0.0818 2.7749 0.0881 7.1983
TruthFinder 0.4586 5.1293 0.1194 2.7140 0.0950 8.1351

AccuSim 0.4672 5.0862 0.0726 2.8503 0.0881 7.3204

performance separately on these two data types due to the different
measures for different data types. It can be seen that the proposed
CRH approach achieves better performance on both types of data
compared with all the baselines. For example, on weather data,
the number of mismatches from ground truths drops from 266 (the
best baseline) to 218 out of 580 entries by using CRH (on categor-
ical data). On Stock and Flight data sets where baselines have al-
ready achieved good performance, we still can see the performance
improvement of CRH over the best baseline (1719 ->1657 out of
23677, and 427 ->414 out of 4971). Similarly, the gain on continu-
ous data can be consistently observed on all three data sets.

By outperforming various conflict resolution approaches applied
separately on categorical data and continuous data, the proposed
CRH approach demonstrates its advantage in modeling source reli-
ability more accurately by jointly inferring from both types of data.
GTM can not estimate source reliability accurately merely by con-
tinuous data which may not have sufficient information. This also
justifies our assumption that each source’s reliability on continuous
and categorical data is consistent so the estimation over different
data types complements each other.

The reason that the proposed CRH approach beats the other con-
flict resolution approaches that are applied on both types of data is
that these approaches cannot capture the unique characteristics of
each data type. This is further supported by the fact that the perfor-
mance of those approaches is relatively better on categorical data,
but deviates more from the truths on the continuous data. In contrast
to existing approaches, the proposed CRH framework can take data
type into consideration, which will provide a better estimation of
source reliability, and thus result in more accurate truth estimation.

As source reliability is the key to obtain correct truths, we fur-
ther show the source reliability degrees estimated for the 9 sources
by various approaches on the weather forecast data set. We choose
this data set because it consists of nine sources only, which is more
practical to demonstrate. We first compute the true source reliabil-
ity by comparing the observations made by each source with the
ground truths. Reliability of a source is defined as the probability
that the source makes correct statements on categorical data, and
the chance that the source makes statements close to the truth on
continuous data. To simplify the presentation, we combine the reli-
ability scores of continuous and categorical data into one score for
each source. To make it clear, we show the source reliability de-
grees in three plots presented in Figure 1, each of which shows the
comparison between the ground truths and some of the approaches.

Figure 1(a) shows that the source reliability degree estimated by
CRH method is in general consistent with that obtained from the
ground truths. By effectively characterizing different data types
in a joint model, the proposed approach can successfully distin-
guish good sources from bad ones, and accordingly derive the truth
based on good sources. In Figures 1(b) and 1(c), we show the

reliability degrees of 9 sources estimated by GTM, AccuSim, 3-
Estimates and PooledInvestment compared with the ground truth
reliability. We particularly show the results on these approaches be-
cause 3-Estimates and PooledInvestment are improved solutions
compared with 2-Estimates and Investment respectively claimed
in the corresponding papers, and TruthFinder has similar perfor-
mance with AccuSim on this data set. As different methods adopt
various functions to estimate the source reliability scores, to make
them comparable, we normalize all the scores into the range [0, 1].
Among these approaches, 3-Estimates and GTM calculate the un-
reliability degrees, so we convert their scores to reliability degrees
to show the comparison. The plots show that the baseline methods
can capture the difference among sources in making accurate claims
to a certain extent, but the patterns in source reliability detected by
them are not very consistent with the ground truths, which can thus
explain the increased error in truth detection in Table 6.

