Follow our lab on ResearchGate and Google Scholar.

Selected publications

Punyasena, S.W., D.S. Haselhorst, S. Kong, C.C. Fowlkes, and J.E. Moreno. 2022. Automated identification of diverse Neotropical pollen samples using convolutional neural networks. Methods in Ecology and Evolution. 13 (9): 2049-2064

Romero, I. C., S. Kong, C. C. Fowlkes, C. Jaramillo, M. A. Urban, F. Oboh-Ikuenobe, C. D’Apolito, and S. W. Punyasena. 2020. Improving the taxonomy of fossil pollen using convolutional neural networks. Proceedings of the National Academy of Sciences. 117(45): 28496-28505

Romero, I. C., M. A. Urban, and S. W. Punyasena. 2020. Airyscan superresolution microscopy: A high-throughput alternative to electron microscopy for the visualization and analysis of fossil pollen. Review of Palaeobotany and Palynology. 276: 104192

Mander, L. and S. W. Punyasena. 2014. On the taxonomic resolution of pollen and spore records of Earth’s vegetation. International Journal of Plant Sciences. 175(8): 931-945.

Mander, L., M. Li, W. Mio, C. C. Fowlkes and S. W. Punyasena. 2013. Classification of grass pollen through the quantitative analysis of surface ornamentation and texture. Proceedings of the Royal Society B 280(1770): 20131905.

Punyasena, S. W., D. K. Tcheng, C. Wesseln, and P.  G. Mueller. 2012. Classifying black and white spruce pollen using layered machine learning. New Phytologist 196(3): 937-944.

McElwain, J. C., and S. W. Punyasena. 2007. Mass extinction events and the plant fossil record. Trends in Ecology & Evolution 22(10): 548-557.