Note that the improved performance of the proposed approach is
achieved when each individual data type’s characteristics are fully
taken into account in the joint modeling of heterogeneous data.
To demonstrate this point, we show that using heterogeneous data
without distinguishing data types cannot help improve the perfor-
mance. As shown in Table 7, the baseline approaches, which regard
all data types the same, have similar performance when they are ap-
plied on heterogeneous data and on categorical data only. This indi-
cates that the incorporation of continuous data does not make differ-
ence for these approaches. To further investigate this behavior, we
plot the source weights obtained by AccuSim, 3-Estimates, and
PooledInvestment on categorical data and heterogeneous data re-
spectively in Figure 2. From the plots, we can see that for any
of these approaches, these two groups of source reliability scores
are close to each other. The reason behind this phenomenon is
that unlike categorical data, continuous data are noisier and wider
distributed, and sources disagree much more on the values. When
these approaches ignore the characteristics of different data types,
they cannot find meaningful truths. Thus, the deviations are rather
random and uniform across different sources. When summing up
the deviations on both categorical and continuous data to compute
source weights, the inputs from the continuous side do not signifi-
cantly affect the source weight distribution because it is quite sim-
ilar across sources. In other words, the incorporation of continu-
ous data without considering their characteristics can hardly benefit
or even harm the weight estimation. Therefore, these approaches
get similar source weight distributions with and without continuous
data and the results are not improved. This phenomenon further
proves that only utilizing heterogeneous data by considering the
characteristics of different data types in source reliability estima-
tion can obtain a good result. That is the reason why the proposed
approach performs better than baseline approaches.
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Figure 1: Comparison of Source Reliability Degrees with Ground Truths
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Figure 2: Comparison of Source Reliability Degrees between Methods Applied on Categorical and Heterogeneous Data

Table 7: Comparison for Baselines on Weather Data
Heterogeneous Data Categorical Data

Method Error Rate MNAD Error Rate MNAD

Investment 0.4913 5.2361 0.4776 NA
PooledInvestment 0.4948 5.5788 0.4914 NA

2-Estimates 0.5327 5.5258 0.5121 NA
3-Estimates 0.4810 5.1943 0.4638 NA
TruthFinder 0.4586 5.1293 0.4603 NA

AccuSim 0.4672 5.0862 0.4620 NA

3.2.2 Noisy Multi-source Simulations
To further demonstrate the advantages of the proposed frame-

work in the environment involving various reliability degrees and
different loss functions, we conduct experiments on simulated data
sets generated from UCI machine learning data sets. We choose two
data sets: UCI Adult6 and Bank7 data sets, each of which has both
continuous and categorical properties. The original data sets are re-
garded as the ground truths, and based on each of them, we gener-
ate a data set consisting of multiple conflicting sources by injecting
different levels of noise into the ground truths as the input to our ap-
proach and baseline methods. Gaussian noise is added to each con-
tinuous property, and values in categorical properties are randomly
flipped to generate facts that deviate from the ground truths. To bet-
ter simulate the real-world data, we round the continuous type data
based on their physical meaning. A parameter α is used to control
the reliability degree of each source (a lower α indicates a lower
chance that the ground truths are altered to generate observations).
In this way, we generate data sets which contain 8 sources with var-
ious degrees of reliability (α = {0.1, 0.4, 0.7, 1, 1.3, 1.6, 1.9, 2}).
Table 8 shows the statistics of these two data sets.

Table 8: Statistics of Simulated Data Sets
Adult Data Bank Data

# Observations 3646832 5787008
# Entries 455854 723376

# Ground Truths 455854 723376

Tables 9 summarizes the results of all the approaches on these
two data sets. It can be seen that CRH can fully recover all the
6http://archive.ics.uci.edu/ml/datasets/Adult
7http://archive.ics.uci.edu/ml/datasets/Bank+Marketing

truths on categorical data, and find the true value for continuous
data with very small distance by inferring accurate source reliability
degrees. Similar to the experiments on the weather data set, we can
still observe the great improvement in truth detection performance
compared with baseline approaches due to the proposed method’s
advantage in source reliability estimation. Existing approaches can-
not provide accurate estimate of source reliability because they ei-
ther take incomplete data (only categorical or continuous), or do not
model the characteristics of both data types jointly.

Table 9: Performance Comparison on Simulated Data Set
Adult Data Bank Data

Method Error Rate MNAD Error Rate MNAD

CRH 0.0000 0.0637 0.0000 0.0789
Mean NA 0.3673 NA 0.3671

Median NA 0.2470 NA 0.2491
GTM NA 0.0810 NA 0.0948
Voting 0.1029 NA 0.2314 NA

Investment 0.0530 0.1391 0.1197 0.1588
PooledInvestment 0.0215 0.1008 0.0241 0.0866

2-Estimates 0.0497 0.1355 0.1152 0.1583
3-Estimates 0.0497 0.1355 0.1152 0.1583
TruthFinder 0.0346 0.1272 0.1097 0.1589

AccuSim 0.0288 0.1145 0.0681 0.1571

On these simulated data sets, we also investigate how the perfor-
mance of the proposed CRH approach varies with respect to dif-
ferent distributions of source reliability degrees. To illustrate the
effect more clearly, we choose two reliability degrees: α = 0.1 and
α = 2, which correspond to reliable and unreliable sources respec-
tively. We now fix the total number of sources as 8, and change
the number of reliable sources to conduct a series of experiments.
Figures 3 and 4 show the performance of the proposed approach
and baseline methods on Adult and Bank data sets respectively. In
each of them, we show the performance on categorical and contin-
uous data respectively when we vary the number of reliable sources
from 0 to 8 (out of 8 sources in total).

The following observations can be made from the results: 1) The
plots support our previous findings that the CRH framework out-
performs existing conflict resolution techniques, which ignore the
unique characteristics of each data type. When sources are equally
reliable or unreliable (number of reliable sources equals to 0 or
8), the CRH model achieves similar performance as that of vot-
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Figure 3: Performance w.r.t. # Reliable Sources on Adult Data Set
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Figure 4: Performance w.r.t. # Reliable Sources on Bank Data Set

Table 10: Comparison for Different Loss Functions
Method Error Rate MNAD

Eq(13) + Eq(20) 0.0125 0.1533
Eq(13) + Eq(23) 0.0125 0.1938Scenario 1
Eq(17) + Eq(20) 0.0375 0.1628
Eq(17) + Eq(23) 0.0125 0.1938

Eq(13) + Eq(20) 0.0375 0.3030
Eq(13) + Eq(23) 0.0250 0.2052Scenario 2
Eq(17) + Eq(20) 0.0375 0.2899
Eq(17) + Eq(23) 0.0250 0.2052

ing/averaging approaches. However, when the reliability degree
varies across sources, CRH performs much better. 2) In general,
it is easier to detect truths when we have a bigger number of reli-
able sources. However, on categorical data, even when only 1 out
of 8 sources is reliable, CRH can still discover most of the truths.
Clearly, the proposed approach can successfully infer source relia-
bility and thus detect the truths that are stated by the minority. 3)
On continuous data, we can see that the convergence rate is slower
than that on categorical data. Conflict resolution on continuous data
is in general more difficult due to the higher complexity of the truth
space and more complicated definition of closeness to the truths.

Next we discuss the effect of loss functions and give some guide-
lines on how to choose appropriate loss functions under different
scenarios (Table 10).

Under Scenario 1, we generate five sources with different levels
of noise and the levels of noise are relatively low on all sources
(α = {0.5, 0.5, 0.5, 1, 1}), which means that sources have low
variance on continuous data and tend to agree with each other on
categorical data. The combination of Eq(13) and Eq(20) achieves
the best performance (using traditional 0-1 and squared loss). Un-
der Scenario 2, we add more noise on two out of the five sources
(α = {0.5, 0.5, 1, 3.5, 4.5}). These two sources contain outliers
on continuous data, and many mistakes on categorical data. We
find that Eq(13) + Eq(23) and Eq(17) + Eq(23) work better than the
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Figure 5: Convergence Rate

others. This is because that normalized absolute deviation gives a
smaller penalty on outliers than normalized squared loss does, and
thus is more tolerant of outliers.

3.2.3 Efficiency
In this section, we study the efficiency of the proposed CRH

framework. We first explore its convergence rate in practice, and
then show its running time on both single machine and Hadoop
cluster.

Convergence Rate. As we proved in Theorem 6, the convergence
of CRH framework is guaranteed when Eq(4) is used as constraint,
Eq(16) or/and Eq(19) is/are used as loss functions. We further
demonstrate the convergence rate using weather data set. Figure
5 shows the change of the objective value with respect to each it-
eration. We can see that the objective value decreases fast at the
first five iterations and then reaches a stable stage, showing that the
proposed method converges quickly in practice.

Running Time. We sample different number of observations and
entries from weather data set to show the running time of the CRH
framework on single machine. As shown in Table 11, the proposed
approach has linear complexity in the number of observations. To
further demonstrate this, we compute Pearson’s correlation coeffi-
cient, which is a commonly used method to test linear relationship
between variables. It ranges from 1 to -1. The closer it is to 1 (or
-1), the stronger positive (or negative) linear relationship the vari-



ables have. In our experiment, the Pearson’s correlation coefficient
for running time and the number of observations is higher than 0.99,
which indicates that they are highly linearly correlated.

As mentioned in the discussions of the CRH framework, it can
be easily adapted to MapReduce programming model. As the num-
ber of observations can be easily varied in a large range, we use the
simulated data sets to evaluate the running time of CRH on Hadoop
cluster. Based on the Adult data set, we generate large-scale data
sets by adding different noise levels on the original data set as
we discussed. The number of observations vary from 104 to 108.
The proposed CRH framework is implemented using MapReduce
model. The experiments are conducted on a 4-node Dell Hadoop
cluster with Intel Xeon E5-2403 processor (4x 1.80 GHz, 48 GB
RAM). As shown in Table 11, the fusion process using the MapRe-
duce version of the proposed approach can finish in a short time.
The running time mainly comes from the setup overhead when the
number of observations is not very large, but the speed-up in the
execution time is more obvious when the number of observations
increases. For example, on a data set with size 108, the whole pro-
cess only took 669s.

Table 11: Running Time
Single Machine Hadoop Cluster

# Observations Time (s) # Observations Time (s)

5× 104 1.5575 1× 104 94
7× 104 2.3265 1× 105 96
9× 104 2.9505 1× 106 100
1.2× 105 3.4133 1× 107 193
1.4× 105 4.3827 1× 108 669
1.6× 105 4.6724 4× 108 1384

Pearson Correlation 0.9903 Pearson Correlation 0.9811

4. CONCLUSIONS
To extract insightful knowledge from an overwhelming amount

of information generated by numerous industries, it is crucial to
automatically identify trustworthy information and sources from
multiple conflicting data sources. As heterogeneous data is ubiq-
uitous, a joint estimation on various data types can lead to better
estimation of truths and source reliability. However, existing con-
flict resolution work either regards all the sources equally reliable,
or models different data types individually. Therefore, we propose
to model the conflict resolution problem on data of heterogeneous
types using a general optimization framework called CRH that in-
tegrates the truth finding process on various data types seamlessly.
In this model, truth is defined as the value that incurs the smallest
weighted deviation from multi-source input in which weights rep-
resent source reliability degrees. We derive a two-step iterative pro-
cedure including the computation of truths and source weights as a
solution to the optimization problem. The advantage of this frame-
work is its ability of taking various loss and regularization functions
to characterize different data types and weight distributions effec-
tively. We derive efficient computation approach that is linear with
respect to the number of observations and the approach can be eas-
ily implemented in MapReduce model. We conduct experiments
on weather, stock and flight data sets collected from multiple plat-
forms as well as simulated multi-source data generated from UCI
machine learning data sets. Results demonstrate the efficiency and
the advantage of the proposed CRH approach over existing conflict
resolution approaches in finding truths from heterogeneous data. In
the future, we plan to adapt the framework to more complicated
conflict resolution scenarios, such as the cases involving multiple
truths and source dependency.
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